016-Assessing Environmental Contamination I
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers, geologist, scientists, and technicians who supervise and conduct environmental field investigations intended to detect, delineate, and remediate contaminated volumes of soil and groundwater. It will be useful to those who are new to such work, but those who are experienced in environmental science should also find the information useful, simply because of the ongoing technical advances in this field.
Dynamic sampling is an investigative strategy that offers the ability to screen contaminant levels in soil and groundwater semi-quantitatively, while still in the field. This strategy virtually eliminates surprises that can occur from the traditional delay in receiving laboratory results. If contaminants are discovered in an area thought to be free of problems, the work plan can be revised dynamically, at the moment.
The membrane interface probe (MIP) is a powerful high-resolution screening tool capable of providing both volatile organic contaminant and soil conductivity data in real time. The MIP provides a real-time vertical log of volatile organic contamination and conductivity with depth. An MIP, used as part of a dynamic sampling strategy, can result in contamination assessments and remediations with significant cost savings, increased time efficiency, and superior outcomes.
023-Marina Site Analysis
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A very important component of the maritime design process becomes one of properly assessing a perspective site, and advising your client as to the pros and cons associated with site suitability; and in fact must be the first step in planning any maritime facility. This continuing education program is intended to provide the design engineer with the basic essentials for performing several levels of site assessment as appropriate for the structures discussed within this text. These range from simple recreational piers to light commercial facilities. These basics are:
Fetch & Wave Climate Forecasting
- Determining Baseline Information
- Determination of Site Water Level Ranges
- Determination of Wind Stress
- Determination of Wave Climate
Assessment of Site Soil Conditions
- Simple & Preliminary Investigation Procedures
- More Advanced Investigation Methods
Each of these subjects will take the reader through the step by step process of performing that phase of the pre-design site analysis and will discuss the suitability of each for the respective level of service of the respective docking facilities. The procedures laid out herein are suitable for very simple recreational docks to more sophisticated procedures required for light commercial docking facilities. This course is a prerequisite for the other maritime courses prepared by this author, which include the other design phases of boating similar facility designs.
029-Geothermal Heating and Cooling
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Ground Source Heat Pump Systems harvest solar energy for heating, and they utilize soil capacities to store heat for air conditioned cooling. They use smaller amounts of electricity, without fossil fuel combustion in the building served. Geothermal Green Technology reduces CO2 emissions, and saves owners fuel and AC costs. In February of 2018 the 30% Federal Tax Credit was reinstated for residential geothermal and 10% for commercial, leading to much more business.
This SUNCAM continuing education course shows you how to design and install the outside closed loop piping under the lawn or nearby meadow of a new or existing building. At its completion, you will be able to prepare a site plan and oversee installation of the outside work, necessary for the inside work to be done by the HVAC contractor.
032-Stormwater Retention Pond Recovery Analysis
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
To design a stormwater retention pond, one of the analyses that engineers have to perform is the retention and recovery of polluted runoff water. The initial portion of stormwater runoff is typically directed to a retention pond and which contains the most polluted runoff water (the first flush). The polluted water must be fully retained within the retention pond for treatment and infiltration. This course will be limited to recovery analysis for dry retention ponds where the entire polluted water volume must be stored within the pond and then recovered by infiltration within a specified period of time.
The regulatory agencies generally establish the minimum criteria for recovery of the first flush volume, which is sometimes referred to as the pollution abatement volume. For a dry pond the designer must verify the pond's capacity to infiltrate the volume within a specified period of time. This course will present the analytical approach and the methodology to calculate the infiltration losses from a dry retention pond.
033-Welding Technology
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Welding and brazing is always performed in accordance with a procedure. In the simplest of cases, the procedure may exist only in the mind of the welder such as an experienced farmer repairing his equipment. However, in the majority of cases, especially for structures, pressure vessels, piping, etc., a written procedure is required before work. In most cases, the written procedure must be "qualified", i.e. be tested on mockup coupons to prove its effectiveness before being applied to a real product. In all cases, qualified or not, the variables affecting the procedure must be considered and addressed in the procedure.
This course uses the organization concepts of ASME Section IX, Welding and Brazing Qualifications, to introduce some processes and variables that should be considered when planning a welding or brazing procedure. A description is provided of some of the many welding and brazing processes. Variables discussed, including some examples of each, are joint type/weld type, base material, filler material, position, preheat and interpass temperature, post weld heat treatment, shielding gas, electrical characteristics, and technique.
This course provides an excellent introduction to engineers and craftsmen who deal with welding and brazing procedures as a peripheral duty, perhaps reviewing and accepting contractor procedures, and want to more fluently "speak the language". This course is also an excellent introduction for those who will need to be more deeply involved in preparing welding and brazing procedures as a starting point for further study.
039-Stormwater Retention - Field and Laboratory Methods
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended to present a systematic methodology for the determination of the type of field and laboratory tests needed and the minimum number of tests to be conducted for the design of a stormwater retention pond system.
Typically, soil borings and hydraulic conductivity tests are conducted for a stormwater retention pond system to evaluate the capacity of the pond to retain and infiltrate stormwater runoff. This is applicable to retention ponds built in sandy unconfined aquifer systems. The number of soil borings and hydraulic conductivity tests performed are usually dependent on many factors, not always obvious to the investigator or a designer. In some areas, the regulatory agencies have established criteria for a minimum number of soil borings and hydraulic conductivity tests. However, judgment and experience are usually applied in the decision making process and the selection of the number of tests can vary significantly from one investigator to another.
This course introduces a systematic methodology for a designer of a stormwater retention pond to select the minimum number of soil borings and hydraulic conductivity tests needed for a particular stormwater retention pond system. The course is presented in two parts. The first part presents the soil borings that are typically used to characterize the subsurface conditions, and the second part presents the hydraulic conductivity test methods and their applicability for a particular subsurface condition. The course concludes with the proposed methods to select the number and type of soil borings and the number and type of hydraulic conductivity tests needed for a particular retention pond system.
043-Introduction to the Design of Wood Trusses
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Metal plated wood trusses have become very popular for wood frame construction, especially in the home building industry. The purpose of this document is to provide an introduction to the most significant concepts relating to the design, manufacture, and erection of metal plated wood trusses and their application to residential and light commercial construction. This course is intended for professionals who are involved in building design or construction or otherwise interested in the topic of metal plated wood trusses.
The course initially covers commonly used definitions in the truss industry along with descriptions of the most common truss shapes. Responsibilities of the various individuals and companies involved in the process of producing and installing the trusses are then reviewed. The important topics of truss bracing, issues involving girder trusses, and the practical limits for wood trusses are discussed next. The course concludes with a discussion of software and truss optimization.
050-Water Flow in Pipes - The Hazen-Williams Formula
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering and to familiarize the professional engineer with the use of the Hazen & Williams Formula and the SunCam Hydro-Calc tool.
Course Description:
This is an introductory course that uses sample problems to demonstrate the use of Hazen-Williams Formula for answering the day to day hydraulics questions that confront engineers. To complete the course, (after purchase) you will download your FREE copy of "SunCam Hydro-Calc" software product for solving Hazen-Williams Formula problems that runs on Microsoft Excel®.
The objective of the course is to give engineers the ability to use the information that they know about a problem to solve for the things that they do not know. This course will provide useful skills, knowledge and insights for civil, sanitary, mechanical and engineers of all disciplines.
051-Considerations In Estimating Tailwater Elevations
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Determination of a reasonable/accurate tailwater elevation is important in locations such as central, southern, and coastal Florida where the terrain is predominately flat, low-lying, and includes areas of high groundwater. In these areas, a few tenths of a foot difference in water surface elevation on the upstream side of a hydraulic structure (headwater) can be the determining factor in whether a project gets a stormwater permit from the applicable regulatory agency, because of the potential to adversely impact adjacent properties. That same relatively small difference in water surface elevation can also lead to larger pipe sizes for culvert and storm drain systems, larger stormwater ponds, and has a direct impact on the amount of fill needed for projects.
Hydraulic structures in these areas typically flow under "Outlet" control for the design event. The downstream water surface elevation at the discharge point, or tailwater elevation, while a significant component in hydraulic calculations is often given the least amount of attention during design.
This course is of interest to a wide variety of engineers that work on both public and private infrastructure and site development projects. This course discusses those less than ideal, yet typical tailwater conditions encountered during actual practice. It addresses typical agency design requirements as well as some of the more common pitfalls encountered in estimating tailwater elevations. The course discusses the impacts of over and underestimated tailwater elevations and identifies things the designer should consider during the design to avoid the more common pitfalls.
068-Dredging and the Environment - Part 1 (Dredging 101)
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
As we pass the end of the first decade of the new millennium we are seeing an increased emphasis on the restoration of the environment. One of the areas of such focus are our waterways and marine habitats, many of which are in dire need of help. The more I become involved in these maritime restoration projects — the more I see a general lack of basic understanding of the processes of Dredging. This loosely termed and routinely misunderstood word plays a critical role in both waterway cleanup as well as habitat reconstruction. As such, this continuing education course is designed to help those who become connected to such projects develop a practical understanding of what dredging is, how it works, and how it can best be used on waterway and habitat restoration projects.
This is a multi-part course that examines dredging as it relates to various types of environmental projects. This is Part One, essentially Dredging 101, which will give the reader a basic understanding of the fundamentals of dredging. Points that will be covered are:
- The basic methods of dredging (Mechanical and Hydraulic).
- The types of commonly available dredging equipment.
- The basic operation of dredging and differences in the methods.
- Character of and working with common dredged materials.
- Selection of the dredge method for common types of projects.
- The important advantages and disadvantages of each method.
- The basics of underwater grade control (bathymetric or hydrographic survey).
This course is recommended as an introduction to "Dredging and the Environment Part 2", which will focus on Dredging as it relates to Environmental Restoration Projects. Dredging applications that will be examined in Part 2 will be Beach and Dune Nourishment, Habitat Restoration, Contaminated Sediment Removal, and Capping.
077-Septic System Design
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended to provide engineers, designers, and contractors with knowledge of how a septic system works, the components that make up the system, and the considerations involved in designing a septic system. Biologically, every septic system treats effluent waste in the same manner but the design process changes slightly with each state. And because each state has its own code with slight variations in their requirements, this is not intended to be an all-inclusive course in the design or installation of septic systems for each state. However, the design process can be used in every state with minor adaptations for a specific state.
The course will start "at the beginning" and then progress through the sequence of components from the septic tanks to the drainfield and the design involved in each of these components. The course will cover gravity systems, trench and bed drainfields, mounded systems, pumped systems, and Aerobic Treatment Units. It will also cover site placement considerations that must be evaluated when determining the location of a septic drainfield.
078-Dredging and the Environment - Part 2 (Dredging of Contaminated Sediments)
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This is Part Two multi-part course on Dredging that examines dredging as it relates to various types of environmental projects. This Course covers Dredging of Contaminated Sediments, which examines basic design concepts as well as the Management/Constructability ("how-to") aspect of dredging as it relates to various types of environmental waterway restoration projects. If the reader is not already familiar with the fundamentals of dredging, we suggest a review of our course titled "Dredging and the Environment Part One", also available on this site, before launching into this course, as there are a number of important terms and subjects covered in Part 1 that will be applied in this course, and without an basic understanding of the material covered in Part One the reader may not get the full benefit of this course. Subjects that will be covered in this Part 2 course are:"
- Historical Overview
- Nature and Identification of Contaminated Sediments
- Sampling and Site Investigation
- Survey
- Sediment Sampling
- Quality Control
- Design Procedures and Precautions in Waterway Remediation
- Design Overview
- Bottom Graded Finish — what to expect
- Dredging Accuracy
- Side Slopes
This course is recommended as an introduction for the individual that is interested in the overall aspects of how the Dredging process can be used as an environmental restoration tool. The course material is suggested for the designer, permitting specialist or regulator; it is intended to help broaden the understanding of this technology. It is also intended to be very practical in nature, and focused on how the dredging process can work best in the restoration of waterways. It will also cover many of the dos and don'ts of dredging and project management — as well as what can and cannot be expected and accomplished using today's available technology.
080-Gravity Flow in Pipes - The Manning Formula
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering and to familiarize the professional engineer with the use of the Manning Formula for solving round pipe problems and the SunCam Manning-Pipe software.
Course Description:
This is a course in gravity flow hydraulics that uses sample problems and small case studies to demonstrate the use of the Manning Formula for solving round pipe problems. To complete the course you will first download your FREE copy of "SunCam Manning-Pipe" software that runs on Microsoft Excel® 2000 or later. (After you purchase the course, you will receive the link to download "Manning-Pipe")
The objective of the course is to give engineers the ability to use the information that they know about a gravity flow hydraulics problem to solve for the things that they do not know. This course will provide useful skills, knowledge and insights for civil, sanitary, mechanical and engineers of all disciplines.
092-Dredging and the Environment - Part 3 (Beach Nourishment and Wetland Restoration)
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This is a multi-part course examines dredging as it relates to various types of environmental projects. If you are not already familiar with the fundamentals of dredging please review Dredging and the Environment Part One, (available on the SunCam web site at: /continuing-education/100186.html), we suggest that you consider taking that course before launching into this course. There are a number of important subjects covered in Part 1 that will be implemented in this course, and without an basic understanding of the material covered in Part 1 you may not get the full benefit of this course. Major points that will be covered in this course are:
- Beach nourishment projects.
- Wetland habitat restoration projects (which would also apply to mitigation sites, nesting islands and the like).
This course is recommended as an introduction to the individual who is interested in the overall aspects of how Dredging can be used as an environmental restoration tool. The course material will be very practical in nature, it will cover many of the dos and don'ts — as well as what can and cannot be accomplished using today's available technology.
095-Fundamentals of Concrete
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Written in an easy to understand style, the course Fundamentals of Concrete takes a look at the properties of concrete including its ingredients as well as the nature of the product from its inception at mixing these ingredients to some of the final products. A clear discussion of the ingredients of concrete is included as well as the process that makes the initial slurry change to a hardened structural material. Some of concrete's material properties — such as workability, weight, and strength — are discussed including precautions and factors affecting these properties. The effect of evaporation on newly placed concrete is discussed along with methods to prevent it.
The course continues with a clear discussion of reinforced concrete, stresses in a concrete beam, and reinforcing steel. The principles of pre-cast and post-tensioned beams are discussed with several representative cross sections presented. The course concludes with an introductory discussion of the principles of formwork design.
The course is not a design course but does offer some sample calculations to demonstrate the design criteria involved in the design of reinforced concrete beams and the design of formwork for vertical structures such as walls and columns.
110-Corrosion Control and Tactics
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides an overview of the nature of aqueous corrosion and the variety of standard methods and well-known, but often overlooked tactics, used to control it at least cost. Topics reviewed include some fundamental aspects of electrochemistry related to control methods, brief descriptions of the various forms of attack, effects on corrosion rates of various operating variables, the four classic control methods and some suggested control tactics that the engineer can investigate further for applicability to his or her specific corrosion problem. Several references are cited.
