

A SunCam online continuing education course

Microcontrollers: the Arithmetic Logic

Unit

by

Mark A. Strain, P.E.

603.pdf

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 2 of 45

Table of Contents

Introduction ... 1
Binary Numbering System .. 1

Decimal Notation .. 2
Binary Notation ... 2

Binary to Decimal ... 2
Decimal to Binary ... 3

Negative numbers in Binary ... 4
Ones’ Complement ... 4
Twos’ Complement ... 5

Logic Operations in ALUs .. 7
Binary Logic ... 7
Fundamental Logic Gates ... 8

The AND Gate .. 9
The OR Gate ... 11
The NOT Gate... 13

Combined Logic Gates ... 15
The XOR Gate .. 15
The NAND Gate ... 16
The NOR Gate .. 16
The XNOR Gate ... 17

Arithmetic Operations in ALUs .. 18
Adder... 19

Half Adder .. 19
Full Adder ... 20
Ripple Carry Adders ... 22

Arithmetic Logic Unit ... 23
Design and Structure of an ALU .. 24

Two-Bit ALU .. 25
Instruction Set and Opcodes ... 28

ALU Integration in the CPU ... 31
Cycles of the Central Processing Unit .. 31

The Fetch-Decode-Execute Cycle .. 32
Instruction Fetch in a CPU .. 33

Key Functions of Instruction Fetch... 33
Instruction Decode in a CPU .. 34

Key Functions of an Instruction Decoder ... 35
Instruction Execute Cycle in a CPU ... 36

History... 37
Summary ... 41
References ... 43

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 1 of 45

Introduction
The arithmetic logic unit (ALU) is the central core of a central processing unit

(CPU). The ALU is simply a digital circuit that performs arithmetic and logical

operations on binary numbers. They are combinational logic circuits which means

that their outputs change asynchronously in response to changes to their inputs.

ALU circuits perform operations on integer binary numbers. A floating point unit

(FPU) is used to do operations on floating point numbers (or non-integers). This

course focuses on the ALU.

An ALU has two integer inputs called operands and another input called an

opcode. The opcode instructs the ALU which instruction to perform (like addition,

subtraction, decrement, increment, AND, OR, NOT, XOR, etc.). The opcode code

is a binary code that comes from the instruction set (or program) that is being

executed. The instructions or program will contain both the operands or numbers to

be used and the opcode that tells the ALU what to do with the numbers, eg. add the

numbers. These instructions are usually written in a higher level programming

language and are stored in the computer's main memory. A compiler will compile

the higher level language program and convert it to machine code. The computer

executes one instruction at a time.

The CPU will go through a fetch-decode-execute cycle for each instruction. It will

fetch an instruction from the program in memory, it will decode the instruction into

binary codes that the ALU can use, and it will execute the instruction.

Binary Numbering System
In everyday life we are used to the numbering system known as the decimal

numeral system. Our common numbering system is based on Arabic numerals (or

symbols). Our numbering system is base-10 which means there are ten symbols (0,

1, 2, 3, 4, 5, 6, 7, 8 and 9) used to represent every possible combination of

numbers. Our numeral system is based on the number ten probably because long

ago we discovered that we each have ten fingers which are useful tools to count on

when doing simple math.

Computer systems and other digital systems use a numbering system based on a

number other than ten. Digital systems (such as a computer central processing unit)

use a numbering system based on the number two. This base-2 numbering system

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 2 of 45

is called the binary system. The binary system uses two symbols (0 and 1) to

represent every possible combination of numbers.

Decimal Notation
When we write decimal (base-10) numbers, we use positional notation. This means

that each digit in a number is multiplied by a specific power of ten. The powers of

ten (exponents) are positive on the left side of the decimal point and the powers of

ten (exponents) are negative on the right side of the decimal point.

For example, consider the decimal number 3854:

= 3(103) + 8(102) + 5(101) + 4(100)

= 3000 + 800 + 50 + 4

= 3854

Now consider the decimal number 1256.79:

= 1(103) + 2(102) + 5(101) + 6(100) + 7(10-1) + 9(10-2)

= 1000 + 200 + 50 + 6 + 0.7 + 0.09

= 1256.79

… 105 104 103 102 101 100 . 10-1 10-2 10-3 10-4 10-5 …

 1 2 5 6 . 7 9

Binary Notation
The binary system also uses positional notation. Each digit in the base-2

numbering system is multiplied by a specific power of two. Just as in the base-10

system, the powers of two are positive on the left side of the binary point and the

powers of two are negative on the right side of the binary point.

Binary to Decimal

Each digit is a multiple of a power of 2. All digits to the left of the decimal point

are positive powers of 2 and all digits to the right of the decimal point are negative

powers of 2.

Consider the binary number 1011:

= 1(23) + 0(22) + 1(21) + 1(20)

= 8 + 0 + 2 + 1

= 11 (base-10)

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 3 of 45

Now consider the binary number 10101101.101:

= 1(27) + 0(26) + 1(25) + 0(24) + 1(23) + 1(22) + 0(21) + 1(20) + 1(2-1) + 0(2-2)

+ 1(2-3)

= 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1 + 1/2 + 0 + 1/8

= 173.625 (base-10)

… 28 27 26 25 24 23 22 21 20 . 2-1 2-2 2-3 2-4 2-5 …

 1 0 1 0 1 1 0 1 . 1 0 1

Decimal to Binary
It is often necessary to represent a decimal fraction in binary. The integer part (to

the left of the decimal point) is converted to binary by continually dividing by 2

until you get to 1. The fractional part is converted to binary by continually

multiplying by 2 until you get 0 or a repeating sequence or you get tired.

