

A SunCam online continuing education course

Engineering Methods in Microsoft Excel

Part 4: Simulation and Systems Modeling I

by

Kwabena Ofosu, Ph.D., P.E., PTOE

Abstract

This course is part of a series that presents *Microsoft Excel* tools that are useful for a wide range of engineering analyses and data management. This course covers an introduction to simulation and systems modeling. Simulation is a technique for conducting experimentation of a system or process, virtually, on a computer, using statistical models. This course presents a detailed review of statistical distributions that are widely used in simulation studies. Real-life examples are formulated and implemented in *Microsoft Excel* and worked using the various *Excel* tools, spreadsheet techniques, and built-in functions. Examples from various engineering fields are used to demonstrate the concepts and methods learned throughout this course. Upon completion of this course, practitioners will be able to apply the methods learned to a variety of engineering problems, and also to identify situations in their fields of specialty where the innovative application of these tools and methods will be advantageous to their output and to their work product.

List of Figures

Figure 1. 1: Framework for simulation	5
Figure 4. 1: The Uniform distribution	
Figure 4. 2: The Exponential distribution	63
Figure 4. 3: The Normal distribution	64
Figure 4. 4: Cumulative density	65
Figure 4. 5: Log-Normal probability density function	78
Figure 4. 6: Log-Normal cumulative density function	79
Figure 4. 7: Log-Normal percent point function	80
Figure 4. 8: Gamma probability density function	83
Figure 4. 9: Beta probability density function	86
Figure 4. 10: Weibull probability density function	89
Figure 4. 11: Logistic probability density function	91
Figure 4. 12: Log-Logistic probability density function	
Figure 4. 13: Triangular probability density function	94

TABLE OF CONTENTS

	Abstract	ii
	List of Figures	. iii
1.	INTRODUCTION	1
	1.1 Overview	1
2.	SIMULATION	2
	2.1 Introduction	2
	2.2 Illustration of a Simulation Model	2
3.	RANDOM VARIABLES	7
	3.1 Definition	7
	3.2 Discrete Random Variables	8
	3.3 The Binomial Distribution	.11
	3.3 The Poisson Distribution	.14
	3.4 Other Discrete Distributions	.17
	3.5 Discrete Random Variables in <i>Excel</i>	.19
4.	CONTINUOUS RANDOM VARIABLES	.55
	4.1 Definition	.55
	4.2 Properties of Continuous Random Variables	.55
	4.3 The Uniform Distribution	.57
	4.4 The Exponential Distribution	.62
	4.5 The Normal Distribution	.64
	4.6 The Log-Normal Distribution	.76
	4.7 The Gamma Distribution	.81
	4.8 The Beta Distribution	.84
	4.9 The Weibull Distribution	.87
	4.10 The Logistic Distribution	.90

4.11 The Log-Logistic Distribution	
4.12 The Triangular Distribution	94
4.13 Other Continuous Distributions	96
4.14 Continuous Random Variables in Excel	
5. CONCLUSION	140
REFERENCES	141

1. INTRODUCTION

1.1 Overview

Engineers are constantly challenged with solving a wide range of complex analytical and computational problems in their fields of specialty. These problems involve analyses methodologies and the management of data. The application of computers enables repetitive, time-consuming and often tedious calculations to be conducted rapidly, efficiently, and less prone to errors. The application of computer tools also enables the results and outputs of such engineering analyses to be readily transferred and incorporated into reports and other engineering documents. An even greater advantage, in terms of productivity and efficiency, is realized when these calculations and outputs are replicated across numerous projects. Competence in computer skills predisposes engineers to pursue and develop more creative and innovative solutions to problems than otherwise.

Microsoft Excel is widely and increasingly being used as a tool to assist engineers in conducting and replicating intricate calculations and analyses, designing complex systems, and managing large data sets. *Microsoft Excel* is an electronic spreadsheet program developed by the *Microsoft* Company, and part of the *Microsoft Office* suite of products. A spreadsheet is a grid that organizes data and calculations into columns and rows. The intersection of a column and a row is called a cell. An electronic spreadsheet enables users to store, organize, manipulate, and analyze data in the cells of the spreadsheet. As of this publication, the software is into the 2019 release.

This course presents fundamental principles and engineering applications of simulation and systems modeling, and demonstrates the *Microsoft Excel* tools, methods, and strategies that can be used to simulate and model real-life engineering systems. Simulation techniques involve conducting virtual experimentation of a system or process, on a computer, using mathematical and statistical models. This course presents how to formulate, implement and solve simulation and systems modeling problems in *Microsoft Excel*.

Upon completion of this course, participants will have gained insight into applying *Excel* tools, methods, and strategies in formulating, implementing and analyzing simulation models. Participants will also be able to identify professional situations where the application of these innovative *Excel* techniques will be of great benefit and advantage, and will enable practitioners to significantly improve their productivity and the quality of their work product.

2. SIMULATION

2.1 Introduction

Simulation is a statistical analysis tool used in many fields such as the sciences, engineering, business, management and many others. Simulation techniques have been used to study a wide variety of problems and complex physical phenomena such as traffic congestion, the spread of public health epidemics, weather forecasting, the performance of financial markets, military operations, emergency response scenarios, the quality of product or duration of an industrial or manufacturing process, etc., etc. Simulation has been used to solve mathematical problems for which a direct solution is impractical.

If the processes being **simulated** involve an element of probabilistic behavior (random chance) the simulation is referred to as **Monte Carlo simulation**. Many complex and large-scale engineering problems are amenable to Monte Carlo simulation due to the fact that the simulation technique can handle large numbers of **random variables**, numerous statistical distributions, and nonlinear mathematical models.

Monte Carlo simulation is useful in situations where direct experimentation of a system or process is impractical, infeasible, time or cost prohibitive, or simply impossible. For example, it is not possible to conduct an experiment on the spread or impacts of a highly contagious disease outbreak on a large or densely populated U.S. city. Likewise, it would be impractical or time prohibitive for a light bulb manufacturer to test a large sample of a product over the product's entire design life. In Monte Carlo simulation, the experimentation is conducted rapidly and many times over on a computer using a simulation model. The incorporation of random variables in the simulation model to describe the discret elements of the system or process enables many multiple scenarios of the system or process to be modelled, thus synthesizing model output data. The model output data set is then analyzed by appropriate statistical methods, to draw conclusions and to make decisions and recommendations about the system or process.

Thus, Monte Carlo simulation enables one to see all possible outcomes of a process and make decisions that take into account the probability (uncertainty or risk) associated with the discrete elements of the process.

2.2 Illustration of a Simulation Model

In this section a very simple example shall be used to illustrate a Monte Carlo simulation model.

Consider a small local contractor hired to prepare a site for a national company to come in and build a luxury apartment complex. The local contractor's work items include clearing the site and setting up trailers for site offices and other facilities. The contractor breaks down the project into the following discrete tasks in sequential order, and their estimated completion times.

	Work Item	Description	Completion Time (days)
1.	Clearing and Grubbing	Clear the site of vegetation, pull tree stumps, and remove all debris.	10
2.	Furnish and install trailers	Supply trailers and all ancillary work to complete installation.	5
3.	Connect services	Hook up power, utilities, and telecommunication services	7
4.	Furnish and install interior amenities	Install bathrooms, kitchenette equipment, office furniture, security devices	4
5.	Final cleanup	Final cleanup of interior and exterior	2
	Project completion		28

The completion times are based on the local contractor's recent experience with similar projects, clients and suppliers. In this approach, the local contractor considers these times to be set and fixed to yield the overall project completion time. This is called a **deterministic** approach. Prior to any knowledge or experience in Monte Carlo methods, the deterministic approach would be the intuitive approach to handle this type of problem.

The fact that the deterministic approach considers the work items' completion times to be set and fixed is a major weakness of the approach. Practically, all the work items' completion times are inherently **random** to varying degrees. For example, the completion of the clearing and grubbing is subject to randomness (or **uncertainty**) due to factors such as weather, equipment reliability, availability and punctuality of earth moving equipment and the operators, etc. etc. The work item to furnish and install the trailers is subject to randomness due to traffic conditions, availability or schedule of escort vehicles required to accompany the truck(s) that bring the trailer(s) to the site, as well as the randomness associated with obtaining the permits from governmental agencies to

convey oversized cargo on state roads. Once the trailer(s) reaches the site, further uncertainty may be due to soil conditions that may slow down (or speed up for that matter) the process of anchoring and securing the trailer(s). There is also randomness associated with the quality of the workmanship, or lack thereof, that may necessitate rework or additional inspections prior to approval. The uncertainty associated with each work item contributes to the uncertainty associated with the overall project completion time. The degree of uncertainty is called **risk**, and exposes the local contractor to potential unfavorable outcomes, particularly financial loss.

It is therefore justified to take a **probabilistic** approach to the analysis in order to incorporate the uncertainty associated with each work item's completion time. This can be done by describing each work item's completion time with an appropriate **random variable** (also called a **probability distribution**). The work items' completion times can be given at certain probabilities based on the appropriate probability distribution for that work item. Overall project completion times can then be determined at given probabilities. The local contractor can now select an acceptable level of uncertainty (or risk) and reach a more informed conclusion regarding the project completion time.

Using assumed probability distributions, the work items' completion times for this project can be described probabilistically as follows

	Work Item	Probability Distribution	Completion Time (days)
1.	Clearing and Grubbing	Normal distribution Parameters: Mean $(\mu) = 10$ Standard deviation $(\sigma) = 3$	0.14 0.12 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
2.	Furnish and install trailers	Uniform distribution Parameters: $\alpha = 3$ $\beta = 7$	0.30 0.35 0.30 0.15 0.10 0.15 0.10 0.12 0.12 0.12 0.12 0.12 0.14 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.00 0.00
3.	Connect services	Normal distribution Parameters: Mean (μ) = 7 Standard deviation (σ) = 1.5	0.30 0.25 0.10 0.05 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.5 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 00000000
4.	Furnish and install interior amenities	Uniform distribution Parameters: $\alpha = 2$ $\beta = 6$	0.30 0.25 0.20 0.10 0.10 0.05 0.10 0.10 0.10 0.10 0.10 0.11 2.3 4 5 6 7 completion time (days)
5.	Final cleanup	Uniform distribution Parameters: $\alpha = 1$ $\beta = 3$	0.60 0.50 0.40 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.40 0.30 0.40 0.30 0.40 0.40 0.40 0.40 0.50 0.40 0.50

Figure 1. 1: Framework for simulation

To generate a possible scenario for a particular work item's completion time, the contractor can randomly pick a probability value and read off the completion time from the probability distribution graph (or calculate it from the graph function). The process is repeated for each work item, and the project completion time for the scenario is the aggregate of the individual completion times obtained. This process can now be replicated several times over to synthesize a data set of project completion times. The project completion time data can be analyzed to obtain the descriptive statistics, quartiles and percentiles, or other statistical measures which are used for appropriate decision making.