126-Open Channel Flow Measurement - Weirs and Flumes
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Measuring the flow rate of water in an open channel typically involves some type of obstruction in the path of flow. The two major categories of open channel flow measurement devices in this course are the weir and the flume. A weir is a vertical obstruction that the water must flow over. The measured height of water above the top of the weir (the weir crest) can be used to calculate the flow rate. A flume consists of a constriction in the cross-sectional area of flow. The measured height of water passing through the constricted area (the throat of the flume) can be used to calculate the water flow rate. This course included descriptions, equations and example calculations for sharp crested (V-notch and rectangular weirs), broad crested weirs, and Parshall flumes. A spreadsheet to assist with rectangular weir calculations is included with the course.
This course is intended for hydrologists, civil engineers, hydraulic engineers, highway engineers and environmental engineers. Professional surveyors who are engaged in the layout/verification of weir and flume construction and in the collection of data for use in flow calculations will also benefit from this course.
The overall objective of this course is to provide the attendees with knowledge about calculations and installation and measurement guidelines for sharp crested weirs, broad crested weirs, and Parshall flumes, and to prepare those completing the course to make flow rate calculations for these types of open channel flow meters. A more detailed list of learning objectives is given below.
127-Fundamentals of Steel - Part A
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Written in an easy to understand style, the course Fundamentals of Steel — Part A takes a look at steel in an informative and intuitive way — using among other things, a story of a yardstick as a teaching tool. After a brief history of steel in the U. S., and an introduction to the most influential and dominant codes, the manufacturing process of steel is presented. This is followed by a discussion of the most important mechanical properties — and the factors affecting them — of steel including easy-to-understand drawings. Then the various shapes are presented and discussed with clear and easy to follow diagrams. One of the many topics presented is a discussion of how a single nominal sized beam can have the largest member of its class be over 160% times larger than the smallest.
Photos relating to the topics presented include the John Hancock Building in Chicago.
The course is not a design course. It does however offer some sample calculations to demonstrate the material properties and the design criteria for steel members.
Fundamentals of Steel — Part B, a companion course, continues on with a look at how the shapes are used in the field with an emphasis on connections — both welded and bolted. Bar joists are discussed. Some of the very serious weaknesses of structural steel are discussed including methods of protecting against these weaknesses.
128-Fundamentals of Steel - Part B
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Written in an easy to understand style, the course Fundamentals of Steel — Part B takes a look at steel in an informative and intuitive way — using among other things, a story of a pop can as a teaching tool. This course will look at how the shapes are used in the field with an emphasis on connections — both bolted and welded. Bar joists — perhaps the most common built-up member — are discussed. Structural carbon steel has some serious weaknesses. These are also discussed including methods of protecting against these weaknesses.
Connections — both welds and high strength bolts — are discussed. The concepts behind their function and simple sample problems are presented to demonstrate the very complex workings of steel connections.
Photos relating to the topics presented include the John Hancock Building in Chicago, the Harley Davidson Museum in Milwaukee, Lambeau Field in Green Bay, and the Mackinac Bridge over the Straits of Mackinac in Michigan, as well as others.
The course is not a design course. But it does offer some sample calculations to demonstrate the criteria involved in the design of high strength bolted and welded steel connections.
Fundamentals of Steel — Part A is not required as a pre-requisite to this course. It would however be helpful to understand the basic principles of the most important mechanical properties of steel as well as the common nomenclature associated with steel as presented in Part A of this series.
130-Introduction to GIS and GPS for Engineers and Surveyors - Part 1
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides an overview of Geographical Information Science and Systems (GIS) as it pertains to the engineer and surveyor. The engineering incorporates the science into everything from utility mapping to plume modeling to tackling water quality issues within multiple heterogeneous watersheds. An increase in model visualizations, accuracies, and overall productivities are the result of incorporating GIS into engineering applications. The United States Global Positioning System (GPS) is used increasingly by professional surveyors, and is a means of collecting data for use within a GIS. This course is meant to familiarize engineers and surveyors with the terminology and industry lingo used by GIS Professionals such that those composing responses to Requests for Qualifications or Proposals can better understand the scope of GIS or GPS services they need, or be asked to provide, and whether they have the in-house talent to perform such services. A glossary of common terms used in this field is provided at the end of the course.
In addition to an introduction to Geographical Information Science and its terminology, the functions of a GIS will be outlined. Real-world engineering applications using GIS will be discussed. Other topics of importance include: referencing data to a coordinate system, working with scales and resolutions, and recognizing GIS data and metadata formats. GIS data collection means, including the use of GPS and Light Detection and Ranging (LiDAR) will be introduced. GPS technology, including data correction systems and accuracies as compared to traditional surveying, will also be discussed. The course also contains a short overview of the more popular GIS and GPS software and hardware. This is not a "how-to" course on making maps or analyzing data. Instead, it is meant to 1) be a practical introduction to geospatial concepts for those deciding whether to integrate the skills into their career, 2) provide a knowledge base for purchasing software or hardware needed to get started, and 3) entertain those who simply desire a basic conversational language and understanding of the world of GIS and GPS.
131-An Introduction to Pavement Construction - Part 1 - Concrete
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to concrete pavement construction covering pavement types, ingredients and mix designs, pavement uses, methods of paving, paving equipment, and recent changes in the industry and their benefits.
After completion the reader should have a basic understanding of the standard methods of concrete paving and the associated equipment needed. Additionally, which construction methods and equipment choices are more suitable for specific pavement types and applications. Lastly, what latest technological, social, and economic factors are changing the traditional perception of concrete pavement and are making concrete pavement a more desirable choice to alternate paving types.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient paving designs to suit a construction method that is advantageous to the project.
140-Campgrounds - The Basics of Design
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended to provide engineers and designers with an introduction into the design requirements of campgrounds… from primitive camping to Recreational Vehicles. The course will discuss the issues that impact the different types of campgrounds. Some examples are potable water supply, sewage, garbage collection, access for emergency vehicles, environmental impacts, etc.
The course will start with discussions of the different "types" of camping experiences found in campgrounds. This is followed by a discussion of some of the codes and considerations that must be incorporated into the final campground design. Designing a campground in the various states can be considerably different but all will have the same design components and issues. So this course will focus on the design aspects that are common to all campgrounds.
150-Open Channel & Box Culvert Flow - The Manning Formula
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering and to familiarize the professional engineer with the use of the Manning Formula for solving open channel and box culvert problems and the SunCam Manning-Channel software.
Course Description:
The software will only operate on Excel 2007 or newer.
This is a course in gravity flow hydraulics that uses sample problems and small case studies to demonstrate the use of the Manning Formula for solving open-channel and box culvert problems. To complete the course you will first download your FREE copy of "SunCam Manning-Channel" software that runs on Microsoft Excel® version 2007 or later. (Manning-Channel will NOT run on "OpenOffice") (After you purchase the course you will receive the link to download "Manning-Channel")
The objective of the course is to give engineers the ability to use the information that they know about a gravity flow hydraulics problem to solve for the things that they do not know. This course will provide useful skills, knowledge and insights for civil, sanitary, mechanical and engineers of all disciplines.
162-Introduction to Compound Channel Flow Analysis for Floodplains
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Cross-sections of natural and restored waterways are generally composite compound channels as opposed to single geometric shapes with one constant roughness. This course covers eight composite compound channel analysis methods. Differences between the methods and typical applications of each method are discussed. The course also provides example calculations for each method. A few common hydraulic software programs are briefly introduced and the concepts and analysis methods they utilize are discussed.
169-Design of Drywells
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects requiring stormwater management. It will be useful for the design of both small and large-scale projects and especially on sites where space is at a premium.
The overall objective of this course is to provide a comprehensive guide to drywell design. It will provide information from the initial design phase right up through the installation of the drywell. In addition, it will provide the user with a guide as to how to size and locate a drywell as well as providing a discussion of where and when these features should or should not be used. Finally, it will guide the engineer through the necessary soil testing to properly locate and size the drywell.
171-Design of Sand Filters & Bioretention Systems
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects requiring stormwater control. It explains the problem of controlling stormwater quality and lists several methods that can be used to provide this control.
The overall objective of this course is to provide a comprehensive design guide to two major types of stormwater control features: sand filters and bioretention systems. It includes descriptions of each of these systems along with the limitations of each and the maintenance required for each. The course includes standard details and representative photos of both sand filters and bioretention systems.
172-Design of Constructed Stormwater Wetlands
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects requiring stormwater control. It describes the design, installation, and maintenance of constructed stormwater wetlands.
The overall objective of this course is to provide a comprehensive design guide to constructed stormwater wetlands. A design of vegetated filter strips is also included as well as a discussion of water budget calculations. The course describes a variety of types of constructed wetlands and includes a discussion of adaptations that need to be made to them in unusual situations.
174-Design of Infiltration & Extended Detention Basins
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects requiring stormwater control. It describes the design, installation, and maintenance of infiltration basins and extended detention basins. It also compares the effectiveness of these two types of systems and points out the limitations on the use of each.
The overall objective of this course is to provide an overview of both infiltration basins and extended detention basins. It also describes the process involved in retro-fitting an existing detention basin to enhance its stormwater quality control performance.
180-Asbestos Fundamentals
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The reader will learn what asbestos is, how it is used, and how it becomes dangerous to humans. You will have a basic understanding of asbestos in construction, the methods used to abate it, and the requirements of the United States (US) law for doing so. You will also learn how certain demolitions and renovations are regulated by US law in order to protect the public and the industry workers. Throughout the course material there will be comments regarding the desirable green or sustainable philosophy. An environmentally friendly ideology, action, standard, or process, which is more stringent than the law or regular construction standards and has a higher sensitivity toward human life or health will be herein deemed to be "green".
188-Fundamentals of Site Grading Design
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is developed to identify the fundamentals of site grading to those who are not experienced with site grading design, as well as a refresher to anyone who has worked in Civil Engineering and/or Land Development. Site grading is an important skill for any Civil Engineer to master associated with their required drainage design.
This course is intended to provide engineers, designers, and contractors with an introductory knowledge of grading terminology, some basic methods associated with grading, some guidelines / rules of thumb associated with grading and why they exist, as well as exposure to some problem areas that an engineer should pay special attention to when they perform grading design.
The student of this course should be able to approaching site grading with confidence that they have been exposed to the basics.
189-A Guide to Low Impact Development
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use development projects requiring stormwater control. It explains the concepts included in low impact design and discusses many of the techniques involved.
The overall objective of this course is to provide a comprehensive overview to low impact design. It includes descriptions of many of the techniques along with design examples showing how these techniques can be used to control stormwater runoff and to enhance downstream water quality.
199-Forensic Analysis Involving Fugitive Natural Gas and Propane
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Engineers are frequently called upon to perform forensic analyses of the origin and cause of explosions and fires involving fuel gas systems that use either natural gas or propane. This course will consider those cases where the natural gas or propane vapor has escaped from its normal confinement and caused an explosion or fire or both.
This course will focus on two critical components of the engineer's expertise that may be brought to bear in such a forensic analysis. These concern the understanding of (1) how a fuel gas behaves when it is released from confinement, and (2) how the observed explosion damage may relate to the concentration of the fugitive gas and rate of release of the fugitive gas. Giving the engineer an understanding of these two areas of knowledge, from both a qualitative and a quantitative standpoint, will be the objective of this course.
208-Future Highways - Automated Vehicles
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
It has been approximately 100 years since the motorized vehicle replaced the horse and buggy. The future of highway transportation is now undergoing another major revolution as engineers across numerous disciplines (transportation, automotive, technology, etc.) work towards moving the responsibility of driving the automobile from human to machine, see figure. The development of cars driven completely without aid by a human driver (i.e., driverless cars), commonly referred to as 'automated' vehicles, will certainly give more appropriate meaning to the term 'auto'-mobile.
Example of a future highway (Source: USDOT)
In this course, you will learn about:
- the terminology being used in the field of automated highway vehicles,
- examples of government legislation being implemented to facilitate the future of automated vehicles,
- the technologies being used in automated vehicles,
- automated vehicle engineering research and standards under development, and
- potential impacts of automated vehicles on traffic flow and roadway design.
209-Green Irrigation Fundamentals - Balancing Aquifer Recharge and Withdrawal
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This "Green Irrigation Fundamentals — Balancing Aquifer Recharge and Withdrawal" is an introduction to an irrigation water demand calculation methodology, which is presented specifically for Florida, USA, but the methodology is applicable to anywhere in the world where similar water management challenges exist and where conservation of water resources is important.
This methodology is presented to allow for a systematic approach to evaluate and determine the optimum irrigation water demand for a particular house, a residential development or commercial development or any other project where impervious surfaces are created and the land use is changed to reduce evapotranspiration water losses.
The approach is relatively simple: if the amount of irrigation water used is equal to the amount of additional water created by the improvements to recharge the aquifer, then the net effect is zero (no impact).
The primary objective of this short course is to introduce a methodology that can be used by individual home owners, developers, engineers, planners, regulators and any other water managers who are interested in the conservation of water and a systematic application of water use restrictions based on scientific principles.
212-A Comparison of Runoff Estimation Techniques
4 $90.00
This is our Featured Course of the week.
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who deal with any kind of stormwater management. Two major types of models (The Rational method and the SCS Method) are discussed in detail. In addition, examples are provided for each technique and a comparison example is given in which a problem is solved independently using both methods.
The overall objective of this course is to provide a detailed guide to both the Rational Method and the SCS Method. In addition, a third method is also discussed with a design example. The course also includes a number of photographs which are provided to help the engineer decide on runoff coefficient values and to aid in the calculation of the time of concentration.
215-GIS - Beyond the Basics: Web Maps and File Sharing Services - Part 2
7 $157.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course discusses online resources and data sharing techniques for engineers using Geographical Information Systems (GIS). It is for those wanting to increase their technical skills or stay competitive in a world with an ever increasing move towards Cloud-based computing and technology, all while earning continuing education credits. The course is written in a (somewhat) technical nature for the engineer. It provides step-by-step instructions on how to connect to various GIS servers, how to use online services, and finally, how to prepare maps and data for sharing either among peers, or as a type of service to the public. This course demonstrates the benefits of accessing online web map services through an example tailored for engineers that allows them to follow along using their own computers.
To this end, this course offers background information and explanations for why a user would follow the steps prescribed. It explores the benefits as well as challenges in using online mapping services. The reader is introduced to ESRI's ArcGIS for Server and ArcGIS Online. A glossary of terms relevant to this course is provided for infrequent users of ArcGIS who may need a refresher or an explanation of the new terms presented herein. In addition, the author provides user-friendly tips for how to manipulate GIS services, and directs the reader to other online help options. Sidebar information provides additional insight into the background and current uses of GIS services, as well as server limitations. The course was written with the intent that it could be used as a reference guide for office and field engineers, project managers, and others needing access to these services. Hopefully, it is as interesting to the reader as it is informative. The reader does not need an ArcGIS license for this course, but is encouraged to preview the course introduction for assumptions made with regards to its intended level of audience.
219-Repair Techniques for Wood Trusses, Part 1: Simple Repair Concepts
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Metal plated wood trusses are engineered products that are manufactured in a controlled environment and are now used extensively in the woodframe construction industry. Wood trusses provide the architect or building designer greater flexibility in the design of the structure than conventional framed (stick-built) construction. The design is not as limiting with regard to bearing wall locations which enables longer spans and greater ability to shape complicated roof and ceiling profiles. These pre-manufactured wood trusses facilitate a quicker construction schedule and an overall lower cost.