Consider the decimal number 142.378:

First, convert the integer part:

 Divide by 2 Remainder

 142 / 2 0

 71 / 2 1

 35 / 2 1

 17 / 2 1

 8 / 2 0

 4 / 2 0

 2 / 2 0

 1 1

Now, read the remainder part backwards and that is the binary representation of the

integer part of the number: 10001110

Next, convert the fractional part. Start with the number to the right of the decimal

point (0.378). Multiply the number times 2 and record what is to the left of the

decimal place after this operation. Then take this number and discard whatever is

to the left of the decimal place and continue.

 0.378 * 2 = 0.756 → 0

 0.756 * 2 = 1.512 → 1

 0.512 * 2 = 1.024 → 1

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 4 of 45

 0.024 * 2 = 0.048 → 0

 0.048 * 2 = 0.096 → 0

 0.096 * 2 = 0.192 → 0

 0.192 * 2 = 0.384 → 0

 0.384 * 2 = 0.768 → 0

 0.768 * 2 = 1.536 → 1

 0.536 * 2 = 1.072 → 1

 0.072 * 2 = 0.144 → 0

 0.144 * 2 = 0.288 → 0

 0.288 * 2 = 0.576 → 0

 0.576 * 2 = 1.152 → 1

 0.152 * 2 = 0.304 → 0

 …

Now, read the number forwards and that is the binary representation of the

fractional part of the number: 0.011000001100010

Therefore, 142.378 = 10001110.011000001100010…

Negative numbers in Binary
In mathematics, negative decimal numbers can be represented by using a minus “-“

sign. In digital circuits numbers are represented only by a sequence of bits, either a

0 or a 1 and no plus or minus sign. The most popular methods of representing

signed numbers in binary are the ones' complement and twos' complement

methods. These methods allow subtraction to be performed by adding the

complement of a number instead of subtracting the number. The utilization of ones'

complement and twos' complement greatly simplifies digital circuits since addition

is a fundamental operation.

Ones’ Complement

The ones' complement of a binary number is obtained by negating the number by

inverting all of the bits. This is accomplished by changing all of the 0s into 1s and

all of the 1s into 0s. The ones' complement of a number behaves as the negative of

the original number. An addition operation is a fundamental operation in digital

systems. There is no fundamental subtraction operation. Subtraction of two

numbers is equivalent to adding one number to the negative of the other number.

Therefore, any subtraction operation is equivalent to inverting one of the numbers

and adding it to the other number.

Consider taking the ones' complement of the number 0000 1100 (base-2):

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 5 of 45

0000 1100

Invert all of the bits

1111 0011

Ones' complement is seldom used in digital systems because when a ones'

complement number is added to another number, the result is offset by –1. In other

words, the result of a subtraction operation (using ones' complement) is off by –1.

Consider subtracting 8 from 12 using ones' complement:

ones' complement of 8:

0000 1000

Invert all of the bits

1111 0111

Now subtract 8 from 12:

12 – 8 = 4

Add the ones’ complement of 8 to 12: (12 – 8)

0000 1100

1111 0111

0000 0011

= 3 (base-10)

Note that the result is off by one. This problem is resolved by performing a twos'

complement operation instead of a ones' complement.

Twos’ Complement
Twos' complement representation of a binary number has widespread use in digital

systems. It solves the problem of the –1 offset that a ones' complement produces.

Consider the same subtraction operation as above, but this time using twos'

complement of 8:

0000 1000

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 6 of 45

Invert all of the bits and add one

1111 0111

0000 0001

1111 1000

(Note: Binary digits are often grouped in groups of four for readability.)

Now subtract 8 from 12:

12 – 8 = 4

Add the twos’ complement of 8 to 12

0000 1100

1111 1000

0000 0100

= 4 (base-10)

Now consider subtracting 23 from 17: (17 – 23)

twos' complement of 23:

0001 0111

Invert all of the bits and add one

1110 1000

0000 0001

1110 1001

Now subtract 23 from 17:

17 – 23 = –6

Add the twos’ complement of 23 to 17

0001 0001

1110 1001

1111 1010

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 7 of 45

= –6 (base-10)

This is a negative number since the sign bit (most significant bit) is set. The

number (without the sign) may be determined by taking the twos' complement of

the result:

twos' complement of 1111 1010:

1111 1010

Invert all of the bits and add one

0000 0101

0000 0001

0000 0110

 = 6 (base-10)

So the answer is –6.

Logic Operations in ALUs
Logic operations in an ALU are fundamental because they allow CPUs to perform

essential operations on data, which are crucial for executing programs and making

decisions. CPUs operate using binary numbers. Logic operations directly

manipulate these binary values. Logic operations allow for the manipulation of

data, such as setting, clearing, bit flipping, and masking bits. These operations are

fundamental for tasks like data encoding, data decoding, encryption, error

detection, and error correction. Logic operations allow for control flow

mechanisms made possible by conditional statements and loops to determine the

flow of program execution. Branching operations by comparing two values to

decide which branch of code to execute involves logic operations.

Addition and subtraction are performed using logic gates in a full adder and

performing twos’ complement using logic operations. Bit shifting and bit rotation

are logic operations essential for multiplication and division by powers of two.

Algorithms involving cryptography and data compression rely on logic operations.

Binary Logic

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 8 of 45

Binary logic uses variables that are either in a high state (or a logic "1") or in a low

state (or a logic "0"). This makes the use of the binary numbering system perfect

for digital systems like the ones used in computer systems. A switch is either on or

off; it can implement two discrete logic states, logic "1" and logic "0". The

switching function in digital systems is implemented by the use of a transistor. A

transistor, when biased properly, can act as a digital switch. Digital systems use

thousands, millions and sometimes billions of transistors to implement the complex

logic of the central processing unit of a simple microcontroller to a complex

multicore microprocessor.

Every binary logical condition must assume a logic value 0 or 1. There must be a

way to combine different complex logical conditions to provide a logical result.