At this stage it can be seen that in order to gain expertize in Monte Carlo simulation, one must have a grasp (or refresher) on random variables (probability distributions). The following chapters will present the fundamentals of random variables, the types of random variables and how they are applied. A subsequent question is how does one select an appropriate random variable for a work item, or how does one know that a given random variable appropriately describes the random behavior of a specific activity?

3. RANDOM VARIABLES

3.1 Definition

A random variable can be defined as a variable that has a single numerical value, determined by chance, for each outcome of the procedure.

To elaborate on this definition, consider the number of vehicles that queue up behind a traffic light on an approach of a city intersection each time the light goes red. By observation, it will be seen that the number of vehicles that queue each time can take on values (numerical outcomes) such as 3, 1, 6, 0, 10, 2, etc. etc. For each occurrence of the red light, the numerical outcomes of the queue are random. If the observer studies this system long enough, the observer shall realize that each numerical outcome is associated with some probability of occurrence. Thus, the number of vehicles that queue up behind the red light each time it occurs is a random variable.

Let *X* denote the random variable, i.e. the number of vehicles in queue up at the red light. Let x_i denote a specific numerical outcome of the random variable, i.e. 3, 1, 6, 0, 10, 2, etc. etc. Let p_i denote the probability of occurrence of numerical outcome x_i . Using the notation, the probability of the random variable *X* realizing a numerical outcome x_i can be written as

$$P(X = x_i) = p_i$$
 Equation (3.1)

A tabular or graphical description of the possible numerical outcomes (x_i) and their corresponding probability values (p_i) is called the **probability distribution** of the random variable. If the probability values (p_i) can be computed from some known mathematical function $(f(x_i))$, this function is known as the **probability distribution function**.

That is,

$$f(x_i) = P(X = x_i)$$
 Equation (3. 2)

For example, the probability distribution could be,

Number of Vehicles in queue (x _i)	$f(x_i) = P(X = x_i)$
0	0.02
1	0.10
2	0.15
3	0.25
4	0.35
5	0.10
6	0.03

A random variable may be discrete or continuous. A **discrete random variable** can take on a finite number of numerical outcomes or a countable number of numerical outcomes. For example, the number of vehicles that queue up behind a red light will always be some limited range of values, typically positive integer values and zero.

On the other hand, a **continuous random variable** has infinitely many possible numerical outcomes and those values can be associated with measurements on a continuous scale without gaps. For example, if one was interested in the random variable,

Y = waiting time (in minutes) of a vehicle at the red light,

this would be a continuous random variable. Possible numerical outcomes could include 1 minute, 1.5 minutes, 1.55 minutes, 1.555 minutes and so on and so forth and there are infinitely many possible values, and the values can be associated with measurements on a continuum with no gaps.

3.2 Discrete Random Variables

The properties of a discrete random variable as follows,

1. If $f(x_i) = P(X = x_i)$, then for all x_i values,

 $0 \le f(x_i) \le 1$ Equation (3.3)

and

$$\sum_{all\,x_i} f(x_i) = 1$$

..... Equation (3. 4)

The distribution function $f(x_i)$ for a discrete random variable is called the **probability mass** function.

2. The **cumulative probability** of an x value of interest (x_k) is the sum of the probabilities of the x_i values up to and including the x_k value. This is mathematically expressed as,

$$P(X \le x_k) = \sum_{i=1}^k f(x_i) = F(x)$$
..... Equation (3.5)

F(x) is called the **cumulative distribution function**.

3. The expectation (or expected value or mean) (μ) of the random variable X is defined as

$$\mu = \sum_{i=1}^{n} x_i f(x_i)$$
..... Equation (3. 6)

4. The variance (σ^2) of a discrete random variable is defined as

$$\sigma^{2} = \sum_{i=1}^{n} (x_{i} - \mu)^{2} \cdot f(x_{i})$$
..... Equation (3.7)

5. The standard deviation (σ) of the discrete random variable is defined as

$$\sigma = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2 \cdot f(x_i)}$$
..... Equation (3.8)

The following tabulated calculations demonstrate the properties of a discrete random variable

x _i	$f(x_i)$	F(x)	$x_i \cdot f(x_i)$	$(x_i - \mu)^2 \cdot f(x_i)$
0	0.02	0.02	0.00	0.209
1	0.10	0.12	0.10	0.497
2	0.15	0.27	0.30	0.227
3	0.25	0.52	0.75	0.013
4	0.35	0.87	1.40	0.208
5	0.10	0.97	0.50	0.313
6	0.03	1.00	0.18	0.230
Σ	1.00		3.23	1.697

The expectation $\mu = 3.23$ The variance $\sigma^2 = 1.697$ The standard deviation $\sigma = \sqrt{1.697} = 1.302$

3.3 The Binomial Distribution

The binomial distribution is a discrete random variable that meets the following conditions:

1. The procedure has a fixed number of trials.

2. The outcomes of the trials are independent.

3. There are only two possible outcomes of a trial - pass versus fail, good versus bad, success versus failure, accept versus reject, etc., referred to as **Bernoulli trials**.

4. The probability of success (or failure) is the same for all trials.

Examples of the Binomial distribution include:

- The number of heads obtained by tossing a coin a certain number of times
- the number of manufactured parts from a sample that fail a quality control inspection
- the number of drivers from a sample, that obey a "reduce speed" sign on a rural highway
- the number of candidates from a sample that pass a standardized test

Consider a binomial distribution (*X*).

Let S and F denote the outcomes for success and failure respectively,

If the probability of success, P(S) = p, then

The probability of failure P(F) = q = 1 - p

Let n denote the fixed number of trials of the experiment

Let x denote a specific number of successes out of the n trials

Thus, P(X = x) is the probability of getting x successes from the n trials

It can be shown that the distribution function (f(x)) of the Binomial distribution is given by

$$f(x) = P(X = x) = \frac{n!}{(n-x)!} p^{x} q^{n-x}$$

.... Equation (3. 9)

From Equation (3.6), it can be shown that the expected value (μ) of the Binomial distribution is given by,

 $\mu = np$ Equation (3. 10)

From Equation 3.7, it can be shown that the variance (σ^2) of the Binomial distribution is given by,

 $\sigma^2 = npq$ Equation (3. 11)

The standard deviation (σ) of the Binomial distribution is given by,

 $\sigma = \sqrt{npq}$ Equation (3. 12)

Example:

A traffic engineer is studying the effectiveness of a yield sign placed on an exit ramp. A sample size of 10 vehicles was used. The probability that a driver will obey a yield sign is 2/3.

a) What is the probability that exactly 3 vehicles will obey the sign?

b) What is the probability that less than 3 vehicles will obey the sign?

c) What is the probability that 2 or more vehicles will obey the sign?

d) What is the expected number of vehicles that will obey the sign?

Solution:

1. There is a fixed number of trials. n = 10

2. If each driver's decision to obey or not obey the sign is not influenced by other drivers, the outcomes of the trials are independent.

3. There are only two possible outcomes of a trial: Obey or Not Obey the sign.

4. The probability of Obey is the same for all trials, with a value of p = 2/3.

This experiment meets the conditions of a Binomial distribution.

a) From Equation (3.9),

$$f(x) = P(X = x) = \frac{n!}{(n-x)!} p^{x} q^{n-x}$$

$$P(X=3) = \frac{10!}{(10-3)!} \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^{10-3} = 0.016 \text{ or } 1.6\%$$

b) From Equation (3.5), the cumulative probability

$$P(X \le x_k) = F(x) = \sum_{i=1}^k f(x_i)$$

 $P(less than 3) = P(X < 3) = P(X \le 2) = F(2)$

or

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$

$$P(X < 3) = \frac{10!}{(10 - 0)!} \left(\frac{2}{3}\right)^{0} \left(\frac{1}{3}\right)^{10 - 0} + \frac{10!}{(10 - 1)!} \left(\frac{2}{3}\right)^{1} \left(\frac{1}{3}\right)^{10 - 1} + \frac{10!}{(10 - 2)!} \left(\frac{2}{3}\right)^{2} \left(\frac{1}{3}\right)^{10 - 2}$$

$$P(X < 3) = 0.000017 + 0.00034 + 0.003 = 0.00357 \text{ or } 0.36\%$$

c)
$$P(2 \text{ or more}) = P(X \ge 2) = P(X = 2) + P(X = 3) + \dots + P(X = 10)$$

or we can take advantage of the complementation rule of probability

 $P(2 \text{ or more}) = P(X \ge 2) = 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)]$

$$P(2 \text{ or more}) = 1 - [P(X = 0) + P(X = 1)]$$

$$P(2 \text{ or more}) = 1 - [0.000017 + 0.00034] = 0.999643 \text{ or } 99.96\%$$

d) From Equation (3.10),

$$\mu = np = 10 * 2/3 = 6.667$$

This is the expected number of drivers from the sample that will obey the sign.

3.3 The Poisson Distribution

The Poisson distribution is a special limiting case of the Binomial distribution where n is large and p is small. In other words, the Poisson distribution is more appropriate for computing probabilities associated with rare events. In general if n > 50, and p < 0.1, the Poisson is appropriate.

It can be shown that the distribution function (f(x)) of the Poisson distribution is given by

$$f(x) = P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

..... Equation (3. 13)

where λ is the expected value expressed per unit of time, and $\lambda > 0$.

From Equation (3.6), it can be shown that the expected value (μ) of the Poisson distribution is given by,

$$\mu = \lambda = np$$
 Equation (3. 14)

From Equation (3.7), it can be shown that the variance (σ^2) of the Poisson distribution is given by,

 $\sigma^2 = \lambda$ Equation (3. 15)

In other words, the expected value and the variance are equal. This is a unique property of the Poisson distribution, and can be used to suggest that a given data set exhibits the behavior of a Poisson distribution. The Poisson distribution is widely used in industrial engineering and also in traffic engineering (a branch of civil engineering). In traffic engineering, the Poisson distribution is used to model vehicle arrivals, as in traffic flows, or arrivals at an intersection or a toll booth. Other applications in traffic engineering include parking analysis and modeling the frequency of crashes.