Wood, a renewable resource, has a great deal of manufacturing flexibility. Wood members are easily formed into standard framing sizes, cut into appropriate lengths with odd angles if necessary, and attached to form the wood structure. However, wood is more susceptible than steel or concrete to damage due to internal defects, handling issues, and long term deterioration. Design or manufacturing errors, shipping damage, miscommunication, and change orders are possible causes for the inadequacy of a wood truss for a specific application and therefore a repair or modification of the pre-manufactured wood truss is required. The purpose of this document is to address various repair techniques that could be used to correct damage to the wood members or metal plates, reinforce trusses that do not meet the required specified design loads, or adjust the truss profile or member location to meet other design requirements.
This course is the second part in a three part series which consists of a total of 11 chapters between all three parts. Chapters 1 through 3 provide an introduction to the terms, concepts, and process involved in truss repairs. Chapters 4 through 11 contain actual truss repairs to provide instruction through the use of example. These chapters are broken down as follows:
- Part 1: Introduction and Simple Repair Concepts — Five Chapters.
- Chapter 1 — Definitions
- Chapter 2 — Repair Design Concepts
- Chapter 3 — Wood Truss Repair Connections
- Chapter 4 — Member Damage and Defects
- Chapter 5 — Plate Damage
- Part 2: Moderate Truss Repairs - Four Chapters
- Chapter 6 — Manufacturing Errors
- Chapter 7 - Stubs and Extensions
- Chapter 8 — Minor Modifications
- Chapter 9 — Major Modifications
- Part 3: Complex Truss Repairs - Two Chapters — Current Part
- Chapter 10 — Volume Ceiling Changes
- Chapter 11 — Girders and Truss Loading
It is highly recommended to complete Parts 1 and 2 before attempting Part 3. The techniques developed in the earlier chapters provide a good basis for the complex truss repairs presented in Part 3.
222-Lime Soda Water Softening Calculations
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for civil engineers, chemical engineers and environmental engineers. Topics included are calculation of the different types of hardness in a water sample from lab analysis results; conversion among different units for hardness and chemical concentration; information about three lime soda water softening processes (two-stage excess lime softening, split treatment, and selective calcium removal); calculation of the dosages needed for lime, soda ash and carbon dioxide; calculation of daily chemical requirements; and calculation of solids production rates. A sample spreadsheet is included that illustrates the use of a spreadsheet to make some of the calculations discussed in the course.
The overall objective of this course is to provide the attendees with knowledge about hardness in water and the lime soda water softening process for softening water. A more detailed list of learning objectives is included in the course document.
223-Soil Permeability Testing
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who design individual septic disposal systems or any other features (drywells, infiltration basins, etc.).
The overall objective of this course is to provide a detailed account of a variety of field and laboratory soil tests to determine soil suitability. It presents a cookbook type approach to these tests, specifying the materials needed and the methodology employed. After completing this course the engineer should be able to conduct all of the tests described in the course.
227-Earthwork Basics and a Traditional Calculation Method
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is developed to identify the basics of earthwork and to explain a "traditional" method of performing earthwork analysis via hand calculations. This study is for those who are not experienced with earthwork, earthwork calculations and earthwork equipment.
Additionally, it is intended to be a helpful a refresher and source to anyone who has worked in Civil Engineering and/or Land Development looking for a resource discussing earthwork basics. Earthwork analysis is an important topic for any Civil Engineer involved in roadway and land development to understand associated with their required design. This course will focus more on site analysis than on the analysis required to economically determine the elevation of highways through mountainous regions.
This course will also expose the student to the basic equipment used in the construction field associated with earthwork.
240-Kayak & Canoe Launch Design (a.k.a. Non-Motorized Boat Launches)
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Detailed course outline with timeline
- 24 Minutes — Introduction
- 10 Minutes — Design Considerations
- 49 Minutes — Parking Design
- 5 Minutes — Design Examples
- 54 Minutes — NMB Launch Design
- 10 Minutes — Facilities
- 20 Minutes — ADA Accessibility
- 5 Minutes — Special Cases
- 24 Minutes — Examples of Bad Designs
- 5 Minutes — Summary
- 40 Minutes — The Test
Those who take this course will learn about the basic design of canoe and kayak launches. They will learn about the pre-design considerations, parking issues, different types of launches, support facilities, ADA accessibility, and look at some examples of bad designs. They will learn how to incorporate all of these considerations into a functional cost-efficient design required for a successful NMB launch project.
242-What Every Engineer Should Know About Reinforcement Corrosion in Concrete Highway Bridges
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a summary of a topic that is much in the news — the incidence and causes of the deteriorating condition of an important segment of the physical infrastructure in the United States - concrete highway bridges. In these structures the primary cause of damage is corrosion of the embedded steel reinforcement. The course condenses selected information from (20) cited engineering standards, articles and government reports to supply an overview of the topic.
Included are the ways corrosion damage occurs, control methods by which corrosion can be minimized for new construction and during remediation along with several techniques used to assess the extent of existing corrosion damage. The types of construction discussed are traditional rebar in concrete and prestressed bridge members — both pre and post-tensioned. The causes of problems with coated structural steel in bridges that are fully exposed to the atmosphere are briefly reviewed. Much of the information is applicable beyond bridges to other reinforced concrete structures that may experience corrosion of embedded reinforcement.
The learning objectives are to allow professional engineers to gain a basic understanding of how corrosion in reinforced structures occurs and how it may be assessed and controlled.
The course is most suitable for civil, structural and transportation engineers plus persons in other engineering disciples that plan and supervise construction and remediation of concrete structures in which corrosion may be an issue.
243-Soil Erosion & Sediment Control Plans
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in land use projects that disturb the soil, including construction, mining, and other activities. It presents an overview of soil erosion and sediment control plans and describes several specific practices in detail.
The overall objective of this course is to provide a comprehensive description of soil erosion and sediment control plans and to familiarize the reader with the most commonly-employed practices. In addition, it presents detailed information on a number of soil erosion control practices and describes how and when to use them.
245-A Practical Introduction to Zoning and Entitlements
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is developed to introduce basic concepts of zoning and entitlements for those who are not experienced with land development, as well as a refresher to anyone who has worked in land development and/or has been exposed to zoning and entitlements requirements before. Understanding the basics of zoning and entitlements is important for any civil engineer who will be involved in a property development project.
This course can be used at a high level to help guide the due diligence process associated with confirming the risks associated with the required zoning and entitlements have been reasonably considered and explored. After taking this course, the engineer will be in a better position to guide their clients to more and more frequently successful projects with less and less surprises.
247-Orifice and Venturi Pipe Flow Meters - For Liquid and Gas Flow
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications, such as monitoring of pipe flow rate and control of industrial processes. Differential pressure flow meters, consisting of orifice, flow nozzle, and venturi meters, are widely used for pipe flow measurement and are the topic of this course. All three of these meters use a constriction in the path of the pipe flow and measure the difference in pressure between the undisturbed flow and the flow through the constriction. That pressure difference can then be used to calculate the flow rate. This course will provide general background information about differential pressure flow meters and the format of the equation used for calculating liquid flow rate through any of them. There will also be presentation and discussion of equations used for gas flow through a differential pressure flow meter and the parameters in those equations. There will be descriptions of each of these meters and their particular equations, along with example calculations. Use of the ideal gas law to calculate the density of a gas at known temperature and pressure and use of an ISO 5167 equation to calculate the value of an orifice coefficient are additional topics related to orifice and venturi meter calculations that are included in this course. A spreadsheet to assist with orifice/venturi/flow nozzle meter calculations and ISO calculation of an orifice coefficient is also provided. This spreadsheet allows for user selection of either U.S. units or S.I. units for the calculations.
The overall objective of this course is to prepare those completing the course to use orifice, venturi and flow nozzle meters and to make calculations associated with their use. A more detailed list of learning objectives is included in the course document.
253-A Practical Design Guide for Welded Connections, Part 1 - Basic Concepts and Weld Symbols.
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Welded connections are used in many mechanical and structural applications. Fundamental knowledge of how to design welded connections is critical for engineers. This course provides a thorough, but easy to understand, approach that explains the essential details of weld analysis and design. The material presented in this course is at an introductory level, covering what every engineer should know about welded connections, and no prior understanding of welded connections is required. However, a general understanding of mechanics of materials (primarily basic stress and torsion) is helpful for this course.
This course is divided into 2 parts.Part 1 of this course largely focuses on the foundational knowledge of welding symbols. It is critical for engineers and designers to understand the proper use of welding symbols because they serve as communication between the designer and the fabricator.
Part 2 covers topics on the analysis and design of welded joints. The section covers the two main types of welded connections, fillet welds and groove welds, as they make up nearly 95% of all welded joints used in mechanical applications. Direct loading applications and eccentrically loaded applications are covered.
254-A Practical Design Guide for Welded Connections, Part 2 - Analysis and Design
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Welded connections are used in many mechanical and structural applications. Fundamental knowledge of how to design welded connections is critical for engineers. This course provides a thorough, but easy to understand, approach that explains the essential details of weld analysis and design. The material presented in this course is at an introductory level, covering what every engineer should know about welded connections, and no prior understanding of welded connections is required. However, a general understanding of mechanics of materials (primarily basic stress and torsion) is helpful for this course.
This course is divided into 2 parts. Part 1 of this course largely focuses on the foundational knowledge of welding symbols. It is critical for engineers and designers to understand the proper use of welding symbols because they serve as communication between the designer and the fabricator.
Part 2 covers topics on the analysis and design of welded joints. The section covers the two main types of welded connections, fillet welds and groove welds, as they make up nearly 95% of all welded joints used in mechanical applications. Direct loading applications and eccentrically loaded applications are covered.
256-Building Rebar Inspection
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Building Rebar Inspection takes the reader through a journey across the reinforced concrete construction of a new school center. It starts with the inspection of typical foundation pile caps and grade beams. Walls, slabs and other component features are described and illustrated. Sample Forms are provided for Inspectors to use as models to get started. Even the beginning designer or related professional will gain insight into how their design or contracting function fits into the concrete work happening in the field.
262-An Introduction to Pavement Construction - Part 2 - Asphalt
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
A brief introduction to asphalt pavement construction covering pavement types, ingredients and mix designs, pavement uses, methods of paving, paving equipment, and recent changes in the industry and their benefits.
After completion, the reader should have a basic understanding of the standard methods of asphalt paving and the associated equipment needed. Additionally, which construction methods and equipment choices are more suitable for specific pavement types and applications. Lastly, what latest technological, social, and economic factors are changing the traditional perception of asphalt pavement and are making asphalt pavement a more desirable choice to alternate paving types.
From better understanding of the construction methods, engineers can account for better access and staging areas, and more efficient paving designs to suit a construction method that is advantageous to the project.
266-Repair Techniques for Wood Trusses, Part 2: Moderate Truss Repairs
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Metal plated wood trusses are engineered products that are manufactured in a controlled environment and are now used extensively in the wood frame construction industry. Wood trusses provide the architect
or building designer greater flexibility in the design of the structure than conventional framed (stick-built) construction. The design is not as limiting with regard to bearing wall locations which enables
longer spans and greater ability to shape complicated roof and ceiling profiles. These pre-manufactured wood trusses facilitate a quicker construction schedule and an overall lower cost.
Wood, a renewable resource, has a great deal of manufacturing flexibility. Wood members are easily formed into standard framing sizes, cut into appropriate lengths with odd angles if necessary, and attached
to form the wood structure. However, wood is more susceptible than steel or concrete to damage due to internal defects, handling issues, and long term deterioration. Design or manufacturing errors, shipping damage,
miscommunication, and change orders are possible causes for the inadequacy of a wood truss for a specific application and therefore a repair or modification of the pre-manufactured wood truss is required. The purpose of this document is to address various repair techniques that could be used to correct damage to the wood members or metal plates, reinforce trusses that do not meet the required specified design loads, or adjust the
truss profile or member location to meet other design requirements.
This course is the second part in a three part series which consists of a total of 11 chapters between all three parts. Chapters 1 through 3 provide an introduction to the terms, concepts, and process involved in
truss repairs. Chapters 4 through 11 contain actual truss repairs to provide instruction through the use of example. These chapters are broken down as follows:
Part 1: Introduction and Simple Repair Concepts — Five Chapters:
- Chapter 1 — Definitions
- Chapter 2 — Repair Design Concepts
- Chapter 3 — Wood Truss Repair Connections
- Chapter 4 — Member Damage and Defects
- Chapter 5 — Plate Damage
Part 2: Moderate Truss Repairs - Four Chapters:
- Chapter 6 — Manufacturing Errors
- Chapter 7 — Stubs and Extensions
- Chapter 8 — Minor Modifications
- Chapter 9 — Major Modifications
Part 3: Complex Truss Repairs - Two Chapters — Current Part:
- Chapter 10 — Volume Ceiling Changes
- Chapter 11 — Girders and Truss Loading.
It is highly recommended to complete Parts 1 and 2 before attempting Part 3. The techniques developed in the earlier chapters provide a good basis for the complex truss repairs presented in Part 3.
269-An Introduction to Due Diligence Reports for Development Projects
4
List: $90.00
Sale: $39.95
Course Objectives: This course is intended to provide professionals with an introduction to the research conducted and the submittal required for a Due Diligence Report of a Development Project. The course will discuss the process for preparing a Due Diligence Report (aka the "Report") beginning with the initial meeting with the Client and then proceeding to the field investigation, and the regulatory research required to produce the final Report. In the course are tips and examples that are provided for assistance and clarification of the various topics being discussed.
As you will learn, there are professional liabilities and risks associated with Due Diligence Reports that the professional needs to understand in order to protect his company, and himself, before executing a contract with a Client. Also included at the end of the course documentation is a sample Due Diligence checklist that can be used as a starting point for conducting the research for a Due Diligence Report.
Course Description:
Detailed course outline with timeline
- 6 Minutes — Contents and Introduction
- 11 Minutes — Course Description
- 14 Minutes — The Contract
- 23 Minutes — Due Diligence Research
- 11 Minutes — Field Work
- 18 Minutes — Regulatory Research
- 24 Minutes — Environmental Research
- 12 Minutes — Legal Research
- 11 Minutes — Utilities Research
- 12 Minutes — Transportation Research
- 14 Minutes — Miscellaneous Client Requests
- 18 Minutes — Estimates of Development Costs
- 11 Minutes — Summary
- 40 Minutes — The Test
271-Spillway Design for Small Dams
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who need to analyze, design, or retrofit a spillway for a small dam.
The overall objective of this course is to provide a detailed analysis of the various types of spillways and to explain the hydraulics of each type. There is a also a discussion of the spillway exit channels and a description of sub-critical, critical, and super-critical flows in these channels. After completing this course the engineer should be able to design a spillway using a variety of outlet structures.
273-MBBR Wastewater Treatment Processes
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for civil engineers, chemical engineers and environmental engineers. Topics included are general information about the MBBR wastewater treatment process; MBBR process design
calculations for BOD removal and nitrification, including single stage BOD removal, single stage nitrification, two stage BOD removal and two stage BOD removal and nitrification processes; background information
about MBBR denitrification processes; post-anoxic denitrification process design calculations; and pre-anoxic denitrification process design calculations. A sample spreadsheet is included that
illustrates the use of a spreadsheet to make some of the calculations discussed in the course.