The complex logical conditions are represented by logical functions and

implemented with electrical circuits. Each logic function has its own special

symbol and each has its own specific behavior.

The basic building blocks of a microcontroller or microprocessor are called logic

gates. These gates are basic electrical circuits that have at least one input and only

one output. The input and output values are logical values true (or 1) and false (or

0).

Gates have no memory; their output depends only on the value of the inputs. A

gate's output is sometimes called its logical function. The relationship of a logic

gate's output versus its inputs is best described by a truth table. A truth table lists

every possible combination of inputs (in order) in tabular form and presents the

corresponding output value in a separate column.

The following is an example of a truth table with two inputs (A and B) and one

output (F). The table lists every possible combination of inputs in order and each

associated output.

A B F

0 0 0
0 1 0
1 0 0
1 1 1

Figure 1 - Truth Table

Fundamental Logic Gates

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 9 of 45

The three most basic logic functions are AND, OR, NOT. Any logical function can

be implemented using these three different types of gates.

The AND Gate
The AND gate implements the AND function. The AND logic function is

represented as F = AB, where F is the output and A and B are the inputs. The

operator is sometimes represented as a dot, A•B, but is most often represented with

no operator, AB. The output is a logic 1 only if both inputs are logic 1. The

following shows the symbol for an AND gate and its associated truth table.

A B F

0 0 0
0 1 0
1 0 0
1 1 1

Figure 2 - AND Gate (F = AB)

An AND gate can be thought of as two switches (inputs A and B) connected in

series with a power source such as a battery or power supply and with the output

such as a lamp. The output lamp is not illuminated unless both the switches are

closed.

F
A

B

F

A B

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 10 of 45

Figure 3 - AND gate composed of switches

A simple way to implement an AND gate is by connecting two NPN transistors in

series with a power source and the output. The inputs A and B are the base

connections of the two transistors.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 11 of 45

Figure 4 - AND gate composed of transistors

The OR Gate
The OR gate implements the OR function. The OR logic function is represented as

F = A + B, where F is the output and A and B are the inputs. The operator is

represented by a plus (+) sign. The output is a logic 1 if either of the inputs is a

logic 1. The following shows the symbol for an OR gate and its associated truth

table.

A B F

0 0 0
0 1 1
1 0 1
1 1 1

Figure 5 - OR Gate (F = A + B)

F

A

B

F
A

B

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 12 of 45

An OR gate can be thought of as two switches (inputs A and B) connected in

parallel and then connected in series with a power source and the output lamp. The

output lamp is illuminated if either switch is closed.

Figure 6 - OR gate composed of switches

F

A

B

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 13 of 45

A simple way to implement an OR gate is by connecting two NPN transistors in

parallel whose inputs A and B are the base connections. The parallel combination

of the two transistors is connected in series with the power source and the output.

Figure 7 - OR gate composed of transistors

The NOT Gate
The NOT gate is sometimes called an inverter. It implements the NOT (or invert)

function. The NOT gate has only a single input. Its logic function is represented as

F = A'. The operator is represented by a single tick mark (') after the variable or as

a bar (–) over the variable. The output is the inverse of the input. The following

shows the symbol for a NOT gate and its associated truth table.

A F

0 1
1 0

Figure 8 - NOT Gate (F = A’)

F

A

B

FA

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 14 of 45

A NOT gate or an inverter is as simple as a normally open input switch connected

in parallel with the output. The switch is connected in series with the power source

and a resister. When the switch is open the current runs from the power source,

through the resistor, through the lamp and finally to ground. When the switch is

closed, the current is rerouted directly to ground, bypassing the lamp. Thus, when

the switch is open (or off), the output is on (or high), and when the switch is closed

(or on), the output is off (or low).

Figure 9 - NOT gate composed of a switch

A simple way to implement a NOT gate is by replacing the switch with an NPN

transistor. The base of the transistor is the input to the gate. When the input is high,

the current is rerouted through the transistor, thus bypassing the lamp.

Figure 10 - NOT gate composed of a transistor

FA

FA

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 15 of 45

Combined Logic Gates
The most basic logic operations are AND, OR and NOT. These gates are

fundamental. These gates can be combined to form other logical operations such as

XOR, NAND, NOR and XNOR. Three of these gates (NAND, NOR and XNOR)

have active low outputs. This means that their outputs are inverted. The XOR gate

(as well as the AND and OR gates) are active high. Their outputs are not inverted.

The XOR Gate

The XOR gate implements the XOR function. The XOR logic function is

represented as F = A (+) B, where F is the output and A and B are the inputs. The

operator is represented by a plus sign with a circle around it (+). The output is a

logic 1 if one of the inputs is a logic 1 and the other input is a logic 0. The

following shows the symbol for an XOR gate and its associated truth table.

The XOR gate is composed of two AND gates, an OR gate and two NOT gates.

Figure 11 - XOR gate is composed of AND, OR and NOT gates

A B F

0 0 0
0 1 1
1 0 1
1 1 0

Figure 12 - XOR Gate (F = A(+)B)

A

B

F

F
A

B

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 16 of 45

The NAND Gate
The NAND gate implements the NAND function. The NAND logic function is

represented as F = (AB)', where F is the output and A and B are the inputs. The

output is a logic 1 if either of the inputs is a logic 0. The following shows the

symbol for a NAND gate and its associated truth table.

The NAND gate is composed of an AND gate followed by a NOT gate.

Figure 13 - NAND gate is composed of AND and NOT

A B F

0 0 1
0 1 1
1 0 1
1 1 0

Figure 14 - NAND Gate (F = (AB)’)

NAND gates have functional completeness. This means that any combinational

logic function can be realized using only NAND logic (or using only NAND

gates). NAND gates are universal gates that can be combined to form any other

kind of logic gate (NOT, AND, OR, XOR, NOR, XNOR). A NAND gate is a

universal gate which means that it can be used to implement any other Boolean

function.