Example:

The average number of vehicles randomly arriving at a toll both follows a Poisson distribution with an average of 6 vehicles arriving per minute.

a) What is the probability of exactly 3 vehicles arriving in a minute?

b) What is the probability of 3 or more vehicles arriving in a minute?

c) What is the probability of 3 or more vehicles arriving in 30 seconds?

d) What is the 95th percentile number of vehicles arriving in 30 seconds?

Solution:

a) From Equation (3.13),

$$f(x) = P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$$

 $\lambda = 6 veh/min$

$$P(X=3) = \frac{6^3}{3!}e^{-6} = 0.0924 \text{ or } 9.24\%$$

It is pertinent to note that when using the Poisson model, one does not have to know the sample size in order to proceed with the calculations.

b)
$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5) + \cdots$$

This cumulative probability calculation will essentially go on forever. So we must use the complementation rule of probability.

 $P(X \ge 3) = 1 - P(X < 3)$ $P(X \ge 3) = 1 - P(X \le 2)$ $P(X \ge 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$ $P(X \ge 3) = 1 - \left[\frac{6^{0}}{0!}e^{-6} + \frac{6^{1}}{1!}e^{-6} + \frac{6^{2}}{2!}e^{-6}\right]$ $P(X \ge 3) = 1 - \left[0.00248 + 0.0149 + 0.0446\right] = 0.938 \text{ or } 93.8\%$

c) The original average vehicle arrival rate (λ) is given per minute. This problem seeks to calculate a probability based on a different time interval of 30 seconds. Therefore the average value (λ) must be converted to a new average value (λ_{new}) that reflects the 30 second time interval. The conversion is done by simple proportion.

$$\lambda_{new} = \frac{30}{60}\lambda = \frac{30}{60} * 6 = 3 \text{ vehicles per 30 seconds}$$

This conversion is referred to as the **Poisson process**.

Thus,

 $P(X \ge 3_{in \ 30s}) = 1 - P(X < 3_{in \ 30s})$

 $P(X \ge 3_{in\,30s}) = 1 - [P(X = 0_{in\,30s}) + P(X = 1_{in\,30s}) + P(X = 2_{in\,30s})]$

$$P(X \ge 3_{in\ 30s}) = 1 - \left[\frac{3^0}{0!}e^{-3} + \frac{3^1}{1!}e^{-3} + \frac{3^2}{2!}e^{-3}\right] = 0.762$$

$$P(X \ge 3_{in\ 30s}) = 1 - [0.0498 + 0.149 + 0.224] = 0.423 \text{ or } 42.3\%$$

d) The 95th percentile is a value (x) that has 95% of the distribution less than or equal to it. In terms of (cumulative) probabilities, it is the value (x) such that,

$$P(X \le x) = 0.95$$

To "solve" for x, a trial and error approach can be employed.

$$P(X \le 4) = \left[\frac{3^0}{0!}e^{-3} + \frac{3^1}{1!}e^{-3} + \frac{3^2}{2!}e^{-3} + \frac{4^3}{3!}e^{-4}\right] = 0.647$$
$$P(X \le 5) = 0.916$$
$$P(X \le 6) = 0.966$$

The 95th Percentile is approximately x = 6. (Interpolation of the values may be conducted if warranted by the level of accuracy desired). One is therefore 95% confident that the number of vehicle arrivals in a 30 second period will not exceed 6. Computing a percentile is effectively calling the inverse of a cumulative probability function to compute a value x for a given cumulative probability.

3.4 Other Discrete Distributions

For the sake of brevity, this discussion on discrete random variables is limited to the Binomial distribution and the Poisson distribution. There are several other discrete random variables presented in the engineering statistics literature. The Binomial distribution assumes a specimen is pulled for a Bernoulli trial and "put back in the box". This is referred to as **sampling with replacement**. The **Hypergeometric** distribution differs from the Binomial distribution in that it is based on **sampling without replacement**. The **Geometric distribution** differs from the Binomial distribution in that the number of independent trials (*n*) is not fixed. The **Negative Binomial** distribution describes the number of Bernoulli trials to obtain a specified number of successes. The **Multinomial** distribution is a generalization of the Binomial distribution whereby a trial can have more than two possible outcomes. Students are encouraged to review the details of other discrete random variables on their own.

The following is a non-exhaustive list of other discrete distributions that are in use in various fields of specialty.

- The Beta-Binomial distribution
- The Beta Geometric distribution
- The Beta Negative Binomial distribution
- The Borel-Tanner distribution
- The Consul (Generalized Geometric) distribution
- The Discrete Uniform distribution
- The Discrete Weibull distribution
- The Geeta distribution
- The Generalized Logarithmic Series distribution
- The Generalized Lost Games distribution
- The Generalized Negative Binomials distribution
- The Hermite distribution
- The Katz distribution

- The Lagrange-Poisson distribution
- The Leads in coin tossing distribution
- The Logarithmic Series distribution
- The Lost Games distribution
- The Matching distribution
- The Polya-Aeppli distribution
- The Quasi Binomial Type I distribution
- The Truncated Gene Negative Binomial distribution
- The Waring distribution
- The Yule distribution
- The Zeta distribution
- The Zipf distribution

3.5 Discrete Random Variables in Excel

In this section the discrete random variables worked in Section 3.3 shall be reworked using *Microsoft Excel*.

Open a new session of *Excel*.

PLE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER BLUEBEAM LASERFICHE OV Paste Image: Stress of the str	- 🗆	五 —	不 -	D	- F										Excel	UUKI -								+	ð	~		
Image: Content of the content of th	K	Ofosu, K	Ofosu,	(FICHE	SERFI	LA	AM	BEA	BLUEB	ER BI	OPER	DEVELO	W	W	REVI	Α	DAT	LAS	FORMUL	AYOUT	GE L	T PAG	INSEF	ME	но		
A B C D E F G H I J K L 1 -)F Settings	DF Setting:	e PD ge S	Create Change	<mark>)</mark> ()	H liting	Editi	* *	Insert Delete Format	문 Ins 고 Del		matting • •	al Fori Table	Condit Forma Cell Sty	₩ ₩ ₩	• 9	ieneral \$ ▼ %	6	■ ि = ⊡ • ≫••	≡ = ≡ ≡ € +≘	- \	• 11 • A A	<u>U</u> .	Calibri B I	•	1	Ŧ
A B C D E F G H I J K L I		3m	am	ebea	Blueb					Cells	Ce			yles			Fa	Number		ment 🗔	Alignr	G.		Font		Fail	ooard	Clip
A B C D E F G H I J K L 1																						f		\geq	• :			A1
2 . <td></td> <td>м</td> <td>м</td> <td></td> <td>L</td> <td></td> <td>к</td> <td>К</td> <td></td> <td>J</td> <td>J</td> <td></td> <td>I</td> <td>ł</td> <td></td> <td>G</td> <td></td> <td>F</td> <td></td> <td>E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Α</td> <td></td>		м	м		L		к	К		J	J		I	ł		G		F		E							Α	
3 Image Ima																												1
A Image																												2
A Image Ima																												;
6 Image Ima																												L I
r Image: sector sec									_																			
A A A A A A A A A A A A A A <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																	_					_						
Image: series of the series																												-
0 Image: series of the ser				_					_								_		_			_						-
1 Image: series of the ser									_								_		_			_						-
2 Image: series of the ser				_					_								_		_			_						-
3 A									_						_		_		_									
4 A				_		_			_						_		-		_			-						-
5 1				_					_						_		-		-			-						-
6				_					_						_		-		+									-
7				-					-						-		-		-			-						-
B Image: Simple state stat				-													-		+									
9				-													+		+			-						-
0				+		-			-						-		+		+			+						
1				+													-		+			-						-
2				+													+		+			-						
				+					-								+		+			+						\rightarrow
				+					-								+		+			+						-
4				\neg													+		+			1						
5																									_			-
↔ Sheet1 (→) : (↓)													E .)	+	eet1	Sh		Þ	

Click on FORMULAS.

Click on **More Functions**.

Hover over Statistical.

Hover over a function, a tool tip appears.

Review the information on the tool tip which describes the function and how to implement it.

🚺 🖯 5× ở× ∓	Book1 - Excel				×
FILE HOME INSERT PAGE LAVIUT FORMULAS		ELOPER BLUEBEAN			wa • O
fx ∑ AutoSum ~ IZ Logical ~ Lookup & Referen Insert Image: Construction for the second	E Define Name * Mame Manager 🔐 Create from Selection	Remove Arrow	nts 🍓 🔹	Watch Vindow Options	on E
Function Library Statistical 🕨	AVEDEV		a Auditing	Calcula	
A1 - : X / fx In Engineering	AVERAGE				~
A B C D Cube	AVERAGEA	J K	L	M N	0
1 Information →	AVERAGEIF				
2 Compatibility >	AVERAGEIFS				
3 🛛 🚺 🚺 🕹 🕹	BETA.DIST				
4	BETA.INV				
5	BINOM.DIST				
6	BINOM.DIST RANGE			1	
8	BINOM.IN BINOM.DIST(number	r_s,trials,probability_s,	cumulative)		
9	CHISQ.DI	term binomial distribu	ition		
10	CHISQ.DI CHISQ.DI				
11	CHISO.IN 7 Tell me more				
12	CHISQ.INV.RT				
13					
14	CHISQ.TEST				
15	CONFIDENCE.NORM				
16	CONFIDENCE.T				
18	CORREL				
19	COUNT				
20	COUNTA				
21	COUNTBLANK				
22	COUNTIF				
23	COUNTIFS				
24	COVARIANCE.P				
25 Sheet1 (+)	COVARIANCE.S :	4			
	DEVSQ		a n		
READY 🔠	EXPON.DIST		8 📙 -		- + 100%

Drag the scrollbar and scroll down the list to review the statistical functions available in *Excel*.

xI 🔒	5-0							Book1 - Exce						3	? 📧 –	
FILE	HOME	INSEF	RT PA	AGE LAYO	UT	FORMULAS	DA	TA REVIEW	VIEW	DEVEL	OPER	BLUEBEA	M LAS	RFICHE	Ofosu, Kwa	
JX	∑ AutoSum ★ Recently L Financial	Jsed -			0 N	ookup & Refer Aath & Trig + Aore Functions	_		ne Name in Form	ıla -	- ⊂∰ Tra	ice Preceder ice Depende move Arrow	ents ⁄ 🔹	Watch	Calculation	
Function	i indriciar		Function		_	Statistical	+	NEGBINOM.DIST		1	v× nci		la Auditing	Window	Options • Calculatio	n 🔥
A1	•	\times	\checkmark	fx	L.A	<u>Engineering</u> Cube	r F	NORM.DIST NORM.INV								*
A A 2 3 3 4 5 6 7 8 9			C			Information Compatibility Web	•	NORM.S.DIST NORM.S.INV PEARSON PERCENTILE.EXC PERCENTILE.INC PERCENTRANK.I PERCENTRANK.I PERMUT	EXC NC			K		M	N	
10 11 12 13 14								PERMUTATIONA PHI POISSON.DIST PROB								
15 16 17								QUARTILE.EXC QUARTILE.INC RANK.AVG	Return	s the Poiss	on distrib	umulative) oution.				
18 19 20 21								RANK.EQ RSQ SKEW								
22 23 24 25	She	eet1	(+)					SKEW.P SLOPE SMALL STANDARDIZE		: 4						· · · · · · · · · · · · · · · · · · ·
READY	<u></u>						fx	STDEV.P STDEV.S Insert <u>F</u> unction	Ŧ						I ──+	

A second way of accessing the statistical functions in *Excel* is via the **Insert Function** icon.