The overall objective of this course is to provide the attendees with knowledge about the moving bed biofilm reactor (MBBR) process for wastewater treatment and process design calculations for MBBR
wastewater treatment. A more detailed list of learning objectives is included in the course document.
At the conclusion of this course, the student will
- Know the differences between attached growth and suspended growth biological wastewater treatment processes.
- Be familiar with the general configuration and components of an MBBR wastewater treatment process.
- Be able to name the six MBBR process configurations discussed in this course.
- Be able to calculate the loading rate of a wastewater constituent to an MBBR process (in lb/day and g/day) for specified wastewater flow rate and constituent concentration.
- Be able to calculate the required carrier surface area for an MBBR wastewater treatment process for specified SALR and loading rate.
- Be able to calculate the required MBBR tank volume for specified carrier surface area, carrier specific surface area, and the carrier fill %.
- Be able to calculate the liquid volume in an MBBR tank for known tank volume, carrier volume and carrier % void space.
- Be able to calculate the BOD, NH3-N, or NO3-N removal rate for known values of the surface area removal rate (SARR) and design carrier surface area.
- Be able to calculate an estimated effluent BOD, NH3-N, or NO3-N concentration based on known values of the appropriate loading rate, estimated removal rate, and design wastewater flow rate.
- Be able to use the sample spreadsheet included with the course to make process design calculations for a single stage BOD removal process in either U.S. units or S.I. units.
- Be able to use the sample spreadsheet included with the course to make process design calculations for a single stage nitrification process in either U.S. units or S.I. units.
- Be able to make process design calculations for a post-Anoxic denitrification MBBR process, including required tank sizes, estimated effluent concentrations, alkalinity requirement and carbon source requirement.
- Be able to make process design calculations for a pre-anoxic denitrification MBBR process, including required tank sizes, estimated effluent concentrations, and alkalinity requirements.
Detailed Course Outline with Timeline
- Introduction (2 min)
- Learning Objectives for the Course (5 min)
- General Information about the MBBR Wastewater Treatment Process (15 min)
- MBBR Process Design Calculations for BOD Removal and Nitrification
- Overview of MBBR Process Design Calculations (15 min)
- Single-Stage BOD Removal Process Design Calculations (20 min)
- Single Stage Nitrification Process DesignCalculations (20 min)
- Two-Stage BOD Removal Process Design Calculations (20 min)
- Two-Stage BOD Removal and Nitrification Process Design Calculations (15 min)
- Introduction to MBBR Denitrification Processes (15 min)
- Post-Anoxic Denitrification Process Design Calculations (20 min)
- Pre-Anoxic Denitrification Process Design Calculations (20 min)
- Summary (3 min)
- References
- Quiz (20 min)
277-A Review of Site Features
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a refresher to site-civil engineers and introduces the topic to engineers of other disciplines who are not familiar with site work.
The course identifies some nuances between various site features, and explains these distinctions. The course also identifies and explains some missteps associated with some site features and site feature detailing.
This course will benefit the experienced site development engineer who is looking for some reference or history associated with some site features, as well as those who may be inexperienced with land development. Understanding the basics of site features is important for any civil engineer who is involved in a property development project.
278-Introduction to Wastewater Clarifier Design
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course introduces the reader to the key issues and considerations associated with successful and cost-effective design of primary and secondary clarifiers for wastewater treatment plants. The course presents an overview of the main advantages and disadvantages of rectangular and circular clarifiers and provides key design criteria for primary and secondary clarifiers.
In the course the reader will find guidance of how to select the most appropriate configuration, surface overflow rate, hydraulic detention time, and depth of primary and secondary clarifiers and how to tailor clarifier design to the typical challenges facing almost all wastewater treatment plants such as: excessive transient flows during wet weather conditions; septicity of the plant influent and primary sludge, occasional upsets of the activated sludge system resulting in poorly settling sludge; and episodes of rapid increase of sludge blanket depth, and deterioration of clarifier effluent quality.
The course discusses how the configuration and type of the selected plant influent pump station, screening and grit removal equipment impact clarifier performance as well as how clarifier operation influences other key wastewater treatment plant facilities such as the activated sludge aeration basins, sludge thickeners, and aerobic and anaerobic digesters. The reader will learn about the typical approaches used for optimization of the clarifier — activated sludge system design and will find case studies implementing such approaches at full-scale wastewater treatment plants.
279-Fundamentals of Clarifier Performance Monitoring and Control
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Clarifiers are integral part of most wastewater treatment plants. The main learning objective of this course is for the reader to gain understanding of the common practices, technologies and equipment used for monitoring and control of the performance of primary and secondary clarifiers.
The course presents an overview of the key perfomance parameters used for clarifier design and operation, and of the working principles of popular clarifier montioring equiment such as turbidimeters, ultrasonic solids analyzers, nuclear solids density meters, and sludge balanket level detectors.
This course provides guidance regarding the typical areas of application, key advantages and technology limitations for each type of clarifier monitoring equipment. Knowledge gained from the course would build your skills and understaning of how to select the most appropriate methods and equipment for succesful monitoring and control of clarifiers for the site specific conditions of a given wastewater treatment plant. Most of the fundamental knowledge presnted in this course can also be applied for monitoring and control of clairifiers in drinking water plants.
281-Environmental Review & Permitting of Desalination Projects - Part 1
5 $112.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
With this course the reader will gain through understanding of the key environmental issues and challenges as well as reliable solutions associated the implementation of desalination projects.
The Part 1 of the course provides an overview of the potential environmental impacts associated with the construction and operation of desalination plants and to presents alternatives for their minimization and mitigation. The course focuses on three key environmental impact aspects: (1) intake impingement and entrainment; (2) concentrate impact on aquatic environment; and (3) carbon footprint of desalination plant operations.
282-Environmental Review & Permitting of Desalination Projects - Part 2
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
With this course the reader will gain through understanding of the key environmental issues and challenges as well as reliable solutions associated the implementation of desalination projects.
In Part 2 of the course, the reader will learn about the scope and content of supporting environmental studies, which government regulatory agencies require to be completed by the desalination project proponent in order to obtain necessary permits for collecting intake water, for discharge of desalination plant concentrate and for introducing desalinated water into the municipal drinking water supply system.
296-Repair Techniques for Wood Trusses, Part 3: Complex Truss Repairs
5 $112.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Metal plated wood trusses are engineered products that are manufactured in a controlled environment and are now used extensively in the wood frame construction industry. Wood trusses provide the architect or building designer greater flexibility in the design of the structure than conventional framed (stick-built) construction. The design is not as limiting with regard to bearing wall locations which enables longer spans and greater ability to shape complicated roof and ceiling profiles. These pre-manufactured wood trusses facilitate a quicker construction schedule and an overall lower cost.
Wood, a renewable resource, has a great deal of manufacturing flexibility. Wood members are easily formed into standard framing sizes, cut into appropriate lengths with odd angles if necessary, and attached to form the wood structure. However, wood is more susceptible than steel or concrete to damage due to internal defects, handling issues, and long term deterioration. Design or manufacturing errors, shipping damage, miscommunication, and change orders are possible causes for the inadequacy of a wood truss for a specific application and therefore a repair or modification of the pre-manufactured wood truss is required. The purpose of this document is to address various repair techniques that could be used to correct damage to the wood members or metal plates, reinforce trusses that do not meet the required specified design loads, or adjust the truss profile or member location to meet other design requirements.
This course is the second part in a three part series which consists of a total of 11 chapters between all three parts. Chapters 1 through 3 provide an introduction to the terms, concepts, and process involved in truss repairs. Chapters 4 through 11 contain actual truss repairs to provide instruction through the use of example. These chapters are broken down as follows:
Part 1: Introduction and Simple Repair Concepts — Five Chapters
- Chapter 1 — Definitions
- Chapter 2 — Repair Design Concepts
- Chapter 3 — Wood Truss Repair Connections
- Chapter 4 — Member Damage and Defects
- Chapter 5 — Plate Damage
Part 2: Moderate Truss Repairs - Four Chapters
- Chapter 6 — Manufacturing Errors
- Chapter 7 — Stubs and Extensions
- Chapter 8 — Minor Modifications
- Chapter 9 — Major Modifications
Part 3: Complex Truss Repairs - Two Chapters — Current Part
- Chapter 10 — Volume Ceiling Changes
- Chapter 11 — Girders and Truss Loading.
It is highly recommended to complete Parts 1 and 2 before attempting Part 3. The techniques developed in the earlier chapters provide a good basis for the complex truss repairs presented in Part 3
299-Floodplain Engineering - Modeling Flood Profiles Using HEC-RAS - Part 1
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers are involved in flood studies or need to do work within a floodplain. HEC-RAS is the most up-to-date software for calculating flood profiles. It has the capability of determining multiple flood profiles and can deal with complicated stream conditions with multiple bridges and culverts.
The overall objective of this course is to provide an overview of the HEC-RAS program and to review in detail the basic input parameters. Photographs and diagrams are provided to help illustrate the concepts.
304-Floodplain Engineering - An Overview of Floodplain Management
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers work ion flood-prone areas. It describes many of the resources available to engineers working in these areas including how to access FEMA flood maps. In addition, there is a description of how to calculate hydrostatic, hydrodynamic, and other forces associated with flooding. Finally, some flood control projects are described and illustrated.
The overall objective of this course is to provide an overview of the different types of flooding and floodplains and help engineers to understand these phenomena.
308-Commercial Land Development - A Basic Step-by-Step Guide
1 $22.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The purpose of this course is to give an individual the basic steps in
developing a parcel of land for commercial purposes. You will
learn the important agencies to contact and what types of information
you will need to obtain; as well as what information you will need to
provide.
There is no prerequisite knowledge for this course. It is for
anyone wishing to understand the overall commercial land development
process.
312-Residential Subdivisions Planning and Design Elements
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The purpose of this course is to provide the individual with a basic understanding of the planning and design elements that are involved in the residential subdivision development process. The reader will learn what types of agencies should be contacted, some common sources of information and what components are generally presented in the final design.
There is no prerequisite knowledge for this course. Some familiarity with land infrastructure items is helpful but not necessary.
326-Railroads - An Introduction
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is an introduction to railroads. The intent of the course IS NOT to make you an expert in railroad design, but rather, introduce you to the fundamental components that make up a railroad system. This course IS intended for those engineers that need to become sufficiently familiar with rail systems to discuss railroad requirements with a client, understand what the railroad representatives are saying, know what questions to ask on your client's behalf, and ease the pains involved if you get a project that requires a railroad construction permit. The course will begin by providing a very brief - but interesting - history of railroads in North America before presenting the technical topics on the subgrade, ballast, ties, rail, turnouts, road crossings, ladder tracks and… of course… frogs. Again, this introductory course is about what a railroad encompasses and provides the basic information necessary for an engineer to be able to discuss the topic intelligently with a client but is NOT intended to provide the knowledge to actually design a railroad, the turnouts, or any railroad signals that may be required.
Detailed course outline with timeline
- 7 Minutes — Course Description & Introduction
- 25 Minutes — History
- 14 Minutes — Railway Forces
- 23 Minutes — Railway Alignments
- 11 Minutes — Transit Rail
- 18 Minutes — Track Structure
- 24 Minutes — Subgrade and and Sub-ballast
- 12 Minutes — Drainage
- 11 Minutes — Ballast
- 12 Minutes — Railroad Ties
- 14 Minutes — Rail
- 18 Minutes — Turnouts
- 18 Minutes — Road Crossings
- 18 Minutes — Rail Crossing Signage, Gates, & Signals
- 18 Minutes — Customer Rail Facilities
- 18 Minutes — Glossary
- 11 Minutes — Summary
- 40 Minutes — The Test
327-An Introduction to Pond and Lake Dredging
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is designed to be an introduction into the planning, assessment, design and execution of dredge projects in inland waterways of Ponds and Lakes (coastal waterbodies that are tidally influenced will need to be approached differently). These bodies of water are an incredible resource in our country, they are sources of our drinking water, they provide flood storage and recreational opportunities, and are an integral part of our landscape.
There are numerous influences that affect the quality of our Ponds and Lakes, from development within the watershed, changes in environment and water levels (floods and droughts), and aging infrastructure (both on the inputs and the outlet/control structures). All of these influences may result in diminished water quality, invasive aquatic species, and sedimentation and infill of the waterbody. Dredging is an effective approach to counteract these negative effects on the waterbodies and that's what we will discuss in this course. It is important to note that dredging may help reduce the negative impacts of the past, but it should also be paired with compatible projects to reduce those impacts from the future, including stormwater management treatment strategies, invasive species monitoring, and other strategies, which will not be covered in this course.
329-Mooring Field Layout and Design
2
List: $45.00
Sale: $22.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course has been designed to provide a background and broad overview of mooring systems and their components, as well show the design process behind laying out a mooring field. Moorings provide for easy and secure vessel tie up in areas of transient boat users or in locations in which berths or slips are not available. The advantage of a mooring over anchoring the vessel is that the moorings are typically selected based on the harbor bottom sediment types and are weighted and/or secured to better hold and secure various types of vessels in that area. When properly designed and laid out, a mooring field will represent a safer, more manageable harbor area, with less disruption and damage to the seabed, and less chance of damage between vessels.
330-Railroad Curves Simplified
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering and to familiarize the professional engineer with the principals of superelevation and spiral transition curves in the design and evaluation of rail lines.
Course Description:
Railroad Curves
Centrifugal force is a function of both train speed and track curvature. If trains operated at a low velocity or on a straight track, centrifugal force would not factor into the engineering of a railway, but high speeds and curved track require an engineered solution. That solution is superelevation which is also known interchangeably as "cant".
This course will teach the physics of centrifugal force and the mathematics used by railroad engineers to select a cant angle and spiral transition curve that provides a comfortable ride and minimizes wear on rails and wheels."Rail-Curve" is the FREE spreadsheet software that comes with the course and takes care of all the number crunching so that we can concentrate on the principals of railroad curve design and evaluation.
There is an eye-opening section on "Vactrain" (Vacuum Tube Train) concepts that promise train speeds of 760 mph (1,200 kph) for Elon Musk's Hyperloop to 4,000 mph (6,437 kph) for Nic Garzilli's Hyper Chariot.
The software runs on Excel 97 or later running on a PC. It's available for download after you purchase the course and it is yours to keep for the rest of your engineering career.
(Rail_Curve will NOT run on "OpenOffice")
342-A Guide to Port Redevelopment Assessments
3
List: $67.50
Sale: $29.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The purpose of this course to provide a guideline on how to conduct an assessment for a port redevelopment project, specifically looking at the infrastructure and environmental constraints present within the properties to be reviewed. This initial assessment phase should be considered non-invasive, i.e. no sampling of soils, groundwater, and physical buildings and structures, but more of a roadmap for where future investigations should be focused should a site be attractive for redevelopment. The assessment should be used as a tool to analyze the environmental impacts and physical infrastructure present at the site with relation to the potential redevelopment of the Site. A complete redevelopment assessment will go beyond engineering review and include economic assessments (market analysis) and planning assessments, as well as legal reviews. This course will focus on the environmental and infrastructures assessments associated with a port site, since this course is aimed at an engineering audience. Sometimes redevelopment assessments are conducted with a specific new use in mind, which helps narrow the scope of the assessments, other times its conducted with a broader view of what could happen with the site in the future. For the purposes of this course, we will spend the most time looking at the broad view redevelopment aspects, but we will also discuss screening site for a specific end use as well.