The NOR Gate
The NOR gate implements the NOR function. The NOR logic function is

represented as F = (A + B)', where F is the output and A and B are the inputs. The

output is a logic 1 if both of the inputs are a logic 0. The following shows the

symbol for an NOR gate and its associated truth table.

The NOR gate is composed of an OR gate followed by an NOT gate.

F
A

B

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 17 of 45

Figure 15 - NOR gate is composed of OR and NOT

A B F

0 0 1
0 1 0
1 0 0
1 1 0

Figure 16 - NOR Gate (F = (A+B)’)

The XNOR Gate
The XNOR gate implements the XNOR function. The XNOR logic function is

represented as F = (A (+) B)', where F is the output and A and B are the inputs.

The output is a logic 1 if both of the inputs are a logic 0 or if both of the inputs are

a logic 1. The following shows the symbol for an XNOR gate and its associated

truth table.

The XNOR gate is composed of an XOR gate followed by a NOT gate.

Figure 17 - XNOR is composed of XOR and NOT

F
A

B

F
A

B

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 18 of 45

A B F

0 0 1
0 1 0
1 0 0
1 1 1

Figure 18 - XNOR Gate (F = (A(+)B)’)

Bit shifting operations move each bit in number's binary format left or right. There

are two different types of shifting operations: logical shifts and arithmetic shifts. In

a logical right shift, the least significant bit is lost and 0 is inserted in the most

significant bit position. In a logical left shift, the most significant bit is lost and a 0

is inserted in the least significant bit position. In an arithmetic right shift, the least

significant bit is lost, and the most significant bit is copied (thus preserving the

sign bit in signed numbers). In an arithmetic left shift, the most significant bit is

lost and a 0 is inserted in the least significant bit position.

Simple ALUs can shift an operand by one bit position. More complex ALUs can

shift an operand by any number of bits in one operation by incorporating a barrel

shifter. A barrel shifter is a digital circuit that can shift a data word by a specified

number of bits without the use of any sequential logic, simply combinational logic.

One implementation of a barrel shifter is to create a sequence of multiplexers

where the output of one multiplexer is connected to the input of the next

multiplexer in a way that depends on the shift distance.

Arithmetic Operations in ALUs
Arithmetic operations in an ALU are essential because they perform the

fundamental mathematical calculations required to execute programs and process

data. Arithmetic operations provide the means to perform data manipulation and

control flow operations. Arithmetic operations such as addition, subtraction,

multiplication, and division allow CPUs to perform essential numerical

calculations required by most software applications, ranging from simple

spreadsheets to complex scientific simulations. Arithmetic operations are used to

compare numeric values, which is essential for program control flow. ALUs

support integer arithmetic for operations such as multiplication and division.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 19 of 45

Floating point operations are performed in a floating point unit (FPU) which is

another component of a CPU.

Adder
An adder is a digital circuit that adds two numbers. An adder is sometimes called a

summer (one that sums). An adder circuit is an integral part of a microprocessor’s

arithmetic logic unit (ALU). Adders operate on binary numbers. They add two

numbers and can also subtract two numbers. Subtraction is accomplished by

adding a number to a negative number. A negative number is created by taking the

ones’ complement or twos’ complement of the number.

The simplest form of adder is a half adder. A half adder becomes a full adder when

it takes a carry bit as an input. Several full adders can be cascaded in a row to add

large numbers. This is sometimes called a ripple carry adder.

Half Adder
A half adder adds two binary digits A and B and produces two outputs, sum (S)

and carry (C). The carry output represents an overflow condition adding the two

digits A and B. The carry will be either a 0 or 1. The single digit half adder, or one-

bit half adder, is very simple.

Figure 19 - One-bit half adder

Its truth table looks like this.

A

1-Bit
Half Adder

C
out

B

S

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 20 of 45

A B C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

As you can see S is simply the result of A added to B, and C is high only when the

result of A + B will not fit in one digit. From looking at the truth table the

equations for S and C become apparent:

S = A (+) B

C = AB

So the logic diagram is

Figure 20 - Logic diagram of a half adder

Full Adder
A full adder is simply a half adder that takes in a carry bit from another section. A

full adder has three inputs A, B and Cin and has two outputs S and Cout. A full adder

is usually a single stage in a cascade of adders used to add large numbers.

S
A

B

C

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 21 of 45

Figure 21 - One-bit full adder

The truth table of a full adder is

Cin A B Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The equations for Cout and S are

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB

= A (+) B (+) Cin

Cout = AB + Cin(A (+) B)

And the logic diagram is

A

1-Bit
Full Adder

C
out

B

S

C
in

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 22 of 45

Figure 22 - Logic diagram of a full adder

In order to cascade the adders to add larger numbers the carry output of the least

significant stage is connected to the carry input of the next significant stage.

Ripple Carry Adders
Full adders can be cascaded (or connected together) to form an adder that can add

numbers larger than one bit. A half adder is used at the least significant bit and full

adders are used for each additional bit. The carry out output of the previous stage is

connected to the carry in input of the next stage. These interconnections continue

until all stages are connected. The sum output for each stage forms the multiple bit

outputs, and the A and B inputs for each stage form the multiple bit inputs. The A

and B inputs are A3A2A1A0 and B3B2B1B0. The output for the circuit above is a 5-

digit binary number formed by all of the sum outputs and the last carry out output:

Cout3S3S2S1S0.