Click on **Insert Function**.

x∎ FII		iome in		GE LAYOUT	FORMUL	AS DATA	Book1 - Exe REVIEW		DEVELOPER	BLUEBEAM	LASE	? 🗹	1 – 🗖 fosu, K 🔹	
Past				▼ = = A = = € 3=			- 🛱 Co	nditional For rmat as Table	matting +	ar Insert → The Pelete →	Editing		PDF • Settings	
Clip	board 5			😼 Alignr		Number	Gi .	Styles		Cells		Blueb	eam	
A1		• :	XV	<i>fx</i>										
	Α	В	С	Insert Fu	E	F	G	Н	Ι	J	к	L	М	[
1				Insert Fu	nction									
2														
3														
4														
5														
6														
7														
8														
9 10														
10														
12														
13														
14														
15														
16														
17														+
18														
19														
20														
21														
22														
23														
24														
25														

The Insert Function window opens.

Note the equal (" = ") sign that appears in the **Formula Bar** and also in the current spreadsheet cell when the **Insert Function** icon is clicked on.

Under **Or select a category**, click on the drop-down to select a category.

	o -	RT PAGE	LAYOUT	FORMULA		kl - Exce REVIEW		DEVELOPER	BLUEBEAM	LASERF	? 📧 FICHL Of	fosu, K 🔻	P
aste	Calibri B I U	- <u>A</u> -		87 -	General ▼ \$ ▼ % *	Forr	nditional Form mat as Table Styles •	-	Insert •	Editing	Create I Change Batch P	e Settings PDF	
Iipboard 5	Font		Alignm	ent 🖓	Number 🕞		Styles		Cells	· / ·	Blueb	eam	
Α	В	С	D	E	F	G	Н	I	J	к	L	М	
=											-		
				Inser	t Function					? 🗙			
				<u>S</u> ear	ch for a function								
					pe a brief descri	ption of v	what you wa	nt to do an	d then	Go			-
					ick Go								-
				Or	select a <u>c</u> ategor		-		-				+
				Sele	ct a functio <u>n</u> :	Most F	Recently Used	1	<u>^</u>				+
					IMULT	Financ Date 8				•			
)					/EBSERVICE VERAGE	Math 8	& Trig		=	E			
L				LC	DGNORM.INV	<u>Statist</u>	ical p & Referenc	·e		=			
2					AYS OW	Databa							
3					JM	Text Logica	I.			*			
Ļ				M	MULT(array1,arra turns the matrix	ay Inform	ation		T me n	umber of			
i				ro	ws as array1 and	columns	as array2.		plife in				
5													_
'													
3				Hale	on this function				ок	Cancel			
				<u></u>	, on this reliction	-				Cancel			+
)											-		_
!													_
3													+
5													+
·	Sheet1	(+)					:						

In the category list, select **Statistical**.

The statistical functions only, are now displayed in alphabetic order.

Insert Function	
Search for a function:	
Type a brief description of what you want to do and then <u>Go</u>	
Or select a <u>c</u> ategory: Statistical	
Select a function:	
AVEDEV AVERAGE AVERAGEA	
AVERAGEIF AVERAGEIFS BETA.DIST BETA.INV	
AVEDEV(number1,number2,) Returns the average of the absolute deviations of data points from their mean. Arguments can be numbers or names, arrays, or references that contain numbers.	
Help on this function OK Cancel	

Under **Select a function**, scroll through the list of statistical functions.

Select POISSON.DIST

Note the description of the selected function that guides the user on what input is needed, and what result is **returned**.

Insert Function	? ×	
Search for a function:		
Type a brief description of what you want to do and then click Go	<u>G</u> o	
Or select a <u>c</u> ategory: Statistical		
Select a functio <u>n</u> :		
PERMUT PERMUTATIONA PHI	•	
POISSON.DIST PROB		
QUARTILE.EXC QUARTILE.INC	4	
POISSON.DIST(x,mean,cumulative) Returns the Poisson distribution.		
Help on this function OK	Cancel	

Click on **OK**.

The Function Arguments window opens.

This is where the user supplies data to complete a calculation and return a result to the current spreadsheet cell.

Function Arguments		-? 💌
POISSON.DIST		
x	I	= number
Mean	I	= number
Cumulative	E	= logical
Returns the Poisson distribut	ion. X is the number of events.	=
Formula result =		
Help on this function		OK Cancel

For now, hit **Cancel** to close out of the **Function Arguments** window. Hit **Cancel** to close out of the **Insert Function** window, and return to the spreadsheet.

A third way of accessing any function is by typing directly into a cell the equal ("=") sign followed by the function name as listed in the **Insert Function** window.

Pick a cell on the spreadsheet.

In the cell, type " = ", followed by "POISSON" (upper case or lower case does not matter), to look up the Poisson function.

As one begins typing in the cell, the entry also appears in the Formula Bar.

Notice that as one starts typing, a shortlist of candidate functions appears from the cell. Select a candidate function.

Review the tooltip that appears and gives a brief description of that function.

To call a function to conduct a calculation in the cell, double click on the function name in the candidate list.

In this demonstration, double click on POISSON.DIST.

The function name followed by open parenthesis ("(") prompt the user to supply the data needed conduct the calculation.

The tooltip guides the user to enter the required data in the required order, in order to return a result to the current spreadsheet cell.

				1										
XI 🔒 🗧	- ∂-	Ŧ					Book1 - Exce	el				? 🖸		×
FILE	HOME I	NSERT	PAGE	LIVOUT	FORMULA	S DATA	REVIEW	VIEW D	DEVELOPER	BLUEBEAM	LASE	RFICHE C	Ofosu, K 🔹	9
1 K		Ŧ	11 -	= =	= #	General	- ⊂ Cor	nditional For	matting -	🖀 Insert 👻		D Create	PDF	
Dente 🕞 🗸	B I	<u>U</u> -	AÎ Ă	$\equiv \equiv$		\$ - %	P For	mat as Table	Ŧ	🖫 Delete 🕞	E DC	(C) (C)	e Settings	
Paste	-	8	A	€ <u></u> -9 <u>−</u>	87 -	00. 0.⇒ 0.∉ 00.	🔛 Cel	l Styles -		🗮 Format -	- v	២ Batch	PDF	
Clipboard	ā.	Font	5	Align	ment 🛛 🕞	Number	Est.	Styles		Cells		Blue	beam	^
POISSON	:	\times	~	fx =P	OISSON.DI	ST(~
Α	в	1	c	D		F	6				K			
	DN.DIST(C	D	E	F	G	Н	I	J	К	L	M	hĤ
	DN.DIST(x,	mean, c	umulati	ve)										-
3														
4														
5														
6														
7														_
8														_
10														-
11														-
12														
13														
14														
15														
16														
17														41
18 19														
20														$\left \right $
20												_		
22														
23														
24														
25														-
	She	et1	(+)					:	4					Þ
ENTER 🔚											• •		100	1%

For now, hit the **Esc** button on the keyboard to abort the process.

A full blown calculation process will conducted later in this tutorial.

Notice that in the above method, the typing was conducted in the cell, resulting in the candidate list of functions, the tooltips and data input prompt appearing from the cell, and the function call replicated in the **Formula Bar**.

Alternately, one may type into the **Formula Bar**, in which case, the candidate list of functions, the tooltips and data input prompt appear from the **Formula Bar**, and the function call is replicated in the current cell.

	5 - C							oki - Exce						i – I	
FILE	HOME	INSER	1 PAG	E LAYOUT	FORMULA	S DAU	а 	REVIEW	VIEW	DEVELOPER	BLUEBEAN	A LASE			
		T 11 -	Δ ^Δ Δ					E Con	mat as Table	matting ·	B Doloto	diffic	G Create PDF		
Paste		1 0 .	AA			0 .00		For Coll		2 *	En Delete	Editing			
		* 🛀 *	Α·	25 75	- 11/ -	.00 -∌.0	al Image: Conditional Formatting * % Image: Format as Table * % Image: Cell Styles * ber Image: Styles					· •			
Clipboard	Gi I	Font		a Alig	nment 🗾	Number	5		Styles		Cells		Blueb	eam	~
POISSO	N *	: 🗙	\checkmark	$f_x =$	poi										
A		в	с		DOISSON.		eturn	is the Dois	sson distribu	ution I	J	к	L	м	
L =poi		-	-		POISSON			is the Fol.			-				\neg
2															
)															
0															
1															
2															
3															
4															
5															
6															
7															
8															
9															
0															
1															
2															
3															
4															
25															

Revisiting the Binomial Distribution Example (Probability Calculations only):

- A traffic engineer is studying the effectiveness of a yield sign placed on a ramp. A sample size of
- 10 vehicles was used. The probability that a driver will obey a yield sign is 2/3.
- a) What is the probability that exactly 3 vehicles will obey the sign?
- b) What is the probability that less than 3 vehicles will obey the sign?
- c) What is the probability that 2 or more vehicles will obey the sign?