Oftentimes ports that have potential for redevelopment are blighted and have fallen past their peak usages, therefore, the environmental impacts dominate the redevelopment options. Environmental limitations are common within properties that have current and historical industrial usage and do not represent a barrier to redevelopment, rather they represent factors and limitations that need to be addressed as part of the redevelopment.
Similarly, the physical infrastructure for sites that are being eyed for redevelopment may have fallen into some level of disrepair or less frequent maintenance. Other times the physical infrastructure on site is in good working order, however your client is anticipating or exploring a market change. In any redevelopment scenario, its important to look at the physical infrastructure to see how it has played a role on site in the past, currently, and what role it could play in a redeveloped site.
It is very important however during these initial assessments to highlight what the potential issues could be with respect to both infrastructure and environmental considerations so that your client or the end-user can have a better understanding of what cost considerations could impact the redevelopment of the site and warrant further investigation.
344-The Highway Capacity Manual - 6th Edition: Overview and What's New
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The 6th Edition of the Highway Capacity Manual (HCM) was released in 2016 and is now the standard for both the Fundamentals of Engineering (FE) exam and Principles and Practice of Engineering (PE) exam. The title of this new HCM is "HCM 6th Edition: A Guide for Multimodal Mobility Analysis". This edition of the HCM provides methods for evaluating multimodal operations of freeways, highways, and arterial streets. The focus of this course is on providing a general overview of the content and organization of the HCM 6th edition and highlighting revisions/updates from the previous edition of the HCM (HCM 2010). The course does not provide detailed coverage of analysis methodology elements. Due to the volume of material covered in the HCM, some general knowledge of the document(s) may be helpful to completing this course, but it is not required.
Highway Capacity Manual 6th Edition Cover
Source: Transportation Research Board
In this course, you will learn about:
- HCM edition history
- Why the HCM title was changed
- Why the need for a new HCM edition
- HCM 6th edition structure — revised
chapter layout design to help practitioners use the manual
- New HCM analysis methodology capabilities
- Future directions/updates to the HCM
346-Tiny Houses Part 1 - Planning and Design Considerations, Legality, and the Engineer's Role
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the differences between tiny houses on wheels, recreational vehicles, and manufactured homes.
2. Recognize the professional services opportunities in the tiny house industry available to engineers.
3. Comprehend the challenges in determining where and how tiny houses on foundations and tiny houses on wheels may be legally placed.
4. Identify the different building/manufacturing standards available for a tiny house on wheels and the pros and cons of each standard.
5. Understand the importance of the addition of Appendix Q to the 2018 International Residential Code.
6. Know the reasoning behind maximum width and maximum height thresholds for mass produced tiny houses on wheels and how and when to exceed these thresholds.
Course Description:
This course serves as an introduction to designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course series focuses on tiny houses mounted on trailers which are often referred to as tiny houses on wheels (THOW). This introduction covers general planning and design considerations regarding trailers, appliances, utility connections, floor plans, and lofts. It also goes over the legal issues concerning construction standards and physical placement of both THOW and tiny houses on foundations. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
347-Tiny Houses Part 2 - Structural Design
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the pros and cons of using wood and metal structural framing members.
2. Size floor joists and roof joists using tables from the International Residential Code.
3. Calculate the size of wood loft joists and window headers using allowable stress design methodologies.
4. Recognize when advanced framing techniques are useful or not useful in given situations.
5. Recall additional structural measures often used for highly mobile tiny houses on wheels.
Course Description:
This course is part two of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This second course focuses on structural design. Also presented are specific techniques to structurally handle the mobile nature of THOW. Both prescriptive and engineered methodologies are used. Five extensive examples with calculations and 35 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
352-Fundamentals of Masonry Part A
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The science of masonry construction is extensive, thorough, and is the foundation of the profession. But there is an artistic component bounded only by the imagination of the designer and the skilled mason.
Masonry construction has been practiced for thousands of years beginning with the ancient Greeks and the Romans. The "language" of the craft has been developed over this time. Today we use words that clearly identify pieces and parts of the industry that can bewilder or confound those unfamiliar with them — words such as wythe, shiner, and grapevine.
Masonry construction has exploded during the last century and a half due in large part to advances in manufacturing technology. For example, in the early years of manufacturing, each concrete block was made by hand — about 10 blocks per hour per man. Today, with modern machinery, production can be as high as 2,000 blocks per hour. And, each year around 4-billion concrete
blocks are manufactured — enough to build about 3.5 billion square feet of wall. Up until about 150 years ago, clay bricks were made individually and by hand. Today, with modern machinery and kilns, about 50-billion clay bricks are manufactured each year — enough to build about 7.5 billion square feet of wall.
This two course series was created to provide fundamental knowledge about masonry construction for the engineer, contractor, architect, and anyone else who is interested in having a basic understanding of the topic.
366-Resiliency Strategies for Smaller Scale Sites
2
List: $45.00
Sale: $22.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The purpose of this course is to explore different options that are available for helping to make smaller scale sites more resilient and adapted to better handle the larger, more frequent storm events. Resiliency is usually thought of being done at a much larger scale; municipalities and states implementing large scale strategies that are focused at making their target areas more resilient and less susceptible to large storm events or rising sea levels. Those large-scale resiliency projects are often complicated and very expensive; therefore, it doesnt seem like there is much that can be done on a smaller site. In the course, however we will exam some of the ideas and strategies that are implemented on a large scale and see how they can be scaled down to be viable on a smaller site. We will also review other strategies that can be implemented to make a site better situated to withstand or minimize the impact of a large storm event. It may not be feasible to completely protect a site and its infrastructure by itself, however we will review design strategies and actions that can mitigate or reduce impacts from large storm events, flooding, and sea level rise. There are both physical and operational changes for almost every budgetary range that can be made to make a site more resilient and better protected from rising sea levels, flooding and larger, more frequent storm events.
368-Tiny Houses Part 3 - Building Enclosure Design
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the importance of climate zones as they relate to tiny house insulation and vapor retarder requirements.
2. Comprehend the differences between vented and unvented roof assemblies.
3. Recognize the code approved, and most commonly used, materials for THOW roofs and exterior siding.
4. Identify the most common interior finish materials used in THOW and why some materials used commonly for THOW are different than those used for tiny houses on foundations.
Course Description:
This course is part three of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This third course focuses on building enclosure design: insulation, air sealing, roof assemblies, ventilation, exterior siding, doors, windows, and interior finishes. Over 60 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
378-Water Storage Tanks
2 $45.00
Course Objectives: Convey the key elements involved in the design and operation of water storage tanks
Course Description:
This course provides a practical understanding of the design and operation of finished water storage tanks and reservoirs. Storage tanks serve a critical role in ensuring the reliable supply of high pressure potable water to communities. They are also financially beneficial as they decrease the size of required pumping facilities and reduce energy consumption.
This course covers the following aspects of water storage tank design:
- Purpose and function of water storage tanks
- Regulations and industry standards
- Elevated versus ground storage tank
- Tank sizing and turnover
- Tank location and configuration
- Mixing considerations
- Features such as overflows, drains, and vents
- Regular Inspection
Haga clic en
Aquí para la versión en ESPAÑOL de este curso.
385-Sustainability Comparisons for All Engineers
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
It is increasingly common for engineers in all fields to consider sustainability when designing a product, process, or facility. This course will cover recent trends in sustainability including the “triple bottom line”, life cycle assessment, lifecycle cost, renewable energy, the precautionary principle, and greenhouse gas emissions.
It can be challenging to quantify sustainability and to reduce subjectivity. This course will directly address these challenges and present a ten step framework for calculating and comparing the sustainability of alternatives. Two example comparisons are provided to guide you through the process of quantifying sustainability, comparing the alternatives, and picking a winner.
386-Introduction to Planning of Desalination Projects
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Planning of desalination projects is of critical importance for successful project implementation and for producing desalinated water at competitive cost and minimal impact to the surrounding terrestrial and aquatic environment. The purpose of project planning is to define the size, location and scope of the desalination project and chart a roadmap for project implementation.
This education course provides an overview of key steps associated with the planning of desalination project, from selecting service area and target product water quality for the project, to determining viable plant location, intake and discharge configuration, and identifying the most cost effective treatment processes. The course focuses on the practical guidance and real-life experience in the development of desalination projects in the US and abroad.
387-Clarifier Rehabilitation
5 $112.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Most water treatment plants and wastewater treatment plants have at least one clarifier. Many of the clarifiers were installed more than 30 years ago and are at risk of failure if aged equipment is not rehabilitated.
This course guides the engineer through the rehabilitation process and provides helpful advice to help ensure that a rehabilitated clarifier will last well into the future.
The following topics are covered:
- Condition assessment, including the drive, equipment, and tank
- Performance assessment, including desktop studies and field testing
- Alternatives comparison, with examples
- Design recommendations, including for the coating system
- Construction tips
388-Introduction to Desalination Project Design and Delivery
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Implementing a successful desalination project encompasses a number of steps including planning, conceptual and detailed designs, construction, commissioning and acceptance testing. This course presents and introduction to the design and delivery of desalination projects and provides insights into project funding alternatives.
The course encompasses discussion of the key factors considered in the selection of desalination plant treatment processes (pretreatment, membrane salt separation, post-treatment) and equipment. The course introduces the principles used for pilot testing to verify and optimize desalination plant treatment process, and to select plant configuration and layout. Overview of the energy and chemical use of desalination plants are presented and the dosages of most common chemicals are provided in the course. The course also focuses on the fundamentals of project scheduling, implementation and phasing and addresses project economics and most common methods of project delivery such as design-bid-build, design-build-operate and build-own-operate transfer.
389-Overview of Alternative Desalination Technologies
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Fresh water can be produced from various saline water sources (ground water, brackish surface water or seawater) using a number of alternative desalination technologies such as thermal evaporation, reverse osmosis membrane separation and electrodialysis.
This course introduces the reader to the desalination technologies used most widely at present worldwide and defines key advantages, disadvantages, and areas of application of each of these technologies. The provided information encompasses both thermal evaporation technologies such as multistage flash distillation (MSF), multi-effect distillation (MED) and vacuum compression (VC) as well as reverse osmosis desalination using spiral wound membranes (RO) and electrodialysis reversal (EDR) systems. The course contains graphs and tables comparing the capital and operation and maintenance expenditures and water production costs of these alternative desalination technologies and highlights the differences in their energy use and fresh product water quality.
392-Protecting Drinking Water from Pathogens
4 $90.00
Course Objectives: Convey the key elements for protecting public water systems from pathogens.
Course Description:
Drinking water is susceptible to transmitting waterborne diseases from microorganisms known as pathogens. Modern methods of treating and disinfecting water have greatly decreased the risk of getting sick from drinking water, but outbreaks still occur and the threat remains. This course aims to empower engineers to help in the ongoing fight to eliminate pathogens from drinking water.
The following topics are covered:
- Biological contaminants that threaten our drinking water
- Water sources and their likelihood for harboring pathogens
- Disinfection and log treatment
- Approaches to prevent biological growth in a distribution system
393-Concrete Slabs-on-Grade: From the Ground Up
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course guides the reader through basic knowledge necessary for designing and specifying concrete slabs-on-grade. The intended audience is design professionals who have at least a basic working knowledge of concrete and that understand simple engineering terms such as tension, compression, and bending.
The reader will find information ranging from the ground slabs are built upon, to slab properties and behavior, to the means of finishing a slab, and finally how slabs are cured for final use. Oftentimes, engineers know what the 28-day compressive strength of a concrete slab should be, but may not choose to dig deeper than that. It is true that slabs are mainly a convenient barrier between the dirt and the first floor of a building. However, as the reader will learn in this course, problems in slabs are often a result of poor soil conditions beneath the slab, or cracking of the concrete due to concrete shrinkage. So, while knowledge of strength is important, it is just the beginning. This course strives to further the knowledge of the reader, and help them make good decisions on behalf of the building owners they serve, and ultimately to design slabs-on-grade with minimal problems in service.
395-Manual on Uniform Traffic Control Devices (MUTCD): Introduction and Overview of Signs
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The Manual on Uniform Traffic Control Devices (MUTCD) (1) provides national standards and guidance with respect to location, shape, size, and color for roadway signs, markings, and signals. Such guidance and standards are intended to enhance transportation safety and efficiency and provide uniformity of such devices to drivers across of the United States.
Figure 1. Manual on Uniform Traffic Control Devices 2009 Edition Cover
In this course, you will learn about:
- General guidelines for traffic control devices
- How to utilize the MUTCD effectively
- Sign functions and purposes
- Sign types and designs
- General sign guidance on shapes, color, dimensions, location and more
Source of artwork is the MUTCD 2009 Edition and photos are by Scott or Leslie Washburn,
unless noted otherwise..
396-Concrete Slabs-on-Grade: Warehouses I – Background & Loading
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course, Concrete Slabs-on-Grade: Warehouses I – Background & Loading is the second in a series of courses on concrete slabs-on-grade.
The first course, Concrete Slabs-on-Grade: From the Ground Up presented knowledge necessary for designing and specifying concrete slabs-on-grade.
The third course, Concrete Slabs-on-Grade: Warehouses II – Slab Design presents information on slab design methods, as well as recommendations for joints details, joint filler, and surface finishes.
The present course, Concrete Slabs-on-Grade: Warehouses I – Background & Loading, contains information on slabs-on-grade in warehouse facilities that are subject to forklift and pallet jack traffic, as well as storage rack loading. The reader will learn background knowledge about warehouses with the goal of improved discussions with those who own and operate these facilities. For facilities with a poorly executed site soil and/or slab design, it is extremely costly to repair and maintain the slab joints. This includes the loss of efficiency while slabs are in a state of disrepair and during operational downtime when remedial action is taking place. This course identifies specific challenges of warehouse slabs, how they are different than typical buildings, and suggests approaches to the design and construction of these slabs to achieve optimal long term performance and minimization of maintenance costs.
This course focuses mainly on qualitative approaches to slab design and construction, but some quantitative design measures are presented and referred to. Design concepts are tailored to engineers with a background in statics and mechanics of materials, with some familiarity in concrete construction and design.
397-Concrete Slabs-on-Grade: Warehouses II – Slab Design
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course, Concrete Slabs-on-Grade: Warehouses II – Slab Design, is the third in a series of courses on concrete slabs-on-grade.
The first course, Concrete Slabs-on-Grade: From the Ground Up presented knowledge necessary for designing and specifying concrete slabs-on-grade.
The second course, Concrete Slabs-on-Grade: Warehouses I – Background & Loading presents background information on warehouse facilities and the sites they are built on. Also, unique challenges are identified, as well as types of loading.