In order to add two four-digit binary numbers, four stages are required:

Figure 23 - 4-bit adder

S

A

B

C
out

C
in

A

Half Adder

C
out

B

S

A

Full Adder

C
out

B

S

C
in

A

Full Adder

C
out

B

S

C
in

A

Full Adder

C
out

B

S

C
in

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 23 of 45

Arithmetic Logic Unit
All microcontrollers contain an arithmetic logic unit (ALU). It is a fundamental

building block of the CPU. The ALU is a digital circuit that performs arithmetic

and logical operations. The arithmetic operations include addition, subtraction,

multiplication and division. These are integer operations, i.e., the inputs (or

operands) are integers as well as the output. Some of the more complex processors

will contain a floating point unit that handles fractional numbers in addition to

integers. The logic operations include AND, OR, NOT and XOR as well as logical

comparisons and bit shifting left and right.

The control bits on an ALU is called the opcode. It is short for operation code. It

controls the operation of the ALU. The size of the opcode (width in bits) will

determine the number of operations that the ALU can perform. The opcode will

instruct the ALU to perform either an add, subtract, AND, OR, etc. operation.

There are two data inputs to the ALU. These are the operands. The operands are

what are operated on and the result appears at the output of the ALU.

Figure 24 - Arithmetic Logic Unit

The ALU performs arithmetic and logic operations on two binary numbers

resulting in another binary number. The numbers (the operands and the result) are

represented using twos’ complement format. Twos’ complement allows subtraction

to be performed by adding the complement of a number instead of subtracting the

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 24 of 45

number. The utilization of twos’ complement greatly simplifies the ALU circuit

since addition is a fundamental operation.

Design and Structure of an ALU
A simple Arithmetic Logic Unit (ALU) can be described by a truth table. An ALU

performs a variety of arithmetic and logic operations, and a truth table can

represent the output of these operations based on different input conditions.

For instance, a 1-bit ALU that supports operations like AND, OR, addition, and

subtraction might have a truth table with columns for each input (A and B) and

control signals that select the operation (Op) and the resulting output. Here’s an

example of a truth table for a simple 1-bit ALU:

Op A B Result

00 0 0 0

00 0 1 0

00 1 0 0

00 1 1 1

01 0 0 0

01 0 1 1

01 1 0 1

01 1 1 1

10 0 0 0

10 0 1 1

10 1 0 1

10 1 1 0

11 0 0 0

11 0 1 1

11 1 0 1

11 1 1 0

In this table:

• A and B are the inputs

• Op is the opcode to select the operation to perform

o 00 for AND

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 25 of 45

o 01 for OR

o 10 for addition

o 11 subtraction

• Result is the output of the ALU

The schematic for the 1-bit ALU is shown in Figure 25. A and B are the 1-bit

operands. The opcode is 2-bits x and y. The result is presented at output F.

Figure 25 – 1-Bit Arithmetic Logic Unit

This is a simplified example; a real ALU truth table would be larger and more

complex, especially for multi-bit ALUs or those supporting a wider range of

operations.

Two-Bit ALU
A 2-bit ALU processes 2-bit inputs and can perform various operations like AND,

OR, addition, and subtraction. Below is a simple example truth table for a 2-bit

ALU with operations like AND, OR, addition, and subtraction.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 26 of 45

Here is the truth table for the 2-bit ALU:

Op A B Result Carry/Borrow

00 00 00 00 0

00 00 01 00 0

00 00 10 00 0

00 00 11 00 0

00 01 00 00 0

00 01 01 01 0

00 01 10 00 0

00 01 11 01 0

00 10 00 00 0

00 10 01 00 0

00 10 10 10 0

00 10 11 10 0

00 11 00 00 0

00 11 01 01 0

00 11 10 10 0

00 11 11 11 0

01 00 00 00 0

01 00 01 01 0

01 00 10 10 0

01 00 11 11 0

01 01 00 01 0

01 01 01 01 0

01 01 10 11 0

01 01 11 11 0

01 10 00 10 0

01 10 01 11 0

01 10 10 10 0

01 10 11 11 0

01 11 00 11 0

01 11 01 11 0

01 11 10 11 0

01 11 11 11 0

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 27 of 45

10 00 00 00 0

10 00 01 01 0

10 00 10 10 0

10 00 11 11 0

10 01 00 01 0

10 01 01 10 0

10 01 10 11 0

10 01 11 00 1

10 10 00 10 0

10 10 01 11 0

10 10 10 00 1

10 10 11 01 1

10 11 00 11 0

10 11 01 00 1

10 11 10 01 1

10 11 11 10 1

10 00 00 00 0

11 00 01 11 1

11 00 10 10 1

11 00 11 01 1

11 01 00 01 0

11 01 01 00 0

11 01 10 11 1

11 01 11 10 1

11 10 00 10 0

11 10 01 01 0

11 10 10 00 0

11 10 11 11 1

11 11 00 11 0

11 11 01 10 0

11 11 10 01 0

11 11 11 00 0

In this table:

• A and B are the inputs

• Op is the opcode to select the operation to perform

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 28 of 45

o 00 for AND

o 01 for OR

o 10 for addition

o 11 subtraction

• Result is the output of the ALU

• Carry/Borrow indicates if there was a carry (for addition) or a borrow (for

subtraction).

Instruction Set and Opcodes
Microcontrollers and microprocessors run a series of sequential instructions called

a program. The program is usually written in a high level language like C or C++.

The high level language is compiled or translated by a software tool called a

compiler. The compiler translates the series of instructions into machine code. The

program may also be written in a lower level assembly language. A software tool

called an assembler translates or assembles the series of assembly instructions into

machine code. The machine code is stored in the processor’s program memory.

Machine code is simply a file containing a series of ones and zeros. Some

programs may be very short, for example, an infinite loop controlling a couple of

output pins flashing some LEDs in a child’s toy. Other programs may be very long

and complicated to the computer controller in a car’s engine to the guidance

system on a missile. No matter how simple or complex all computer programs are

translated into a file containing a stream of ones and zeros called machine code.