Solution:

a) Based on the data given, set up the spreadsheet as follows:

For the calculation to be conducted in the current cell (C5) as shown, click on FORMULAS. Click on **More Functions**. Click on **Statistical**. Scroll down to look up the Binomial distribution function. Hover over BINOM.DIST. Review the tooltip and confirm this is indeed the relevant function.

Biock - Excel ? I - I × FILE HOME INSERT PAGE LAVOUT FORMULAS DATA REVEW VIEW DEVELOPER BLUEBEAM ASSERTCHE Ofosu, Kwabe Consult & Con					1					1					
AutoSum Image: Im	xII 🔒	5 - @- ;	÷				Book1 - B	Excel					? 🕋 -		×
Insett Financial Insett Financial Punction Date & Time Function Image:	FILE	HOME IN	ISERT PAGE LAY	DUT F	ORMULAS	DA	ATA REVIEW	VIEW DEVEL	OPER	BLUEBEA	M LAS	ERFICHE	Ofosu, Kwal	•	9
C5 • : fs Image: Comparison of the comparison o	Insert	Recently Used	I≖ 🔼 Text≖	Math	n & Trig ≠		TX U	lse in Formula -	-∰ fra	ce Depende	ents 🍓 🗸	Goo Watch	Calculation		
A B C D Information 1 n 10 Information AVERAGEA 2 p 0.67 Information AVERAGEIF 3 Information Information Information Information 4 a) x 3 Information Information 5 P(X=x) Information Information Information Information 6 Information Information Information Information Information 6 P(X=x) Information Information Information Information 7 Information Information Information Information Information 8 Information Information Information Information Information Information 9 Information Information Information Information Information Information 11 Information Information Information Information Information Information Information 12 Informatin Information I			Function Library	🔜 🔜	tistical	F	AVEDEV		/	Formu	la Auditing		Calculatio	n	^
A B C D information 2 p 0.67 Compatibility AVERAGEA 3	C5		× √ fr	A En	gineering	F.	AVERAGE								~
1 n 10 AVERAGEIF 2 p 0.67 Compatibility 3				- 📘 <u>C</u> u	be	F .	AVERAGEA								
2 p 0.67 Compatibility + 3 -				- 🚺 Inf	ormation	F .	AVERAGEIF		J	К	L	M	N	0	₋ ≜
3				<u>_</u>	mpatibility	F .	AVERAGEIFS								-
4 a) x 3 BETA.INV B		0.07		we	eb	F .	BETA.DIST								-
6		x	3				BETA.INV								
6 7 8 6 6 6 6 6 6 7	5	P(X=x)													
7	6														
8 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>BINOM.DIST(numb</td> <td>er_s,trials</td> <td>,probabilit</td> <td>y_s,cumula</td> <td>tive)</td> <td></td> <td></td> <td>_</td>						_		BINOM.DIST(numb	er_s,trials	,probabilit	y_s,cumula	tive)			_
10 11 12 11 <	-					-			al term bi	nomial dist	ribution	-			-
11 <	-					-									-
12 13 14 <						-	-	? Tell me more							-
13 14 CHISQ.TEST 14 CHISQ.TEST 15 CONFIDENCE.NORM 16 CONFIDENCE.T 17 CONFIDENCE.T 18 CONFIDENCE.T 19 COUNT 20 COUNTA 21 COUNTA 21 COUNTBLANK 21 COUNTIF															-
14 CONFIDENCE.NORM 15 CONFIDENCE.NORM 16 CONFIDENCE.T 17 CONFIDENCE.T 18 CONFIDENCE.T 19 COUNT 20 COUNTA 21 COUNTBLANK 21 COUNTIF	13						-								
16 17 CONFIDENCE.T CONFIDENCE.T 18 CONFIDENCE.T COUNT 19 COUNT COUNT 20 COUNTA COUNTA 21 COUNTBLANK COUNTIF	14						CHISQ.TEST								
17						_	CONFIDENCE	NORM							
18 COUNT 19 COUNT 20 COUNTA 21 COUNTBLANK COUNTIF						_	CONFIDENCE	.т							-
19 COUNT 20 COUNTA 21 W Binomial Sheet2						_	CORREL								-
20 COUNTA 31 COUNTBLANK COUNTBLANK COUNTIF COUNTIF						-	COUNT								-
21 COUNTBLANK ← Binomial Sheet2 ⊕ COUNTIF						-	COUNTA								-1
							COUNTBLAN	к							-
		Binom	ial Sheet2	(+)			COUNTIF	÷ 4	(Þ	-
	READY						COUNTIFS			Ħ				+ 1009	%

Click on BINOM.DIST The **Function Arguments** window opens.

N		k1 - Excel /IEW VIEW DEVEL	OPER BLUEBEAM LASER	? 📧 – 🗆 🗙 RFICHE Ofosu, Kwabe 🔍
<i>f</i> X Insert Function □ Financial * □ Date & Function □ Financial *	Lookup & Reference Math & Trig Math & Trig Mare Manager	Define Name	So Trace Precedents So Trace Dependents So →	Window Calculation Calculation Calculation
BINOM.DIST • : X ✓ j	Math & Trig Add a math or trigonometry function to your worksheet.	н і	JKL	M N O A
1 n 10 2 p 0.67				
3 4 a) x 3 5 P(X=x) 1.DIST()	Function Arguments BINOM.DIST			
6 7 8	Number_s Trials			
9 10	Probability_s Cumulative		umber gical	
11 12 13	Returns the individual term binomial distribution Number_s is the m	= n probability. umber of successes in trials		
14 15 14				_
16 17 18	Formula result = Help on this function		OK Cancel	
19 20 21				
Image: Binomial Binomial Sheet2 EDπ ∰ Image: Binomial Sheet2	2 🕀	: [

Click in the **Number_s** textbox.

Review the description.

Function Arguments	? 💌
BINOM.DIST	
Number_s	= number
Trials	= number
Probability_s	= number
Cumulative	= logical
Returns the individual term bir	omial distribution probability. mber_s is the number of successes in trials.
Formula result =	
Help on this function	OK Cancel

For us, **Number_s** is our *x* value.

With the cursor in the **Number_s** textbox, click on the cell holding the *x* value on the spreadsheet.

X . 5 · ♂ · -	/	Book1 - Excel				? 📧 –									
FILE HOME INSERT	PAGE LAYOUT FORMULAS DA	ATA REVIEW VIE	V DEVELOPI	ER BLUEBEAN	LASERFICHE	Ofosu, Kwab	_								
		Befine Na Name Manager Create fro Defined Nam	mula	Trace Preceden Remove Arrow:	nts 🔨 - 😚	Calculation									
C4 • : 🗙 🗸	fy =BINOM.DIST(C4)						~								
A B C 1 n 10 2 p 0.67	D E F	G H	IJ	K	L M	N	0								
3 4 a) x 5 P(X=x) IIST(C4)	a) x I 3] Function Arguments														
6 7 8 9	Number_s C4 Trials Probability_s	BINOM.DIST Number_s C4 () = 3 Trials () = number													
10 11	Cumulative Returns the individual term binomia	al distribution probability.	= logica	ıl											
12 13 14		er_s is the number of succ	esses in trials.												
15 16 17	Formula result = Help on this function OK Cancel														
18 19 20							[
	eet2		:		Image:		100%								

The cell reference is captured in the textbox.

Note that alternately one may type the cell reference into the textbox, however the **point-and-click** method is more efficient and less error prone, and therefore preferred.

Also, one may alternately enter the numerical value of the input (or **argument**) rather than capture the cell reference. However, as will become apparent throughout this course or for any *Excel* effort for that matter, using cell references enables data updates on spreadsheets to automatically recalculate results without re-entering the "hard" values. Using cell references also enables spreadsheets and incorporated formulas to be re-used for calculations on other projects.

The automation, reuse, and replication of calculations across multiple repetitive-type projects is indeed a fundamental goal of engineers applying computer programs to begin with.

Click in the **Trials** textbox.

Review the description.

For us, **Trials** is the number of trials *n*.

With the cursor in the **Trials** textbox, click on the cell holding the n value on the spreadsheet. (Note the updates in the **Formula Bar** as the function arguments are sequentially added.)

	· ∽ .	÷				Book1 - Ex	cel					? 📧 -	
1.6	HOME I	NSERT P	AGE LAYOUT	FORMULAS	DATA	REVIEW	VIEW	DEVELOPE	BLUEBEA	M LASE	RFICHE	Ofosu, Kwal	be *
	AutoSum 👻 Recently Use Financial 🗸		* 🚺 & Time * 🚺	⊥ookup & Referen Math & Trig ▼ More Functions ▼	Ê	ame nager 🔐 Cre	fine Name 👻 e in Formula 👻 eate from Sele ed Names	−∰Ti	race Precede race Dependo emove Arrow Formu	ents 🗐 -	Watch Window	Calculation Options * Calculatio	
L	- E	X 🗸	f_x =BING	DM.DIST(C4,B1)		/						
A n p	E 10 0.6		D	E F	G	H	I	J	К	L	M	N	0
a)	x	3	Function Ar	guments			/	-		8	×		
	P(X=x)	'(C4,B1)	BINOM.DIS	T Number_s Trials Probability_s Cumulative	B1	/		= 3 = 10 = number = logical					
			Returns the	individual term b		-	ability. of independer	= nt trials.					
			Formula rest <u>Help on this</u>					C	ОК	Cancel			
				/									
	Binor	nial She	et2 +					: •					

Click in the **Probability_s** textbox.

Review the description.

For us, **Probability_s** is the probability *p*.

With the cursor in the **Probability_s** textbox, click on the cell holding the *p* value on the spreadsheet.

ILE I	ਿੱ ~ੇ ~ Home I		PAGE LAYO	UT FO	RMULAS	DA		ook1 - Excel	VIEW D	EVELOPE	R BL	DEBEAM	LASE	ERFICHE	? 💿		- F
	AutoSum - Recently Use Financial -	Date		Looku Math &	-	ice -	Name Manage	⊂ Define	Formula - from Select	-3	_ {lemove	ecedents pendents Arrows Formula A	- (fx)	Watch Window	Calculatio Options Calcula	v	
2	- ÷	K 🗸	f_x =	BINOM.D	ST(C4,B1,	,B2)											
A n p	B 1 0.6	7	D	E on Argumer	F		G	H	I		}	K	L	M	N		0
a)	x P(X=x)	i,B1,B2)	2	M.DIST	Number_s Trials	B1				= 3 = 10							
			Return	C	obability_s Cumulative		distribut	ion probabil		= 0.6666 = logical =							
								probability	-	n each tria	il.						
				a result = n this functi	on						ОК		Cancel				
NT 🔠	Binor	nial She	eet2	+						•		⊞ [1	1			100

Click in the **Cumulative** textbox.