The present course, Concrete Slabs-on-Grade: Warehouses II – Slab Design, teaches the reader how to provide warehouse owners and operators with slabs that are designed to handle the abuse that small hard wheels impose on slab joints. The course will also review how to design slabs for the loads that legs and base plates of heavy storage racks can apply on small areas of the slab, especially near discontinuities. Furthermore, information on joint construction, joint filler, and surface finishes are presented. The service life of a slab will depend on the durability of the concrete surface and joints. For facilities with a poorly executed slab design, it is extremely costly to repair and maintain the slab joints. This includes the loss of efficiency while slabs are in a state of disrepair and during operational downtime when remedial action is taking place. This course identifies the specific concerns of warehouse slabs, and suggests approaches to the design and construction of these slabs to achieve optimal long term performance and minimization of maintenance costs.
This course focuses on qualitative approaches to slab design and construction, as well as quantitative design measures useful in calculations. Design concepts are tailored to engineers with a background in statics and mechanics of materials, with some familiarity in concrete construction and design.
401-Lift Station Design
4 $90.00
Course Objectives: Convey the key elements involved in the design of lift stations for wastewater collection systems.
Course Description:
Nearly every urban community has multiple lift stations that serve to keep the regular flow of sewage moving along on its journey to a treatment facility. Understanding these lift stations is important for civil engineers, and often other disciplines as well. This course focuses on the design of lift stations, from identifying the type of station needed, to sizing the important components. After completing this course, you should have the basic knowledge and skills for lift station engineering.
The following topics are covered:
- Purpose and function of a lift station
- Regulations and industry standards
- Types of lift stations
- Wet well sizing
- Intake design
- Pipe sizing and material options
- Pump selection
403-Manual on Uniform Traffic Control Devices (MUTCD): Overview of Pavement Markings
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The Manual on Uniform Traffic Control Devices (MUTCD) (1) provides national standards and
guidance with respect to location, shape, size, and color for roadway signs, markings, and signals.
Such guidance and standards are intended to enhance transportation safety and efficiency and provide uniformity of such devices to
drivers across the United States.
Figure 1. Manual on Uniform Traffic Control Devices 2009 Edition Cover
In this course, you will learn about:
- General guidelines for pavement markings
- Pavement marking functions and purposes
- Pavement marking types and designs
Source of artwork is the MUTCD 2009 Edition and photos are by Scott or Leslie Washburn, unless notd otherwise.
404-Tiny Houses Part 4 - Mechanical, Electrical, and Plumbing Systems
4 $90.00
Course Objectives: After completing this course participants should be able to:
1. Understand the basic components that make up each MEP system.
2. Size various MEP system components in accordance with building code requirements.
3. Identify key differences between designing and installing MEP systems in THOW and traditionally built dwellings.
4. Comprehend the importance and impact of selecting various energy sources for mechanical equipment and appliances.
Course Description:
This course is part of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). The majority of this multi-part course focuses on tiny houses mounted on trailers, which are often referred to as tiny houses on wheels (THOW). This fourth course focuses on mechanical, electrical, and plumbing (MEP) systems. Over 50 figures and photos are included. The basis of this course came from my own research, planning, designing, and construction of a THOW I built myself.
405-Structural Nonlinearity - Part 1 - Defining Nonlinearity
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
What is structural nonlinearity? The notion of linearity has become so ingrained in the practice of structural engineering that the term nonlinearity feels shadowy and ominous, vague and unconventional. Nonlinearity means that the structural behavior will be different, but how? What constitutes nonlinearity and what are the different types?
There are multiple components, conditions, and behavior that all fit under the umbrella of structural nonlinearity. The terminology surrounding nonlinearity can be overwhelming – P-delta, inelastic behavior, softening/stiffening, large deflections, physical nonlinearity, follower forces, nonprismatic, directionality, etc.
What are all the different types of nonlinearity that are possible in structural analysis? Why are they different and when do they need to be included? This course aims to introduce the full range of structural nonlinearity, describe their behavior and effects, and provide insight into when nonlinearities should be included in analyses.
Note: The content in this series of courses is advanced and requires a solid understanding of structural behavior and considerable experience with linear structural analyses. The reader should be familiar with beam theory, determinacy and internal stability of structures, strength of materials, and should be experienced in idealizing real-world structures and have exposure to some more advanced concepts such as plastic hinging.
406-Disinfection of Water System Components
4 $90.00
Course Objectives: Convey the key elements involved in the disinfection of water system components.
Course Description:
Public water system components must be disinfected prior to being placed into service, to protect drinking water from becoming contaminated by pathogens. This course reviews the surface disinfection methods defined in AWWA standards, including for water mains, storage tanks, filters, and wells. After completing this course, you should have the basic knowledge and skills for planning and overseeing the disinfection of water system components.
The following topics are covered:
• Purpose of surface disinfection
• Regulations and industry standards
• Disinfection chemicals
• Disinfection of Water Mains
• Disinfection of Water Storage Facilities
• Disinfection of Water Treatment Plant Components
• Disinfection of Raw Water Wells
Field disinfection report examples and excel templates are provided for free with this course.
408-The Hardy Cross Method and its Successors in Water Distribution Modeling
4 $90.00
Course Objectives: This course teaches the following specific knowledge and skills:
1. Hydraulic concepts necessary for understanding various pipe network analysis methods
2. The history behind the development of the Hardy Cross method
3. The basic principles the Hardy Cross method is based on and the step-by-step procedures used for pipe network analysis
4. The differences between the Hardy Cross and Modified/Improved Hardy Cross methods
5. Some of the advantages and disadvantages of using the Hardy Cross method
6. The differences between loop methods, node methods, flow methods, and gradient/node-loop methods for analyzing pipe networks
7. The basic concept of the Newton-Raphson method
8. The basic concept and application of the Linear Theory method
9. The basic concept and application of the Gradient method
10. A timeline of water distribution modeling advances from 1960 to 2020
11. The head loss methods and hydraulic balancing methods used by common hydraulic modeling software programs
12. Introduces leading modeling software developers, programs, and their basic capabilities
Course Description:
Water distribution system models have become very important and practical tools for civil engineers. Models are often used to optimize the design of new distribution systems or analyze major extensions or modifications to existing distribution systems. Computer models help engineers answer many common questions. For example, what is the maximum fire flow at a given point in the system? How long can that fire flow be provided for? What size pipe installation would be necessary between two points in a system to increase the pressure at one of the points to the minimum pressure required? If a subdivision or commercial development is built, will adequate pressures and flows exist? If not, what length and size of water mains must be upgraded by the developer to allow for the proposed construction?
In the 1930s the Hardy Cross method provided a breakthrough in pipe network analysis. Later, the advent of the modern computer allowed for analysis of even larger distribution systems using the method. Despite the development of more efficient computer algorithms, the Hardy Cross method remains the pipe network analysis method taught to most undergraduate civil engineering majors.
This course covers the history, basic principles, assumptions, step-by-step procedures, advantages, and disadvantages for solving pipe network problems using the Hardy Cross method. The three predominate analysis methods used by water distribution modeling software over the past 40 years are introduced and explained (the Newton-Raphson, Linear Theory, and Gradient methods). At the end of the course material a summary of some popular public-domain and commercial hydraulic models is presented. A total of ten example problems and solutions are included throughout the course to reinforce learning. The primary audiences for this course are consulting and municipal engineers in the water resource and environmental fields.
412-Airport Engineering - Part I - Fundamentals
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
As essential components of modern travel, airports are networks for private, commercial, and public travelers. These courses offer an overview of airport engineering and design for those who wish to become more familiar with airport projects. The first of three, this course addresses particular topics such as common airport features, the FAA, design considerations, and aircraft classifications. With lots of eye-catching photos, this introductory course will certainly keep you interested and inform you of the factors involved in airport design.
415-What Wetlands Boards Expect from Engineers
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Engineers are prominent members of application teams seeking
permission to begin construction projects. When pursuing a Wetlands
Permit, many common issues arise across the United States. Some
approaches and techniques are more successful than others.
This
SUNCAM Course is written by a PE who developed his own subdivision
properties for years, representing himself before Boards and New England
Wetland Commissions as both the design professional civil engineer of
record and the developer land owner. In recent years, he has received
wetlands permits for geothermal and other construction jobs. Winning
strategies are shared with Engineers who may be approaching a Board or
Commission for the first time, or with Engineers who seek better
knowledge on proper terminology, what will occur at a meeting, or which
engineering design methods are effective.
The author's objective
is to familiarize you with meeting procedure, and for you to have more
efficient approvals the first time, without having to redesign and
resubmit plans, in accordance with regulations that control the process.
416-Concrete Slabs-on-Grade: Warehouses III – High Performance Slabs
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course, Concrete Slabs-on-Grade: Warehouses III – High Performance Slabs, is the fourth in a series of courses on concrete slabs-on-grade.
The previous three courses presented knowledge necessary for designing and specifying concrete slabs-on-grade, background information on warehouse facilities and the sites they are built on, unique challenges, types of loading, slab design methods, and recommendations for joints details, joint filler, and surface finishes.
The present course, Concrete Slabs-on-Grade: Warehouses III – High Performance Slabs, expands on the knowledge in the above courses by exploring more specialized design methods, loading and temperature extremes, and superflat floors. Time-tested slab design innovations used to mitigate issues with slabs will be presented. Situations where warehouse floors will be subjected to high demand loading and extreme low temperature conditions will be studied. Building slabs that require extreme flatness and are examined. A list of topics includes:
Topic #1 – Shrinkage Compensating Concrete Slabs
Topic #2 – Slabs with fibers:
- a) Synthetic fibers (a.k.a., macrofiber), or
- b) Steel fibers
Topic #3 – Slabs designed with continuous reinforcing
Topic #4 – Post-tensioned slabs-on-grade
Topic #5 – Cold Storage Warehouses
Topic #6 – Automated Racking Systems
Topic #7 – Superflat Floors
This course focuses on qualitative approaches to slab design and construction, as well as quantitative design measures useful in calculations. Design concepts are tailored to engineers with a background in statics and mechanics of materials, with some familiarity in concrete construction and design.
417-Airport Engineering - Part II - Runway & Taxiway Design
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The second of three courses, this training addresses specific engineering elements of runway and taxiway design. This lesson will inform you of the details involved in these critical airport features and familiarize you with federal standards. Upon completion, you will know precise dimensions, grades, and design criteria that will aid in project execution and reinforce your understanding of runways and taxiways. **Bonus material: discover an interesting concept about circular runway design that you never knew existed**
419-Fundamentals of Masonry Part B
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The science of masonry construction is extensive, thorough, and is the foundation of the profession. But there is an artistic component bounded only by the imagination of the designer and the skilled mason.
Masonry construction has been practiced for thousands of years beginning with the ancient Greeks and the Romans. The “language” of the craft developed over this time. Today we use words that clearly identify pieces and parts of the industry that can bewilder or confound those unfamiliar with them – words such as collar joint, sash block, and Jack arch.
This three course series provides fundamental knowledge about masonry construction for the engineer, architect, contractor, and anyone else who is interested in having a basic understanding of the topic.
Fundamentals of Masonry – Part A explained and simplified the terminology and the fundamental principles of masonry and masonry construction including the nomenclature and history of the subject, and an introduction to the basic principles of wall construction.
Fundamentals of Masonry – Part B continues the discussion of masonry including design and reinforced masonry, some structural elements such as bond beams, lintels, pilasters, and arches and concludes with a section titled “What can go wrong?” with an example of the severe consequences of ignoring the design and construction principles of masonry.
It is fully illustrated with drawings and color photographs and is written in an easy to understand style.
Coming soon Fundamentals of Masonry – Part C will discuss additional masonry units including stone and glass, the anatomy of a clay brick street, efflorescence, and additional fascinating (actually, disheartening) damages resulting from sloppy and incorrect masonry construction practices.
421-Structural Nonlinearity - Part 2 - Analysis Methods
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Only a small sliver of real-world behavior is linear, so mentioning nonlinear analysis without any context is opaque if not ungraspable. The term nonlinear analysis relates as much information as suggesting a “special tool” or a “custom solution”. There are several different analysis methods that can solve structural nonlinearity and they have curious and indistinct names that have been informally adopted by the industry. What types of nonlinearities can MNO or 3rd-order analysis solve? Which of a simulation analysis or an analysis using a geometric stiffness matrix is an approximation? How does a 2nd-order analysis work?
This course surveys the current analysis methods capable of solving structural nonlinearity. This course presents the types of nonlinearity that each method can solve and introduces concepts such as recursion, kinematics, iterative analyses, benchmark problems, and discretization. The discussions are anchored by numerous illustrative diagrams and detailed examples of how iterative analyses converge.
Note: The content in this series of courses is advanced and
requires considerable experience with linear structural analysis and
a solid understanding of structural behavior. It is recommended that
the preceding courses in this series be completed prior to taking
this course.
422-Structural Nonlinearity - Part 3 - Analyzing Nonlinearity
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Nonlinear analyses can be formidable, unpredictable, and tricky to perform proficiently. Performing a nonlinear analysis can be likened to returning to a city you once knew many years ago that has since grown and changed beyond recognition. Landmarks and routes may feel familiar in bouts, and you may be able to tenuously find your way just to hit a dead end or arrive somewhere surprisingly foreign to you. Think of this course as a map kiosk with advice on what to expect and how to navigate nonlinear analyses.
This course describes how nonlinearities can be analyzed once they are identified in a structural system. The course content includes guidance on idealization, nuances of analyzing each nonlinearity type, and general recommendations for analysis.
The course closes with several detailed examples where the reader is walked through the analyses of several types of nonlinearity, each crafted to show analysis protocols, help illustrate confusing aspects, and highlight potential pitfalls.
Note: The content in this series of courses is advanced and
requires considerable experience with linear structural analysis and
a solid understanding of structural behavior. It is recommended that
the preceding courses in this series be completed prior to taking
this course.
427-Airport Engineering - Part III - Signs & Markings
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The third course in the series, this training addresses airport signs and markings. This lesson will inform you of the details involved in critical airport communication features and familiarize you with federal standards. Upon completion, you will know the different types of airport signs, sign placement standards, installation requirements, and all about runway and taxiway markings. Safety measures are emphasized and common airport features are discussed.
431-Centrifugal Pump Selection
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Centrifugal pumps are the most common type of pump in use today. The applications are numerous across multiple industries. Many engineers could benefit from a better understanding of the centrifugal pump selection process. This course walks through the pump design process, with a focus on the hydraulic calculations that form the basis for a sound pump selection. After completing this course, you should have the basic knowledge and skills for centrifugal pump selection.
The following topics are covered:
• Types of centrifugal pumps
• Pump design steps
• Design criteria
• Process flow diagrams
• System curves and pump curves
• Pump selection examples
• Hydraulic profiles
434-Biological Odor Control Systems
3 $67.50
Course Objectives: Gain a practical understanding of biological odor control systems.
Course Description:
Engineers are increasingly being tasked with the design of odor control systems to limit the release of foul air and to reduce air pollution. This course focuses on biological treatment alternatives for odor control. The three types of biological odor control systems are biofilters, biotrickling filters, and bioscrubbers. This course covers important design details each of these systems.