Machine code is interpreted by the processor’s CPU. Depending on the processor’s

complexity, the instruction width can be 16, 32 or 64 bits wide. A processor with

16-bit wide instructions will, for example, fetch instructions 16 bits at a time. The

instruction will be stored in the instruction register. It will be decoded by the CPU

in which the control unit will configure the ALU for the particular operation (ADD

two registers, for example) and configure memory and/or some registers for a read

operation. The CPU will then execute the instruction (ADD two registers) and

store the result in another register or in data memory. The following examples

demonstrate how an instruction for the Atmel AVR family of microcontrollers is

translated into machine-readable machine code [43].

Here is an example of an ADD instruction:

 Instruction:

 ADD (add without carry)

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 29 of 45

 Operation:

 Rd  Rd + Rr (Rr – source register; Rd – destination

register)

 Syntax:

 ADD Rd, Rr

 Machine Code:

 15 8 7

0

0000 11rd dddd rrrr

For example, the instruction to add register R3 to register R2

 ADD R2, R3

translates to the following binary machine code (note: d = 00010, r = 00011):

 0000 1100 0010 0011

or in hexadecimal:

 0C23

The code “0C23” is the machine code for the ADD R2, R3 instruction in the Atmel

AVR instruction set [43]. Bits 10 through 15 (000011 in this case ADD without

carry) is the opcode that would be fed directly into the control bits of the ALU.

This instructs the ALU that this will be an ADD operation without carry.

Here is an example of an AND instruction:

 Instruction:

 AND

 Operation:

 Rd  Rd ● Rr (Rr – source register; Rd – destination

register)

 Syntax:

 AND Rd, Rr

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 30 of 45

 Machine Code:

 15 8 7

0

0010 00rd dddd rrrr

For example, the instruction to AND register R3 to register R2

 AND R2, R3

translates to the following binary machine code (note: d = 00010, r = 00011):

 0010 0000 0010 0011

or in hexadecimal:

 2023

The code “2023” is the machine code for the AND R2, R3 instruction in the Atmel

AVR instruction set [43]. Bits 10 through 15 (001000 in this case AND) is the

opcode that would be fed directly into the control bits of the ALU. This instructs

the ALU that this will be an AND operation.

Here is an example of copy register (MOV or move) instruction:

 Instruction:

 Copy Register

 Operation:

 Rd  Rr (Rr – source register; Rd – destination register)

 Syntax:

 MOV Rd, Rr

 Machine Code:

 15 8 7

0

0010 11rd dddd rrrr

For example, the instruction to copy register R3 into register R2

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 31 of 45

 MOV R2, R3

translates to the following binary machine code (note: d = 00010, r = 00011):

 0010 1100 0010 0011

or in hexadecimal:

 2C23

The code “2C23” is the machine code for the MOV R2, R3 instruction in the

Atmel AVR instruction set [43]. Bits 10 through 15 (001011 in this case a move

operation or MOV) is the opcode that would be fed directly into the control bits of

the ALU. This instructs the ALU that this will be an move operation.

ALU Integration in the CPU
The ALU is tightly integrated with the CPU’s control unit, registers, and memory.

The control unit sends instructions to the ALU, and the registers provide the

operands. The result from the ALU is often stored back in a register or memory.

Cycles of the Central Processing Unit
The CPU performs all of the calculations that occur and is the primary component

carrying out the microcontroller’s or microprocessor’s functions. The main

building blocks of the CPU include the ALU, the control unit (instruction fetch and

instruction decoder) and registers. Figure 26 shows a block diagram of the brains

of a microcontroller: the CPU.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 32 of 45

Figure 26 - Block Diagram of CPU Core

The control unit is a complete computational engine; it is a digital circuit that

extracts instructions from memory, decodes the instructions and executes them.

The CPU is the portion of the microcontroller or microprocessor that carries out

the instructions of the stored computer program. The CPU contains a limited set of

discrete states. The states are switched by millions of transistors on the processor

chip.

The CPU’s operation is governed by what is called the fetch-decode-execute cycle.

The CPU executes a binary file that contains instructions in a particular sequence

so that the processor steps through the instructions and executes (or runs) the

program. The fetch-decode-execute cycle is analogous to loading, cocking and

firing a gun.

The Fetch-Decode-Execute Cycle
The fetch-decode-execute cycle is the fundamental operational process of the CPU.

Each stage of the cycle plays a critical role in instruction execution. This cycle

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 33 of 45

ensures the correct and efficient execution of programs. The fetch-decode-execute

cycle of a CPU is analogous to loading, cocking, and firing a gun.

Instruction Fetch in a CPU
The fetch operation retrieves an instruction from program memory. The CPU

stores the instruction in the instruction register. The location of the next instruction

in memory to be executed is stored in a register called the program counter. The

gun is now loaded.

The instruction fetch phase in a CPU is the first step of the fetch-decode-execute

cycle, which is fundamental to the operation of a processor. During this phase, the

CPU retrieves an instruction from memory to be executed. Here is a detailed

explanation of what happens during the instruction fetch phase:

Key Functions of Instruction Fetch
Address Read

The program counter (PC) holds the address of the next instruction to be fetched

from memory. At the beginning of the fetch phase, the CPU reads the address

stored in the program counter. The program counter provides the address of the

instruction to be fetched. This address is placed on the address bus, which connects

the CPU to the memory.

Example:

• The PC value `0x00400000` is placed on the address bus.

Memory Read

The address from the program counter is sent to the memory unit to fetch the

instruction stored at that location. The memory unit responds by sending the

binary-encoded instruction back to the CPU. The CPU sends a read signal to the

memory unit, indicating that it wants to read data from the specified address. The

memory unit places the instruction from the specified address onto the data bus,

which carries the data back to the CPU.

Example:

• The CPU sends a read request to the memory for address `0x00400000`.

• The memory retrieves the instruction stored at `0x00400000` and places it

on the data bus.