Review the description.

	· 6 ·					ook1 - Excel	5				9	? 📧 –	
$f_{\mathcal{X}} \xrightarrow{\boldsymbol{\Sigma} \boldsymbol{\mu}}_{Insert}$	HOME IN AutoSum - Recently Used	Cogic	* 🚺 N & Time * 🛄 N	FORMULAS bokup & Referen lath & Trig * lore Functions *		œ Define I ℜ Use in F	Name 🔹 ormula 🗸 rom Selection	-sa ⊤	PLUEBEA are Precede ace Depend emove Arrow Formu	ents 🕅 -	RFICHE Watch Window	Ofosu, Kwab	
BINOM.DIS	т т 🗄 [X 🗸	fx =BINO	M.DIST(C4,B1,	.B2)			/					1
Α	В	С	D	E F	G	Н	I	J	К	L	м	N	0
n	10												
p	0.67	·									_		
a)	x	3	Function Arg	uments			/			?	×		
	P(X=x)	I,B1,B2)	BINOM.DIST										
			-	Number_s		/	=						
				Trials			=						
				Probability_s Cumulative	B2			0.6666666 logical	6/				
0 L 2 3 4 5			Returns the in	ndividual term bi Cu	mulative is a l		y. r the cumulati		ution functio	on, use TRUE;	for		
i			Formula resu	t=									
r			Help on this	unction					ОК	Cancel			
	Binon	ial She	et2 🕂					4					- F

In this part a) of the problem, we are not calculating a cumulative probability. The probability mass function is the relevant one. Thus, type in "FALSE".

Review the **Formula result**. This serves as a preview.

		1	
Function Arguments			? 🔀
BINOM.DIST			
Number_s	C4	i i i = 3	
Trials	B1	E = 10	
Probability_s	B2	= 0.666666667	7
Cumulative	FALSE	💽 = FALSE	
Returns the individual term bir Cur	nomial distribution probability. nulative is a logical value: for t the probability mass f		
Formula result = 0.016257684 <u>Help on this function</u>			OK Cancel

As an engineer or scientist, one is inclined to ask if this result makes sense. From fundamental principles, a probability value will be between 0 and 1. Thus, for example, a negative value, would indicate some input or other error of some form. In this case, the value previewed appears to be acceptable and correct.

Hit OK.

The Function Arguments window is dismissed.

The result is displayed in the spreadsheet cell.

XII .	5	- @- -	÷				Bo	ook1 - Excel						? 🛧 -	-	×
FILE	H	DME IN	ISERT P	AGE LAYOU	T FOR	MULAS DA	TA R	EVIEW \	VIEW DEVE	LOPER	BLUEBEA	M LASE	ERFICHE	Ofosu, Kwał	• K	7
fx Insert Function	ᆂ Re	utoSum × ecently Used nancial ×		∙ & Time ∙	0 Math 8	-	Name Manage	回 Define 別 Use in I G Create Defined N	Formula - from Selection	¤∰ Tra	ce Preceder ce Depende nove Arrow Formul	ents ⁄ 🔹	Watch Window	Calculation Options • Calculatio		*
C5		▼ ÷)	X 🗸	<i>fx</i> =B	INOM.DIS	T(C4,B1,B2,FA	ALSE)									~
	A	В	С	D	E	F	G	Н	I	J	к	L	м	N	0	
1 n		10														
2 p		0.67														
3			3													-
4 a)		x P(X=x)	0.016258													
6		F (A=A)	0.010230	-												
7																
8																
9																
10																
11																
12 13																
15																
15																
16																
17																
18																
19																
20																-
21	•	Binom	ial She	et2	÷				: [•					•	
READY	1	<u> </u>									Ħ	∎ ∎			+ 1009	6

b) What is the probability that less than 3 vehicles will obey the sign? It was previously demonstrated that $P(X < 3) = P(X \le 2)$

Update the spreadsheet as follows:

		AutoSum 👻 Recently Use Financial 👻	ed 👻 🔼 Text	▼ & Time ▼	0 Math &		Name Manager	回 Define 分 Use in 留 Create Defined N	Formula - from Selection	📲 Tra	ace Preceden ace Depende move Arrows Formula	nts ⁄ 🔹	Watch Window	Calculation Options ~ Calculation	
C!	Э	• :	XV	fx 1											
	Α	В	С	D	E	F	G	н	Ι	J	K	L	м	N	0
L	n	1	.0												
	р	0.6	7												
3															
ŀ	a)	x	3												
		P(X=x)	0.016258												
5															
7															
8	b)	x	2												
9		P(X<3)		<u> </u>											
0															
1															
2															
3															
.4 .5															
.5 .6															
.0															
./															
9															
20															
21															

For this calculation use the **Insert Function** icon to access the statistical functions and thus the Binomial distribution function.

Click on **Insert Function**.

Under Or select a category, select Statistical.

Under **Select a function**, scroll to BINOM.DIST.

Review the description and confirm this is the relevant function.

X		D T C T	≑ ISERT PAGE LAYO			Book1 - Exce REVIEW		LOPER	BLUEBEAN	1 LASI	RFICHE	? 📧 - Ofosu, Kwa	- 🗆	X			
In Fur	IX ─ sert ►	AutoSum × Recently Used Financial ×	I Logical ▼ I ▲ Text ▼ Date & Time ▼ Function Library	Cookup & Referen		$\mathcal{T}_{\mathcal{X}}$ Use in	e Name 👻 n Formula – te from Selection Names	-o∰ Tr	ace Preceden ace Depender emove Arrows Formula	nts 뇃 🗸	Watch Window	Calculation Options + Calculation		~			
	A	B	C D	E F	G	н	I	J	К	L	м	N	0	[
	n	10)					-						ור			
2	р	0.67	7	Insert Functi	n		i		? ×								
3				Search for a													
4	a)	x	3	-										_			
•		P(X=x)	0.016258	Click Go	f description o	of what you v	vant to do and th	en	<u>G</u> o								
5				Or select a	Or select a <u>c</u> ategory: Statistical												
7														_			
3	b)	X	2	Select a fund	-									_			
9		P(X<3)	=	AVERAGEI BETA.DIST	FS				<u>^</u>					_			
0				BETA.INV BINOM.D	FT									_			
1				BINOM.DI	ST.RANGE									_			
2.3				BINOM.IN CHISQ.DIS					-					_			
.3 4						ials, probabili	ty_s,cumulative)							_			
.4 5							listribution proba	bility.						-			
.6														-			
.7														-			
8														-			
19				Help on this	function		ОК		Cancel					-			
0														-			
11																	
	4 - F	Binon	nial Sheet2	+			: .	•						Þ			
	т 🔚								Ħ	■ Ш			. 100				

Hit OK to open the Function Arguments window.

In the **Function Arguments** window, point-and click to select the arguments. For this computation, the goal is to compute a cumulative probability. For the **Cumulative** argument, type in "TRUE".

X	1. E		· € ·		AGE LAYOUT	FORM	IULAS DA		ook1 - Excel	/IEW DEV	ELOPER	BLUEBEA	M LASE	ERFICHE	? 💿	- 🗆	×		
Fu	fx nsert nction	🗶 Re	utoSum		& Time -	Math & T More Fun	2		Create Define	Formula ≠ from Selection	-d∄ Tr	race Precede race Depende emove Arrow Formu	ents 🔟 -	Watch Window	Calculatio Options Calcula	-	~		
		A	в	с	D	Е	F	G	н	I	J	К	L	м	N	0			
1	n		10)													יה		
2	р		0.67	7															
3																			
4	4 a) x 3 5 P(X=x) 0.016258 Function Arguments																		
			P(X=x)	0.016258			Function Arguments												
6						Dirtoin	BINOM.DIST												
8	b)		x	2			Null		B1			- 2 = 10			_		-		
9	5,		^ P(X<3)	2,TRUE)			Probab					= 0.6666666	~~~				-		
10			. (2,2/					B2			= 0.0000000	007						
11							Cum	lative	TRUE										
12						Paturns	the individual f	erm bind	mial distributi	ion probability		= 0.0034039	953						
13						Ketuins						de Maria al Maria							
14								Cum		gical value: fo robability mass			ution runctio	in, use ikut	., 101		_		
15																	_		
16						Formula	result = 0.003	403953									-		
17 18												-					-		
19						Help on	this function					L	OK	Cance	el		-		
20																	-1-1		
21																			
		F	Binon	nial Shee	et2 🤅 🕀)					•						Þ		
ED	Π	1										Ħ	8 😃			-+ 100			

Review and concur with **Formula result**. Hit **OK**.

Review the result on the spreadsheet.

x		5	- @ - =	;				Во	ok1 - Excel						? 🗹 -		×
	FILE	н	OME IN	SERT PA	AGE LAYOUT	FORMU	LAS DA	TA RE	VIEW V	VIEW DEVE	LOPER	BLUEBEA	M LASE	RFICHE	Ofosu, Kwab	e •	
	fx nsert nctior	📩 Re	utoSum 👻 ecently Used nancial 👻	Date Function	& Time + 📔 Library	Lookup & F Math & Trig More Funct	9 -	Name Manager	☑ Define ⑦ Use in I ② Create Defined N	Formula - from Selection	📲 Tra	ce Preceder ce Depende nove Arrow Formul	nts ⁄	Watch Window	Calculation Options ~ Calculatio	-	*
D	10		* E 🕽	XV	f_x												۷
		А	В	С	D	E	F	G	н	Ι	J	К	L	м	N	0	
1	n		10														
2	р		0.67														
3																	
4	a)		x	3													
5			P(X=x)	0.016258													
6	_																.
7																	.
8	b)		X	2													-
9			P(X<3)	0.003404													-
10	-			1													-
11 12																	
12																	
14																	
15																	
16																	
17																	1
18																	
19																	
20																	
21			_													_	
	4	•	Binom	ial Shee	et2 🕂)				: [•					Þ	-
RE	ADY	1										E				+ 1009	6
					· \												
					· · · ·												

c) What is the probability that 2 or more vehicles will obey the sign?