The following topics are covered:
- Odor control options
- Biological treatment explained
- Biofilter beds
- Biotrickling filters
- Bioscrubbers
- Side-by-side comparison
437-Activated Carbon Odor Control Systems
3 $67.50
Course Objectives: Gain a practical understanding of activated carbon odor control systems
Course Description:
Activated carbon has been used for odor control purposes for nearly a century. Engineers from various disciplines can benefit from a better understanding of activated carbon odor control systems. This course covers important design details and includes example problems to prepare engineers for real world applications.
The following topics are covered:
- Odor control options
- Dry adsorption explained
- Types of activated carbon
- Common system configurations
- Sizing calculations
- Lifecycle cost
439-Industrial Pretreatment Standards
5 $112.50
Course Objectives: This continuing education course is written specifically for professional engineers to provide a practical understanding of industrial pretreatment standards.
Course Description:
Most industrial and commercial facilities discharge wastewater that is subject to industrial pretreatment standards. This course focuses on requirements for indirect discharges to municipal sewer systems. The roles of national, state, and local pretreatment programs are explained. The course also clarifies how industrial users are categorized and how pollutant limits are established in permits.
The following topics are covered:
- Overview of industrial pretreatment
- Regulations
- National, state, and local pretreatment programs
- Types of industrial users
- Pollutant limits
- Inspection, sampling, and reporting requirements
440-Floodplain Engineering - An Introduction to Stream Classification & Restoration
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in stream restoration projects. It describes several methodologies for classifying streams and introduces some of the design approaches used in stream restoration.
The overall objective of this course is to provide an introduction to the complex world of stream classification and stream restoration. It also describes the necessary on-going maintenance activities of stream restoration projects.
444-Industrial Pretreatment Design
5 $112.50
Course Objectives: This continuing education course is written specifically for professional engineers to provide a practical understanding of the design of industrial pretreatment systems.
Course Description:
It
is common for industrial and commercial facilities to pretreat
wastewater before discharge to a municipal sewer system. This course
provides valuable insights into the design of these wastewater
pretreatment systems. Design criteria and typical design steps are
explained so an engineer can tackle these challenging designs.
Example problems are provided to help with applying the information
in the course.
The
following topics are covered:
Overview
of industrial pretreatment
Design
criteria and steps
Wastewater
assessments
Treatment
alternatives and comparisons
More
than 20 common treatment methods explained
Process
flow diagrams
446-Airport Engineering - Part IV - Lighting & NAVAIDs
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The fourth course in the series, this document addresses airport lighting systems and NAVAIDs. This lesson will inform you of the features and requirements of airfield visual aids and familiarize you with federal standards. Upon completion, you will know about the various arrangements of airfield lighting systems and navigation aids and their uses.
448-Positive Displacement Pump Selection
5 $112.50
Course Objectives: Develop skills for selecting and sizing positive displacement pumps.
Course Description:
Positive displacement pumps include a diverse group of rotary and reciprocating pumps covering a multitude of applications. From chemical metering pumps that you can hold in your hand to Archimedes screw pumps that are three stories tall. This course provides an overview of positive displacement pump types with dozens of helpful figures. The pump selection process is covered with several example problems. After completing this course, you should have the basic knowledge and skills for positive displacement pump selection.
The following topics are covered:
- Types of positive displacement pumps
- Pump design steps
• Design criteria
- Process flow diagrams
- Suction design and lift
- Pump selection
453-Reducing Water Loss in Distribution Systems
4 $90.00
Course Objectives: Develop skills for water loss control in distribution systems.
Course Description:
The loss of water in distribution systems is of growing concern due to aging infrastructure, increased costs for treating and pumping water, and a shortage of clean water sources. Engineers can apply their skills and make a big difference in reducing water loss for communities around the world. This course provides an overview of approaches for water loss control and includes example applications. After completing this course, you should have the basic knowledge and skills for reducing water loss in water distribution systems.
The following topics are covered:
- Water balances
- Water audits
- Key performance indicators
- Apparent versus real losses
- Pressure management
- District metered areas
- Leak detection techniques
454-Ion Exchange for Water Treatment
4 $90.00
Course Objectives: Gain a practical understanding of ion exchange systems for water treatment.
Course Description:
Ion exchange has been used for water treatment purposes for decades. Most residential water softeners utilize an ion exchange process to remove hardness. Many municipal water treatment plants and industrial facilities include ion exchange systems for removing hardness, heavy metals, chlorides, nitrates, sulfates, organics, and many other contaminants. There continues to be advancements in ion exchange technology. This course summarizes ion exchange configurations and includes examples to prepare engineers for real world applications.
The following topics are covered:
- Cation versus Anion Exchange
- System Configurations
- Field Testing
- Design Criteria
- Process Flow Diagrams
- Lifecycle Cost
455-Culvert Design for Fish Passage
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved the design of new or replacement culverts (or other stream structures). It describes in detail the ways that culverts can present obstacles to fish passage and presents an overview of the design methodologies to overcome these problems. It also includes a discussion of fish ladders.
The overall objective of this course is to provide an overview of how fish react to culverts and other stream structures and how the engineer can design these features with fish passage in mind. When you complete this course you should be familiar with many of the methodologies employed in this field.
458-Cast, Lift, and Release: Tilt-Up Concrete Walls - Part 1: Construction
5
List: $112.50
Sale: $44.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course, Cast, Lift and Release: Tilt-up Concrete Walls, Part 1:Construction, is the first in a series of courses on tilt-up concrete walls.
This course focuses on informing the reader about the construction of tilt-up concrete walls. Background information on buildings and the sites they are built on, unique challenges, types of loading, design and construction methods, and recommendations for details.
Ideally, readers should be familiar with structural drawings, as well as construction terms related to concrete.
459-Cast, Lift, and Release: Tilt-Up Concrete Walls - Part 2: Design
5
List: $112.50
Sale: $44.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course, Cast, Lift and Release: Tilt-up Concrete Walls, Part 2: Design, is the second in a series of courses on tilt-up concrete walls.
This course focuses on informing the reader about the structural design of slender exterior concrete walls subject to gravity loads from floors and roofs combined with out-of-plane lateral loads due to wind and earthquakes.
Ideally, readers should be familiar with statics and mechanics of materials, as well as concrete design.
462-Piping and Instrumentation Diagrams
4 $90.00
Course Objectives: Gain a practical understanding of piping and instrumentation diagrams (P&IDs).
Course Description:
Piping and instrumentation diagrams, also known as process and instrumentation diagrams, are commonly referred to as P&IDs. P&IDs illustrate the functional relationship of piping, instrumentation, equipment, and controllers. P&ID drawings are commonly made by process, controls, and electrical engineers. However, it is helpful for engineers of all disciplines to be able to read and understand P&IDs. This course summarizes P&IDs and includes examples to prepare engineers for real-world applications.
The following topics are covered:
- Overview of P&IDs
- Comparison of Engineering Diagrams
- Industry Standards
- Letter Designations
- Common Symbols
- Control Loops
- Examples
464-Manual on Uniform Traffic Control Devices (MUTCD): Overview of Highway Traffic Signals
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The Manual on Uniform Traffic Control Devices (MUTCD) (1) provides national standards and
guidance with respect to location, shape, size, and color for roadway signs, markings, and signals.
Such guidance and standards are intended to enhance transportation safety and efficiency and provide uniformity of such devices to
drivers across the United States.
Figure 1. Manual on Uniform Traffic Control Devices 2009 Edition Cover
In this course, you will learn about:
- General guidelines for highway traffic signals
- Highway traffic signal functions and purposes
- Highway traffic signal types and designs
465-Airport Engineering - Part V - Airport Wildlife Hazards
1 $22.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The fifth course in the series, this document addresses the hazards of wildlife at airports. This lesson will inform you of the damage wildlife strikes can cause, control methods, features that attract wildlife at airports, and insight to federal regulations. Upon completion, you will know about the various mitigation responses airport personnel can take and why engineers should consider wildlife when planning and designing airport projects.
470-What Every Engineer Should Know about Surveying, Part 1
2 $45.00
Course Objectives: The objective of this course is to acquire theoretical and practical knowledge of use of surveying instruments, surveying measurements, levelling, topographic surveys, and construction surveys.
Course Description:
This course is divided into four (4) parts:
Part 1: Basics of Surveying: Basic concepts, measurements of distances and angles, types and classes of surveys, surveying instrumentation, methods of linear measurement, types of measurements, chains, tapes, standard conditions for use of steel tapes, taping accessories and their use. General principles of EDMI operation, level, theodolite, total stations. Field procedures for total stations in topographic surveys, surveying applications, and field notes.
Part 2: Measurements and Computations: Units of measurements, Methods of linear measurement, types of measurements. Horizontal angle, horizontal distance, vertical angle, vertical distance. accuracy and precision, errors and mistakes, accuracy ratio, stationing, location methods, accuracy and precision, errors and mistakes, accuracy ratio. Measure horizontal distance, Identify and use different measurements, identify equipment of horizontal measurement, Identify the sources of errors and corrective actions.
Part 3: Leveling: Definitions, types of leveling staff, leveling operations, techniques of leveling, benchmark. Leveling (vertical control survey), profile and cross-section leveling, reciprocal leveling, peg test, errors in leveling, contours and their characteristics, various methods of Contouring. Contour intervals, spot elevations, contour properties, locating contours, existing and proposed grading plans. Examples of leveling and calculations. Angles and Directions: Horizontal and vertical angles, meridians, types of horizontal angles, azimuths, bearing, relationship between bearings and azimuths. Reverse directions, azimuth and bearings computations, magnetic declination, types of compasses.
Part 4: Traverse Surveys: Open and closed traverses, latitude and departures, computation of error of closure, and the accuracy of a traverse, traversing with total station instruments. Rules of adjustment, effects of traverse adjustments on the original data, computation of omitted measurements, area of closed traverse methods, use of computer programs. Calculations and examples for traversing, area, angles, bearing, and distances. Calculations and examples for traversing, area, angles, bearing, and distances. Construction Surveying: Learning Objectives, Introduction, Setting out a Peg on a Specified Distance and Bearing, Setting Out Small Buildings, Sewer and Tunnel Construction, Exercise.
473-Oil and Grease Removal
3 $67.50
Course Objectives: Gain an understanding of engineered systems for removing oil and grease from wastewater.
Course Description:
Oil and grease (O&G) is one of the most common pollutants found in nearly all waste streams. O&G often causes blockages in pipes and interferes with wastewater equipment. Engineers from various disciplines can benefit from a better understanding of O&G removal techniques. This course explains the different types of O&G and explains the alternatives for removing each type of O&G. Example problems help prepare engineers for real world applications.
The following topics are covered:
- Regulatory Requirements
- Forms of Oil and Grease
- Oil and Grease Removal Processes
- Sizing a Grease Interceptor
479-Tiny Houses Part 5 - Highly Mobile and Off-Grid Case Studies
5 $112.50
Course Objectives: After completing this course participants should be able to:
1. Understand what potential solutions exist for a tiny house’s water source(s), wastewater treatment or disposal system(s), and energy source(s).
2. Identify what solutions are feasible for a variety of situations or given scenarios.
3. Size an off-grid solar photovoltaic system array and battery bank.
4. Apply “toolbox” information and calculation methods to case studies and/or real life.
Course Description:
This course is part of a multi-part course series on designing tiny houses (houses 400 square feet or less in size). This fifth course presents case studies related to highly mobile tiny houses on wheels (THOW) and off-grid tiny houses, whether THOW or tiny houses on foundations (THOF). Prior to the case studies, a “toolbox” of flowcharts, methods, and products is given to help show possible solutions for tiny house water, wastewater, and energy needs. Six examples and five case studies are included. Much of the basis of this course came from my own research, planning, designing, and construction of a THOW I built myself and the subsequent search for a property to place it on. This course is intended as a stand-alone course, meaning you can take it without having taken previous courses in the series. Certain topics and background are covered in greater detail previously in the series, so when appropriate, I make reference to other courses.
480-Chemical Feed System Design
5 $112.50
Course Objectives: Gain knowledge and develop skills for the design of chemical feed systems.
Course Description:
Chemical feed systems provide for the reliable dosing of chemicals to numerous applications across many industries worldwide. Engineers from most disciplines can benefit from a greater understanding of how chemical feed systems are designed. This course provides an overview of chemical feed systems including common regulatory requirements. Components reviewed include chemical unloading stations, storage tanks, day tanks, mixing systems, feed pumps, valves, and injection configurations. Several example problems are provided to help apply the knowledge gained.
The following main topics are covered:
• Regulatory Requirements
• Safety Data Sheets
• Design Criteria
• Chemical Dosing
• Process Flow Diagrams
• Chemical Storage Tanks
• Chemical Feed Pumps
482-Collection System CIP Management
4 $90.00
Course Objectives: Develop skills for the management of a capital improvement program (CIP) for a wastewater collection system.
Course Description:
Most communities are faced with the challenge of managing older wastewater collection systems with ever growing problems due to leaks and breaks. Modern sewer rehabilitation techniques are available to help solve these problems. Careful management of a capital improvement program (CIP) can help rehabilitate or replace the sewers at greatest risk while keeping within budget restraints. This course reviews the program management and engineering skills needed for effective CIP management and includes example applications.
The following topics are covered:
- Overview of Collection Systems
- Overview of Capital Improvement Planning
- Master Plans
- Project Selection
- Budget Planning
- Sewer Condition Assessment
- Infiltration & Inflow Reduction
- Sewer Rehabilitatio
483-Self-Sustaining Ecosystems
4
List: $90.00
Sale: $39.95
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is an
introduction to Self-Sustaining Ecosystems. The intent of this course is NOT to make the reader an expert in every ecosystem design, but rather, introduce some challenges in creating a self-sustaining ecosystem by using an actual project that was successfully designed, permitted and constructed… but not just any project! This project consisted of not one, but two, different manmade tidal saltwater ecosystems. The course explains the process used to permit and construct a tidal saltwater marsh and a tidal saltwater pond at the Suncoast Conservation Center.
This course IS intended for those engineers and designers to:
- be aware of different ecosystem projects and become sufficiently familiar with the permitting requirements;
- discuss potential ecosystem opportunities with a client;
- understand the permitting challenges;
- know how to work with the regulatory agencies for projects and ecosystems that the regulators are not familiar with;
- discuss the construction challenges that were faced;
- ease the pains involved with an innovative ecosystem permit.
The course will begin by providing a brief background of the project goals and challenges before presenting the technical topics on the marsh and pond designs.
Again, this introductory course is about what creating new ecosystems may involve, and it provides a basic guide for an engineer to use in discussing ecosystem permitting intelligently with a client, as well as the initial discussions with the regulatory agencies.
488-Water Distribution CIP Management
4 $90.00
Course Objectives: Develop skills for the management of a capital improvement program (CIP) for a water distribution system.
Course Description:
Aging infrastructure is increasing the risks for water main breaks, leaks, low pressure, water loss, and other problems. At the same time, construction costs have escalated such that the cost to replace old water mains far exceeds the available budget for most communities. Careful planning, condition assessments, and modern rehabilitation techniques are available to help solve these challenges while staying within budget restrictions. This course reviews the basic program management skills needed for effective CIP management.
The following topics are covered:
• Water Distribution System Infrastructure
• Planning for Capital Improvements
• Annual CIP Budget Management
• Infrastructure Data Management
• Water Loss Reduction
• Condition Assessments
• Risk Ranking
490-Florida’s Mandatory Structural Inspections
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
Florida passed a law requiring structural inspection of all older three story or higher condos. This provides important work for Florida PEs. Out of state engineers can also learn from Florida guidelines. Legal Statutes and practical on site investigations are addressed.