Instruction Transfer

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 34 of 45

The fetched instruction is loaded into the instruction register (IR), a special register

within the CPU that temporarily holds the instruction to be decoded and executed.

The fetched instruction travels from the memory to the CPU via the data bus. The

instruction is then loaded into the instruction register for processing in subsequent

stages.

Example:

• The instruction (e.g., `0x20100004`, which might correspond to an "add

immediate" operation) is transferred to the IR.

Program Counter Increment

After fetching the instruction, the CPU increments the program counter to point to

the address of the next instruction in the sequence. This is typically done by adding

the size of the instruction (e.g., 4 bytes for a 32-bit instruction) to the current

program counter value. This ensures that the CPU will fetch the next instruction in

the program during the next fetch phase. The CPU increments the PC to the

address of the next instruction. This prepares the CPU for the next instruction fetch

cycle.

Example: The program counter is incremented to `0x00400004` (assuming a 4-

byte instruction length), ready to fetch the next instruction.

The instruction fetch phase is essential for retrieving and preparing instructions for

execution, maintaining the correct sequence of operations, and ensuring the CPU

can execute programs correctly and efficiently. The fetch phase ensures that

instructions are fetched in the correct sequence, maintaining the flow of the

program. By updating the PC, the CPU can follow the program’s control flow,

including handling jumps, branches, and calls. Efficient fetching is crucial for

overall CPU performance, as delays in fetching can stall the entire instruction

pipeline.

Instruction Decode in a CPU
After an instruction is fetched from memory it must be decoded or interpreted. The

decoding operation determines how to configure the ALU for the particular

operation. The gun is now cocked. The decode operation breaks up the instruction

into pieces. The meaning of the different chucks of binary bits depends upon the

processor’s instruction set. The instruction set can be thought of as the processor’s

vocabulary. Part of the instruction to be decoded is called the opcode (or operation

code). This indicates which instruction to perform, for example, an AND operation

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 35 of 45

and is the control signal that is fed into the ALU. The remaining parts include the

operands for the operation. These are the inputs to the command. They can be a

constant value, a register or a memory location.

An instruction decoder in a CPU is a crucial component responsible for

interpreting and converting binary-encoded instructions fetched from memory into

signals that control other parts of the CPU. Here's a detailed breakdown of its

functions:

Key Functions of an Instruction Decoder
Fetch Instruction

The instruction decoder receives the instruction fetched from memory.

Example:

• The CPU fetches an instruction from memory, say `ADD R1, R2, R3`,

which means "add the contents of registers R2 and R3 and store the result in

register R1".

Decode Opcode

The instruction decoder examines the opcode (operation code) portion of the

instruction, which specifies the operation to be performed (e.g., add, subtract, load,

store).

Example: The instruction decoder identifies the opcode for ADD.

• It generates control signals to:

o Configure the ALU for addition.

o Select the contents of registers R2 and R3 as inputs to the ALU.

o Direct the ALU's output to register R1.

Generate Control Signals

Based on the opcode, the instruction decoder generates specific control signals.

These signals direct various components of the CPU, such as the ALU, registers,

and memory, to carry out the specified operation. Control signals may include

activating specific registers, selecting the ALU operation, and controlling data

paths.

Determine Operand Locations

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 36 of 45

The instruction decoder identifies the locations of the operands (data to be operated

on). Operands can be in registers, memory, or included as immediate values within

the instruction.

Control ALU Operations

The instruction decoder sends control signals to the ALU to specify the type of

arithmetic or logical operation to be performed.

Coordinate Data Paths

The instruction decoder manages the data paths by activating multiplexers and

buses that direct data flow between the CPU's components. It ensures that data is

routed correctly from registers or memory to the ALU and back.

Handle Instruction Variants

The instruction decoder can handle different instruction formats and lengths,

especially in complex instruction set computers (CISC) or reduced instruction set

computers (RISC). It ensures that all parts of multi-step instructions are properly

decoded and executed.

Instruction Execute Cycle in a CPU
After an instruction is fetched and decoded it is then executed. The gun is now

fired. During the execute phase different parts of the CPU are connected to

perform the desired operation. For example, during an AND operation, the ALU

will be configured to perform a logical AND. The two operands (a constant, a

register location, or memory location) will be presented to the inputs of the ALU.

The control unit will present the proper binary code to the ALU’s control section to

prepare it for an AND operation and the output of the ALU will contain the result.

The result is then written to an internal CPU register or some memory location.

At this phase the program counter is incremented and the CPU is reconfigured to

fetch the next instruction and complete the next fetch-decode-execute cycle. In our

analogy, the gun ejects its spent cartridge and readies itself to fire again.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 37 of 45

History
The 74181 integrated circuit is a 4-bit ALU implemented by Texas Instruments in

1970. It was the first complete ALU on a single chip and used as the ALU in the

CPUs of many minicomputers in the 1970s. Before chips like the 74181, CPUs in

the 1960s were constructed using discrete logic gates on circuit boards. Chips like

the 74181 were used when CPUs were built using a combination of many discrete

chips, before CPUs were single chips like they are today.

Early computers contained ALUs that were built out of a large number of simple

gates. In 1970, Texas Instruments built the 74181 integrated circuit, which put a

full 4-bit ALU into one fast TTL chip. This chip provided 32 arithmetic and logic

functions on two 4-bit words.