It was previously demonstrated that $P(X \ge 2) = 1 - P(X < 2) = 1 - P(X \le 1)$

In this demonstration we shall use the third method of accessing functions which is by typing the function name directly into the cell or into the **Formula Bar** once a cell to display the result is selected.

Update the spreadsheet as follows:

Ins	x 🖈	AutoSum 👻 Recently Used Financial 👻		, & Time -	Lookup & Math & T		Name Manager	☑ Define ℜ Use in ₽ Create Defined N	Formula - from Selection	📲 Tra	ce Preceden ce Depende nove Arrow: Formuli	nts ⁄ 🔹	Watch Window	Calculation Options ~ Calculation		
C14	4		XV	fx [
	А	В	с	D	E	F	G	н	Ι	J	К	L	м	N	0	[
1	n	10)													
2	р	0.67	,													
3																
4	a)	x	3													
5		P(X=x)	0.016258													
6																
7																
	b)	x	2													
9		P(X<3)	0.003404													
10																
11																
12	c)	X	1													-
13		P(X<2)														-
14		1-P(X<2)	ı													-
15																-
10														_		-
18																-
10																-
20																-1
20																-

In the selected cell type the following

" = 1 - BINOM.DIST "

Before completing the typing, a candidate list of functions appears.

x		5	· @ · ;	-				Bo	ok1 - Excel	5		1			? 🛧 –		×
F	ILE	H	OME IN	ISERT PA	AGE LAYOUT	FORM	IULAS DA	ATA R	EVIEW \	/IEW DEVE	ELOPER	BLUEBEA	M LASI	ERFICHE	Ofosu, Kwab	e • 0	
	f	ΣΑ	utoSum 👻	2 Logic	al 👻 🗖	Lookup &	Reference -		💷 Define	Name 🔻	- E>⊨ Tr	race Precede	nts 🔢				
~	fx	🖈 Re	ecently Used	I - 🔼 Text -		Math & Ti	ria -		R Use in	Formula -		ace Depend		60			
Ir	sert		nancial -		& Time + 📕		-	Name		from Selection		emove Arrov		Watch Window	Calculation Options -		
Fur	iction			Function	_			wanage	Defined N				la Auditing	WINDOW	Calculation		~
									benneart	unics		Torina	artaatting		curculation		÷
BI	NON	1.DIST	▼ ∃]	X 🗸	<i>fx</i> =1-b	in											Y
		А	В	С	D	Е	F	G	н	I	J	К	L	м	N	0	*
1	n		10														
2																	
3																	
4	a)			-													
5			P(X=x)	0.016258													
6																	
7 8	b)			2													
8 9	0)		x P(X<3)	0.003404													
10			F(X<3)	0.003404													
11																	
12	c)		x	1													
13			P(X<2)														
14			1-P(X<2)	=1-bin													
15				🕭 BIN		Con	verts a binary	number to	decimal								
16				€ BIN													
17				0	20CI OM.DIST												
18				🕭 BIN	OM.DIST.RANG	E											
19					OM.INV												_
20				M BIN	OMDIST												Ŧ
	4	►	Binom	ial Shee	et2 (+					: [4						
EN	TFR	1										Ħ	I	_	_	100%	

Select BINOM.DIST.

Review the tooltip and confirm this is the relevant function.

x	Ŀ	5	- ¢-	Ŧ				Во	ok1 - Excel		1.4				? 🛧 -	o x
F	ILE	н	OME IN	ISERT P	AGE LAYOUT	FORMULA	AS DA	TA RE	VIEW	VIEW DEVE	ELOPER	BLUEBEA	M LASE	ERFICHE	Ofosu, Kwab	e • 0
1	fx sert ctior	ᆂ R	ecently Used	Logic Marte Date Function	, 🔒 & Time ד 🔚	Lookup & Rei Math & Trig \ More Functio	*	Name Manager	☑ Define ⑦ Use in ۩ Create Defined N	Formula - from Selection	¤∰ Tra	ace Precede ace Depende move Arrow Formu	ents 🐀 -	Watch Window	Calculation Options • Calculatio	
BI	NON	A.DIST	T 🛨 🕴	X 🗸	<i>fx</i> =1-bi	n										~
		А	В	С	D	E	F	G	н	Ι	J	К	L	М	N	0
	n		10													
2 3	р		0.67	7												
4	a)		x	3												
5			P(X=x)	0.016258												
6 7																
8	b)		x	2												
9			P(X<3)	0.003404												
10 11																
12	c)		x	1												
13			P(X<2)													
14			1-P(X<2)	=1-bin												
15				🕼 BIN												
16				E BIN												
17					OM.DIST	Returns	the indivi	dual term l	binomial dis	stribution prob	ability					
18 19					OM.DIST.RANG	E										
20				0	om.inv omdist											
21																
	4	•	Binom	nial Shee	et2 (+						4					•
EN	ER	1										Ħ				100%

Double click on BINOM.DIST.

The prompt opens.

Following the tooltip, point-and-click to select the cell holding the **number_s** argument.

(Or type in the cell reference for the **number_s** argument).

Type a comma (",")

	E ILE		n - C [≫] - Home IN		E LAYOUT	FORM	/ULAS DA		ok1 - Excel VIEW	VIEW DEV	VELOPER	BLUEBEA	M LASE	RFICHE	? 📧 - Ofosu, Kwa	- 🗆 be •	×
	fx sert ctio	🖈 F	AutoSum 👻 Recently Used Financial 👻	I Logical d ▼ I Text ▼ Date & Function Lib	Time 🔹 📘	Math &	-	Name Manager		Formula - from Selectio	−ÆT	race Precede race Depende emove Arrow Formu	ents 🐀 -	Watch Window	Calculation Options * Calculatio		^
C1	4		•	× 🗸 f:	x =1-E	BINOM.DI	IST(C12,										v
		А	В	С	D	E	F	G	н	I	J	К	L	М	N	0	4
1	n		10														
	р		0.67	7													-
3	- 1			2													-
4 5	a)		x P(X=x)	3 0.016258													-
6			F(A=A)	0.010238													
7																	
	b)		x	2													
9			P(X<3)	0.003404													
10																	
11																	
12	c)		x	1													-
13			P(X<2)														-
14 15			1-P(X<2)	=1-BINOM.D		a c teisle	probability_s,	cumulativo									-
15 16				DINOWID	us i (numbe	s, thas,	probability_s,	cumulative	/								- -
17						- 1											-
18																	
19																	
20																	
21	4		Dimen	aial Sheata													
	4		Binon	nial Sheet2	2 (:	4					•	
ENT	ER	1										Ⅲ		-		1009	76

The comma pushes the prompt to the next argument.

Point-and-click (or type in the cell reference) to select the cell holding the **trials** argument. Type a comma (",")

			¢.						ok1 - Excel					99)	? 🕋 –	- ×
	TLE fx isert		oSum 🔹	ISERT PA	≹ Time ∗ 📘	T FORM	Reference • ig •		⊡ Define ∯t Use in	Formula - from Selection	╬¤ Trac	nove Arrow	nts 🕅 -	Window	Ofosu, Kwab Calculation Options ~ Calculatio	
С	14		r : []	X 🗸	fx =1-	BINOM.DIS	T(C12,B1,									v
		Α	В	С	D	E	F	G	Н	I	J	к	L	М	N	0
1	n	Ī	10													
2	р		0.67	/												
3																
4	a))		3												
5 6			P(X=x)	0.016258												
7																
8	b)	,	r	2												
9	~,		P(X<3)	0.003404												
10																
11																
12	c)	>	c	1												
13			P(X<2)													
14		1	L-P(X<2)	=1-BINOM												
15				BINOM	.DIST(numl	per_s, trials, p	robability_s,	cumulative								
16								1	· · · · ·							
17 18																
18																
20																
21																
	4)	Binom	nial Shee	t2 (÷				÷ •	1					Þ
EN	TER	1										Ħ]		100%

Point-and-click (or type in the cell reference) to select the cell holding the **probability_s** argument.

Type a comma (",")

x 🛛 🖬 🕤	- @-	÷				E	look1 - Excel						? 🛧	
FILE	HOME IN	ISERT PAG	E LAYOUT	FORM	IULAS	DATA	REVIEW	VIEW DEVE	LOPER	BLUEBEAN	A LASE	RFICHE	Ofosu, Kwa	abe •
IX =	AutoSum 👻 Recently Used Financial 👻		Time 🛛 📃	Math & 1		Nam	○ Define 分子 Use in er 留 Create Defined N	Formula - from Selection	e∰Tra	ace Preceden ace Depende move Arrows Formula	nts 🐀 -	Watch Window	Calculation Options - Calculation	
C14	- : []	X 🗸 J	х =1-ВІ	NOM.DI	ST(C12,B1,	в2,								
Α	В	С	D	E	F	G	н	I	J	К	L	м	N	0
l n	10	D <mark>I</mark>				1								
2 p	0.67	7												
a)	x	3												
	P(X=x)	0.016258												
b)	x	2												
	P(X<3)	0.003404												
c)	x	1												
	P(X<2)													
	1-P(X<2)	=1-BINOM.	DIST(C12,B	L,B2,										
		BINOM.E	DIST(number	_s, trials,	probability_	, cumulativ	/e)							
i							bution functio	BINOM.I	DIST retur	ns the cumu	lative distrib	ution func	tion, which i	s the prob
				()	FALSE - prob	ability mass	function							
1														
1														

As this is a cumulative probability calculation, double click on "TRUE" from the list (or simply type in "TRUE" directly).