Peter J. Tavino Jr. PE is a practicing civil engineer with broad civil, environmental and structural experience. He has been president of his own small firm for 30 plus years.
As mentioned in the course, he was team leader for the World Trade Center structural inspection before it collapsed. Since relocating to Florida, he has PE consulted on building structure projects, with wind mitigation certification, etc. As an experienced trainer of engineers, he is pleased to present this relevant course on Structural Inspections.
489-Water Treatment CIP Management
4 $90.00
Course Objectives: Develop skills for the management of a capital improvement program (CIP) for a water treatment system.
Course Description:
Water treatment systems are critical for providing non-stop high-quality drink water to communities. Water treatment infrastructure requires regular improvements to maintain a high level of service. This course explains how careful planning with condition assessments, performance assessments, and risk assessments can identify and prioritize improvements. Project scheduling is covered, including how to keep annual spending within budget. An excel file is provided with example tables for CIP project planning and spending projections.
The following topics are covered:
• Water Treatment System Overview
• Improvement Planning Process
• Condition Assessments
• Performance Assessments
• Risk Assessments
• Master Planning
• Project Selection
• Annual CIP Budget Management
495-Sketching for Engineers
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is an introduction to sketching for engineers who want to be able to draw their thoughts on paper in a quick, easy way. This is not a drafting class. This course is part art class, part engineering school, and part physical training. It’s not precise, and it’s not accurate. But it is fun, and very useful as an engineer. You’ll learn about basic tools and materials, drawing features, perspective, shadows, and scale. By the end of it, you’ll have what you need to convey your ideas on paper with clarity and skill.
496-Wastewater Treatment CIP Management
4 $90.00
Course Objectives: Develop skills for the management of a capital improvement program (CIP) for a wastewater treatment system.
Course Description:
Wastewater is treated prior to being released into the environment or reclaimed for beneficial reuse. Wastewater treatment systems are critical for the protection of the environment and human health. Wastewater treatment processes require regular improvements to meet the latest regulatory limits and treatment goals.
This course explains how careful planning with condition assessments, performance assessments, and risk ranking can identify and prioritize improvements to treatment systems and help ensure treatment objectives are met well into the future. Project scheduling is covered, including how to keep annual spending within budget. An excel file is provided with example tables for CIP project planning and cash flow projections.
The following topics are covered:
• Wastewater Treatment Summary
• Motivations for Improvements
• CIP as part of Asset Management
• Improvement Planning Process
• Condition Assessments
• Performance Assessments
• Risk Ranking
• Choosing between Potential Projects
• Budget Management
Download the Free Spreadsheet Used in This Course
501-Water Reuse Applications
3 $67.50
Course Objectives: Gain engineering skills for water reuse applications.
Course Description:
Clean water sources are becoming scarcer at the same time as municipal water and wastewater fees continue to rise faster than inflation. These trends have given increased attention to water reuse as a sustainable approach to managing water and wastewater. Water reuse utilizes treated wastewater as a water source for useful applications, thereby reducing water demands and wastewater discharges. Water reuse requires an engineered design that protects public health and achieves economic goals. This course includes example problems to highlight design approaches for various water reuse applications.
The following topics are covered in this course:
- Defining Water Reuse
- Brief History
- Engineering Insights into these Applications:
- Agricultural Reuse
- Industrial Reuse
- Urban Reuse
- Landscaping Reuse
- Potable Reuse
- Environmental Reuse
- Groundwater Recharge
502-Basics of Energy, Momentum, and Power for All Engineers - Part 1 – Basics of Energy
2 $45.00
Course Objectives: The objective of this course is to provide a broad conceptual understanding of energy as it applies to all disciplines of engineering. This will include a familiarity with both Imperial and Metric systems when dealing with energy related problems.
Course Description:
Energy and power are basic to all engineering disciplines. Part 1 of this course provides an overview of energy concepts and principles. As such, it will be very broad and not too deep. The various types of mechanical energy will be covered in detail, as well as thermal, radiation, elastic and hydraulic energy. Content and example problems will be presented using both Metric and Imperial units. Part 2 will continue by covering the related subjects of power and momentum. This course is intended for engineers, not physicists. Derivation of equations will only be used where useful.
505-Net Zero Principles for Engineers
3 $67.50
Course Objectives: Understand the engineering principles behind net zero strategies.
Course Description:
Achieving net zero greenhouse gas (GHG) emissions is a global strategy that offers the hope of slowing down or even stopping global warming. Engineers are being called on to apply net zero emissions to a variety of applications including buildings, facilities, industrial processes, and entire companies. The net zero concept has also been extended to apply to energy use, waste management, and water use. This course covers all these applications and provides examples that teach basic principles for net zero balance calculations.
The following topics are covered:
• Defining Net Zero
• Net Zero GHG Emissions
• NZE 2050
• Net Zero Energy
• Net Zero Waste
• Net Zero Water
512-Vertical Pump Selection
5 $112.50
Course Objectives: Develop skills for selecting and sizing vertical pumps.
Course Description:
Vertical pumps, also called vertical suspended pumps, are common for a variety of applications. For example, the largest pump station in the world uses vertical pumps to move flood waters. Vertical well pumps supply groundwater that is treated as drinking water to a large portion of population. That tap water or bottled water nearby you right now probably started its journey with a vertical pump.
This course explains several types of vertical pumps and then walks through the pump selection process, including comparing pump curves. After completing this course, you should have the basic knowledge and skills for vertical pump selection. A spreadsheet is included for performing hydraulic calculations and plotting curves.
The following topics are covered:
• Advantages of vertical pumps
• Types of vertical pumps
• Choosing the number of pumps
• Creating a system curve
• Plotting pump curves on system curves
• Pump selection examples
515-Design Management for Capital Improvement Projects
3 $67.50
Course Objectives: Develop skills for managing the design phase of capital improvement projects.
Course Description:
The bar has been raised for engineers to create inspiring designs while also meeting business goals such as budget, schedule, and quality. Design management helps the design team reach the various project goals while still producing an amazing design.
This course covers project management principles for the design phase of capital improvement (CapEx) projects. Several example problems are given to show how to apply the principles to real world projects. An excel file is provided with templates for schedule and budget management.
The following topics are covered:
• Creating a Work Plan
• Baseline and Progress Schedules
• Earned Value and S-Curves
• Inspiring the Team
• Risk Registers
• Quality Reviews
• Change Order Logs
516-Basics of Energy, Momentum, and Power - Part 2 - Basics of Mechanical Power and Momentum
4 $90.00
Course Objectives: The objective of this course is to provide a broad conceptual understanding of power as it applies to all disciplines of engineering. This will include a familiarity with both Imperial and Metric systems when dealing with energy and power related problems.
Course Description:
The concept of energy and power is basic to all engineering disciplines. Part 1 of this course provided an overview of energy concepts and principles. Part 2 continues with a similar overview of power. The various types of mechanical power will be covered in detail. An introduction to momentum is included, with an explanation of the difference between energy and momentum. Included is a basic introduction to electrical power, but a thorough discussion of electrical energy and power is beyond the scope of this course. Content and example problems will be presented using both Metric and Imperial units. This course is intended for engineers, not physicists. Derivation of equations will only be used where useful.
517-An Introduction to Drip Irrigation Septic Systems
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course provides a description of drip irrigation septic systems. It discusses the various components of these systems and includes photographs to illustrate many of these components. Basic design criteria is included along with a description of various advantages and disadvantages of using this type of system.
When you complete this course you should have a basic knowledge of drip irrigation systems and their components. In addition, you should know when these systems should be considered in lieu of more traditional septic system installations.
521-Safety in Design
3 $67.50
Course Objectives: Develop skills for prioritizing safety in design.
Course Description:
Engineers play a critical role in creating safe conditions during construction, system operations, maintenance, and public use. Considering safety in the design process can prevent injuries for years to come and potentially save lives!
This course covers engineering principles and techniques that result in designs that prioritize safety. The techniques apply to most engineering disciplines and applications. Examples are given to show how to apply the principles to real world projects.
The following topics are covered:
• Prevention through Design
• Inherent Safety
• Error Tolerance
• Safety Factors
• Fail Safe
• Defence in Depth
• HAZOP (Hazard and Operability Study)
• LOPA (Layers of Protection Analysis)
523-Airport Engineering - Part VI - Heliport Design
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
The sixth course in the series, this unit explains all about heliport design. This lesson will inform you of the design criteria for heliports, where to locate heliports, standard markings, and insight to FAA regulations. Upon completion, you will know about the gradients, dimensions, and surfaces involved in heliport design. You will also know the recommended static and dynamic loads for helipads.
524-Stage Gate Project Management
2 $45.00
Course Objectives: Develop skills for managing projects with stage gates.
Course Description:
Projects are more successful when they follow a front-end planning (FEP) process with a series of design stages and gates. With this course you will learn the stage gate process from an engineering and project management perspective. Example applications are included.
The following topics are covered:
• Front-end planning (FEP)
• Front-end loading (FEL)
• PMBOK Process Groups
• Design-Build Approaches
• Agile
• Project Definition Rating Index (PDRI)
• Cost Estimate Classes
525-PFAS in Drinking Water
3 $67.50
Course Objectives: Understand the engineering challenges related to PFAS in drinking water.
Course Description:
Per- and polyfluoroalkyl substances, known as PFAS or PFASs, have been used in coatings, firefighting foam, and consumer products since the 1950’s. PFAS can have serious health effects from regular ingestion in drinking water. PFAS is present in many public and private drinking water supplies. Current and proposed regulations require limiting the concentrations of several PFAS compounds. This course explains these regulations and summarizes the current techniques for PFAS removal from water. Example problems and applications are included.
The following topics are covered:
• Types of PFAS
• State Drinking Water Limits
• EPA Proposed National Limits
• Hazard Index
• Lab Test Methods
• PFAS Removal Technologies
• Lifecycle Costs
526-An Engineer's Guide to Municipal Zoning Ordinances
3 $67.50
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in any type of land-development project that requires a zoning permit. Often it is up to the engineer (either alone or in conjunction with other professionals) to determine the zoning constraints of a particular piece of property. However, municipal zoning ordinances are frustratingly hard to negotiate and have seemingly “hidden” provisions in any number of places.
The overall objective of this course is to provide an overview of municipal zoning ordinances and to focus on some areas that can cause confusion. When you complete this course you should be more confident in navigating your way through an unfamiliar ordinance.
529-PFAS in Biosolids
4 $90.00
Course Objectives: Understand the engineering challenges related to PFAS in biosolids
Course Description:
There can be serious health effects from regular consumption of food and water with per- and polyfluoroalkyl substances, known as PFAS or PFASs. PFAS is present in the wastewater at most municipal wastewater treatment facilities, including in the biosolids (residuals) produced. If the biosolids are land applied the PFAS can enter crops and groundwater. Many states require monitoring for PFAS in biosolids and future regulations with limits are anticipated. This course explains current regulations and summarizes the current techniques for PFAS removal, destruction and stabilization. Example problems and applications are included.
The following topics are covered:
• Biosolids Overview
• Measuring PFAS in Biosolids
• Fate and Transport of PFAS
• Federal and State Regulations
• PFAS Removal and Destruction
• Biosolids Disposal Costs
539-Florida Condo Structural SIRS Visual Inspections by PEs
4 $90.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
After the Champlain Towers collapsed in Surfside, Florida, the state legislature passed a new statute requiring all condos three stories or taller occupied for 25 or 30 years to be structurally inspected by a Florida Licensed Engineer or Architect. The new law also requires a visual inspection of newer condos by a PE or other professional for the (SIRS) Structural Integrity Reserve Study. The program provides abundant work for qualified firms. This SUNCAM course introduces PEs to the law and inspection requirements. Sample inspection elements are shown and discussed, to prepare private engineering inspectors to perform the necessary work.
544-Special Inspections
3 $67.50
Course Objectives: Understand the IBC Requirements for Special Inspections
Course Description:
Special inspections are required by the International Building Code (IBC) for the construction of critical structural, fire, and life-safety installations. Most buildings require special inspections, with the exception of residential light-frame houses, garages, most agricultural structures, and other minor structures. The design engineer is to create a statement of special inspections indicating which inspections and tests are required. This course helps engineers complete this task and provides an understanding of how to perform and document special inspections.
The following topics are covered:
• IBC Chapter 17
• What Requires a Special Inspection?
• Role of Building Official
• Approved Agencies and Accreditation
• Special Inspectors and Certification
• Common Inspections and Tests
• Structural Observations
• Reporting Requirements
554-Construction Cost Estimating for Engineers
3 $67.50
Course Objectives: Develop skills for estimating construction costs for improvement projects.
Course Description:
Cost estimating is essential for budget planning and funding of capital improvement (CapEx) projects. Engineers often play a central role in developing these cost estimates. This course covers construction cost estimating principles and provides example problems. Two excel files are provided: one to create a construction cost estimate and one for a pipe trench cost estimate.
The following topics are covered:
• Capital Cost vs Construction Cost
• Estimating Approaches
• Using a Cost Index
• Direct and Indirect Costs
• Estimating Software
• AACE Estimate Classes
• Design-Build vs. Design-Bid-Build Costs
Download the Free Spreadsheets Used in This Course:
569-Fiberglass Rebar Fundamentals
2 $45.00
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course, Fiberglass Rebar Fundamentals, focuses on the basics of a relatively new construction material, fiber reinforced polymer (FRP) rebar. Reinforced concrete is a very common building material, but composite rebar is an innovative development that has certain extraordinary properties that outperform steel. By completing this course, you will understand how and where FRP rebar can be used, its strength properties, and the FRP industry itself. You’ll also be able to recognize the different types of FRP rebar, and how it’s made. Also, you will be able to identify various codes and standards used in industry today.
608-Introduction to Culvert Hydraulics
4 $90.00
New Course
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
This course is intended for engineers who are involved in the analysis and design of stormwater culverts for highway projects or other applications. The course presents an introduction into the somewhat complex world of culvert hydraulics and includes sections on both inlet control flow and outlet control flow as well as discussing the use of software packages and nomographs. A number of related subjects are covered as well.
The stated objective of this course is to give the engineer a number of tools to better understand culvert hydraulics and to analyze different culvert geometries under a variety of conditions. When you complete this course you should be able to understand the basics of culvert design and know how to approach particular culvert projects.
610-Engineering after the Flood
4 $90.00
New Course
Course Objectives: This continuing education course is written specifically for professional engineers with the objective of relating to and enhancing the practice of engineering.
Course Description:
“Engineering after the Flood” prepares the Professional Engineer for work to be performed as part of the immediate disaster relief. Building components that were allowed years ago to be installed beneath the mapped flood level may not be replaced new at that same low level following flood damage. A professional must seal an Elevation Certificate showing that the new construction item will be installed high enough so as not to be damaged in the next similar flood. This course shows how to complete an Elevation Certificate. The course then describes the FEMA 50% cost rule requirement to rebuild. A case study follows showing how to design multiple air conditioner condenser supports that must be raised to permitted elevations.