Figure 27 – 74181 4-bit ALU from Texas Instruments

The 74181 is a 7400 series medium-scale integration (MSI) transistor-transistor

logic (TTL) integrated circuit. It contains the equivalent of 75 logic gates and

packaged as a 24-pin DIP package. The 74181 is a 4-bit wide ALU that can

perform add, subtract, decrement operations with or without carry. It can perform

logic operations such as AND, NAND, OR, NOR, XOR, and bit shifting

operations. It can perform a total of 16 arithmetic and 16 logical operations on two

four-bit words. Multiply and divide are not possible directly. Figure 28 show a

complete schematic of the 74181.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 38 of 45

Figure 28 – 74181 4-bit ALU Schematic (from the TI datasheet)

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 39 of 45

The arithmetic and logic operations are selected by the four function select lines

(S0, S1, S2, S3) as well as the mode control input (M) and the carry input line

(Cn). This is shown in the truth table in Figure 29. Together, the function select

lines and the mode control input make up the opcode that would appear in the

machine code that was compiled (or assembled) for a computer that contains this

ALU.

Figure 29 – 74181 ALU Truth Table (from the TI datasheet)

The inputs and outputs of the 74181 chip can be overlayed on the ALU symbol

shown in Figure 30. The Input 1 is the 4-bit word A and the Input 2 is the 4-bit

word B. The Control signal is the combination of the function select lines (S0, S1,

S2, S3) as well as the mode control input (M) and the carry in input (Cn). The

Result is the 4-bit function word F as well as the carry output (Cn+4).

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 40 of 45

Figure 30 – ALU Symbol

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 41 of 45

Summary
The arithmetic logic unit is the central core of a central processing unit. Digital

systems such as the computer central processing unit use a numbering system

based on the number two called the binary system. The ALU is a digital circuit that

performs arithmetic and logical operations on binary numbers. All microcontrollers

contain an arithmetic logic unit (ALU). It is a fundamental building block of the

CPU.

The ALU performs arithmetic and logic operations on two binary numbers

resulting in another binary number. The numbers (the operands and the result) are

represented using two’s complement format. Twos’ complement allows subtraction

to be performed by adding the complement of a number instead of subtracting the

number. Arithmetic operations such as addition, subtraction, multiplication, and

division allow CPUs to perform essential numerical calculations required by most

software applications, ranging from simple spreadsheets to complex scientific

simulations. Arithmetic operations are used to compare numeric values, which is

essential for program control flow. Addition and subtraction (adding the twos’

complement of another number) is performed by an adder circuit. An adder is a

digital circuit (AND, OR, and XOR gates) that adds two numbers. An adder is

sometimes called a summer (one that sums), and is an integral part of a

microprocessor’s arithmetic logic unit (ALU).

Logic operations allow for the manipulation of data, such as setting, clearing, bit

flipping, and masking bits. These operations are fundamental for tasks like data

encoding, data decoding, encryption, error detection, and error correction. Logic

operations allow for control flow mechanisms made possible by conditional

statements and loops to determine the flow of program execution. Branching

operations by comparing two values to decide which branch of code to execute

involves logic operations.

The control bits on an ALU is called the opcode. It is short for operation code. It

controls the operation of the ALU. The opcode will instruct the ALU to perform

either an add, subtract, AND, OR, etc. operation. There are two data inputs to the

ALU, called the operands. The operands are what are operated on and the result

appears at the output of the ALU. Machine code is interpreted by the processor’s

CPU. Depending on the processor’s complexity, the instruction width can be 16,

32 or 64 bits wide. A processor with 16-bit wide instructions will, for example,

fetch instructions 16 bits at a time. The instruction will be stored in the instruction

register. It will be decoded by the CPU in which the control unit will configure the

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 42 of 45

ALU for the particular operation (ADD two registers, for example) and configure

memory and/or some registers for a read operation.

In the early days of computers, pre-1970, the ALU (part of the CPU) would be

constructed of discrete integrated circuits on a circuit board. In 1970 Texas

Instruments implemented the first complete ALU on a single chip. The 74181

integrated circuit is a 4-bit ALU used in the CPUs of many minicomputers in the

1970s. Before chips like the 74181, CPUs in the 1960s were constructed using

discrete logic gates. The 74181 is a 4-bit wide ALU that can perform add, subtract,

decrement operations with or without carry. It can perform logic operations such as

AND, NAND, OR, NOR, XOR, and bit shifting operations. It can perform a total

of 16 arithmetic and 16 logical operations on two four-bit words. In modern

microcontrollers and microprocessors, ALUs are integrated as a complete circuit

on the same die as the CPU.

603.pdf

http://www.suncam.com/

Microcontrollers: the Arithmetic Logic Unit

A SunCam online continuing education course

www.SunCam.com Copyright© 2024 Mark A. Strain, P.E. Page 43 of 45

References

1. "Arithmetic logic unit – Wikipedia, the Free Encyclopedia." Visited 8 July 2024.

<https://en.wikipedia.org/wiki/Arithmetic_logic_unit>

2. "Atmel AVR Instruction Set Manual." November 2016.

<https://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-

manual.pdf>

3. ChatGPT, GPT-4, OpenAI, knowledge cutoff October 2023, chat.openai.com.

4. “IC 741181 (4-bit slice arithmetic logic unit).” Visited 6 September 2024.

<https://www.igelectronics.com/products/a13d88f3c5/1726810000000211015>

5. “SN54LS181, SN54S181, SN74LS181, SN74S181 Arithmetic Logic Units/Function

Generators.” Visited 9 September 2024.

<https://www.ti.com/lit/ds/symlink/sn54ls181.pdf?ts=1725050679943&ref_url=https%25

3A%252F%252Fwww.google.com%252F>

6. Strain, Mark, P.E., "Digital Logic Design: Combinational Logic." 2016.

7. Strain, Mark, P.E., "Microcontrollers - An Introduction." 2010.

603.pdf

http://www.suncam.com/
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
chat.openai.com
https://www.igelectronics.com/products/a13d88f3c5/1726810000000211015
https://www.ti.com/lit/ds/symlink/sn54ls181.pdf?ts=1725050679943&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/sn54ls181.pdf?ts=1725050679943&ref_url=https%253A%252F%252Fwww.google.com%252F

