359-Sightline Control Basics for Geo-Pointing and Locating - Part 2
By: Peter J. Kennedy, PE
Having trouble opening course PDF documents?
Course Documents, Test Previews and other resources above may attempt to open or download Adobe PDF files. Most modern browsers have built-in PDF readers. If you have problems opening these resources in your browser, check your browser's or computer system's settings. .
Course Objective
Describe theory and system level architectures
Course Description
This part of the course will apply the sightline control (SLC) fundamentals described in Part 1.0 to the geo-pointing and location problem. Initially Section 1.0 Part 1.0 is reviewed, particularly pointing performance
requirements which directly impact geo-pointing and location performance. Geo-pointing is then described, effectively delving deeper into the material begun in section 8.0 in Part 1.0 of the course. Geo-pointing errors are related back to the SLC pointing problem with its limitations serving as a foundation for pursuing different geo-location approaches. Geo-location techniques are generally categorized as either direct or image geo-registration derived. The errors associated with the pointing solution for direct geo-pointing provide a basis for examining geo-location techniques that use image geo-registration to improve performance.
Image geo-registration is also used in many applications that require geo-referenced sensed imagery as well as location; discussed in Section 4.0 of Part 2.0 of the course. As this is effectively a technology in itself, only the salient aspects of the process are reviewed but should provide a source for further study and investigation, if of interest. Regardless of the geo-location technique used, however, geo-pointing will generally be part of the solution. If not the solution, it will provide coarse location estimates for the image geo-registration process. A substantial amount of image spatial processing is required to obtain an accurate solution to an image geo-registered location and the processing is described at a functional system level to capture the overall design process. The benefits that image geo-registration provides beyond that of location are significant since it can used to obtain situational awareness as defined for many applications. Military and civilian surveillance is an obvious application, but even the use of image information within the transportation infrastructure for highway and bridge maintenance management, damage and structural deterioration assessment, traffic pattern analysis and control, etc. is a growing application. The goal of this part of the course is to provide a system level functional description of the geo-location process and how performance relates back to that of geo-pointing with SLC. The camera sensor requirements for image geo-registration location are discussed in Part 3.0, the last part of the course.
No reviews yet.
SAVE 20%
Order the Complete Set of 3 Courses for $180.00!
You Must Use This Button to Get The Savings
Other Courses by Peter J. Kennedy, PE
Course Title
Rating
Hours
Price
Local Copy of Course Preview