FLE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER BLUEBEAM LASERFICHE Ofosa, Kwabe	x∎		5 • @•	Ŧ				Во	ok1 - Excel						? 🛧 -	• • >
A B C D E F G H I J K L M N 1 n 10 0	FI	LE	HOME IN	ISERT PA	GE LAYOU	FORM	IULAS D	ATA R	EVIEW N	TEW DEVEL	OPER	BLUEBEA	M LAS	ERFICHE	Ofosu, Kwak	• O
A B C D E F G H I J K L M N 2 p 0.67 - <td>1</td> <td>х [</td> <td>★ Recently Used</td> <td>d • 🖾 Text • O Date of Function</td> <td>& Time 👻 📙 Library</td> <td>0 Math & T</td> <td>rig -</td> <td>Name</td> <td>ரி Use in I ∰ Create</td> <td>Formula - from Selection</td> <td>¤∰ Tra</td> <td>ce Depende nove Arrow</td> <td>ents ⁄ 💿 🔹</td> <td>'GO Watch</td> <td>Calculation Options -</td> <td></td>	1	х [★ Recently Used	d • 🖾 Text • O Date of Function	& Time 👻 📙 Library	0 Math & T	rig -	Name	ரி Use in I ∰ Create	Formula - from Selection	¤∰ Tra	ce Depende nove Arrow	ents ⁄ 💿 🔹	' GO Watch	Calculation Options -	
1 1	BI	NOM.E	DIST 🔻 🗄	XV	$f_x = 1$	BINOM.DI	ST(C12,B1,B	2,TRUE								
2 p 0.67 I		А	В	С	D	Е	F	G	н	I	J	К	L	м	N	0
3	1	n	10	Ī												
4 a) x 3 a		р	0.67	7												
s P(X=x) 0.016258 I <																
6		a)														
7			P(X=X)	0.010258												
8 b) x 2																
10	-	b)	x	2												
11	-		P(X<3)	0.003404												
12 c) x 1	10															
13 P(X<2)	-															
14 1-P(X<2)		c)		1												
15 BINOM.DIST(number_s, trials, probability_s, cumulative) Image: Comparison of the comparison	_				DISTICTO		-									
16	_		1-P(X<2)					cumulative	•)							——II
18																
19 19 19 19 19 19 19 19 19 19 19 19 19 1																
20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	18															
21 Binomial Sheet2																l
Binomial Sheet2 + +	-							<u> </u>								
	21	()×	Binom	nial Shee	t2 (Ð				E	(
	FDI					_	_				· · ·	Ħ		1		100%
	201	E														10070

Close parentheses.

x		5-	ð	;				Во	ok1 - Excel						? 🛧 –		×
	FILE	ном	e in	SERT PA	AGE LAYOUT	FORMULAS	DAT	A RI	EVIEW V	TEW DEVE	LOPER	BLUEBEA	M LASE	RFICHE	Ofosu, Kwab	e •	1
Ir Fu		∑ Auto	ntly Used	Function	× 📴 N & Time × 💻 N Library	ookup & Refer Math & Trig ▾ More Functions NOM.DIST(C1:	*		☑ Define ℜ Use in I ♀ Create Defined Name	Formula - from Selection	¤∰ Tra	ice Preceder ice Depende move Arrow Formul	ents 🔚 -	Watch Window	Calculation Options ~ Calculation		<
		A	в	с	D	E F	-	G	н	I	J	к	L	М	N	0	
	n	ī	10	-	5			-		-	-		-				ıН
2	p		0.67														
3	Ľ																1
4	a)	x		3													1
5		P(X=x)	0.016258													
6																	
7																	
8	b)	x		2													
9		P(X<3)	0.003404													
10																	-
11	-1			1													
12 13	c)	X D(X<2)	1													
14				=1-BINOM	I.DIST(C12,B1	B2 TRUE)											
15		-	(// -=)	-1 51101		,52,11102,											
16																	1
17																	
18																	
19																	
20																	
-21	4		Binom	ial Shee	et2 (+)					: [4						
	1		binom	an shee	•12 +		_			: [1				_	•	-
ED	11	1										Ⅲ		_		1009	ð
									\mathbf{N}								

Hit **Enter** on the keyboard.

x		5	@					Во	ok1 - Excel						? 🛧 -		×
1	FILE	но	ME IN	SERT PA	AGE LAYOUT	FORMULAS	DA	TA RE	VIEW V	TEW DEVE	LOPER	BLUEBEA	M LASE	RFICHE	Ofosu, Kwab		7
Ir Fu	fx nsert nctior 15	📩 Rea	toSum v cently Used ancial v	Function	8. Time 👻 📙	Lookup & Refer Math & Trig + More Functions		Name Manager	☑ Define ℜ Use in I ⋒ Create Defined N	Formula - from Selection	📲 Tra	ace Preceder ace Depende move Arrow Formul	ents ⁄ 🔹	Watch Window	Calculation Options - Calculation	_	*
	1.5												1	1			*
	-	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	
	n		10														
2	р		0.67														-
3	-			3													-
4	a)		x P(X=x)	0.016258													
6	-		P(A=A)	0.010238													
7																	
8	b)		x	2													
9	-,		P(X<3)	0.003404													1
10																	1
11																	1
12	c)	1	x	1													
13			P(X<2)														
14		:	1-P(X<2)	0.999644													
15																	
16																	-
17																	
18 19	-																
20																	
20																	-
		F	Binom	ial Shee	t2 +					: [•					Þ]
RE	ADY	1					_					Ħ	8 4		- I	1009	6

The calculation is complete.

4. CONTINUOUS RANDOM VARIABLES

4.1 Definition

In contrast to discrete random variables that have values (x) that are limited to zero and positive integer values, continuous random variables can take on integer and decimal values over their domains. Therefore, over a given range of values, there will be infinitely many possible values (x) the continuous random variable can actualize.

4.2 Properties of Continuous Random Variables

1. From Equation (3.5), it follows that the cumulative probability that a discrete random variable (X) will take on a value (x_i) over a range of values [a,] is given by,

$$P(a \le X \le b) = \sum_{i=a}^{b} f(x_i)$$
..... Equation (4. 1)

But for a continuous random variable there are infinitely many x_i values over the range [a, b], and if the distribution function $f(x_i)$ is smooth and can be integrated, then

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$
..... Equation (4. 2)

The distribution function of a continuous random variable is called the **probability density function** (or **density function**).

2. The density function satisfies the following requirements.

f(x) > 0 for all x,

and

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
..... Equation (4.3)

In other words, the total area under the density curve equals unity. Therefore $P(a \le X \le b)$ is the area under the density curve between x = a and x = b.

3. As with discrete random variables, the summation of the probabilities over a range of x values is given by the **cumulative density function** (F(x)).

$$P(X \le x) = \int_{-\infty}^{x} f(x) dx = F(x)$$
..... Equation (4. 4)

Thus,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$
..... Equation (4.5)

Equation (4.5) implies that if the derivative of the cumulative density function exists, then

$$\frac{d[F(x)]}{dx} = f(x)$$
..... Equation (4. 6)

In contrast to discrete random variables, calculations with continuous random variables generally involve computing cumulative probabilities.

4. Since the probabilities for continuous random variables are obtained through integration, the inequality conditions are not relevant for continuous random variables. Therefore, for all intents and purposes,

 $P(a \le X \le b) = P(a < X \le b) = P(a < X < b) = P(a \le X < b)$

5. The expected value (μ) of a continuous random variable is defined as,

$$\mu = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
..... Equation (4. 7)

6. The variance (σ^2) of a continuous random variable is defined as,

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx$$

..... Equation (4.8)

where σ is the standard deviation of the random variable.

4.3 The Uniform Distribution

The Uniform distribution is a continuous random variable that has equal probability of occurrence for values in a range $[\alpha, \beta]$ and a probability of zero for all other values.

Graphically, the uniform distribution looks as follows,

Engineering Methods in Excel A SunCam online continuing education course

Figure 4. 1: The Uniform distribution

Mathematically, the probability density function of the uniform distribution is,

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{for } \alpha \le x \le \beta \\\\ 0 & \text{for all other } x \end{cases}$$
..... Equation (4.9)

From Equation (4.5), the cumulative probability over a range [a, b] is the area under the density function between a and b.

From Equation (4.7), it can be shown that the expected value (μ) of the Uniform distribution is given by,

$$\mu = \frac{\alpha + \beta}{2}$$
.... Equation (4. 10)

From Equation (4.8), it can be shown that the variance (σ^2) of the Uniform distribution is given by,

$$\sigma^2 = \frac{(\beta - \alpha)^2}{12}$$
 Equation (4. 11)

Example:

An emergency response team for a sector of a city estimates that the response time to any incident on the sector is between 3 to 8 minutes with any specific response time in the range equally likely.

a) Calculate the probability that a response time will be less than 5 minutes.

b) Calculate the probability that the response time will be between 4 and 6 minutes.

c) What is the 95th percentile response time?

Solution:

Depicting the distribution graphically,

Engineering Methods in Excel A SunCam online continuing education course

a) This is the cumulative area under the density function up to x = 5.

Due to the simple rectangular shape of the area enclosed by the density function, there is no need to conduct integration to calculate the area.

$$P(X \le 5) = \int_{-\infty}^{5} f(x) dx = \frac{1}{5} * (5 - 3) = 0.4$$

b) This is the cumulative area under the density function from x = 4 to x = 6.

$$P(4 \le X \le 6) = \int_{4}^{6} f(x)dx = \frac{1}{5} * (6-4) = 0.4$$

c) The 95th percentile is the response time that has 95% of the distribution less than it. Thus, it is the value that has 95% of the area under the density function to the left of it.

$$\frac{1}{5} * (P_{95} - 3) = 0.95$$

Solving for P95,

 $P_{95} = 7.75 mins$

4.4 The Exponential Distribution

The Exponential distribution (also called the Negative Exponential distribution) has the density function of the form,

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\\\0 & \text{for all other } x \end{cases}$$
..... Equation (4. 12)

where λ is the **distribution parameter** (also called the **rate parameter**)

The cumulative density function is given by,

$$F(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0\\\\ 0 & \text{for all other } x\\ \dots \dots \text{ Equation (4. 13)} \end{cases}$$

The expected value (μ) is given by,

$$\mu = \frac{1}{\lambda}$$
..... Equation (4. 14)

The variance (σ^2) is given by,

$$\sigma^{2} = \frac{1}{\lambda^{2}}$$
..... Equation (4. 15)

Equation (4.15) implies that the standard deviation (σ) is equal to the mean. The Exponential distribution is commonly used to describe data related to natural growth or decay type processes. It can be shown mathematically that if a process exhibits Poisson behavior, then the time between the events follows an Exponential distribution. For example, for a traffic flow (number of vehicle arrivals per unit of time) that is Poisson, the vehicular inter-arrival times will follow an Exponential distribution. A graphical depiction of an exponential distribution is as follows.

Figure 4. 2: The Exponential distribution

4.5 The Normal Distribution

The Normal distribution, also called the Gaussian distribution, is a continuous distribution with a symmetric bell-shaped density function.

Figure 4. 3: The Normal distribution

The expected value of the distribution corresponds to the apex of the bell curve.

The density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
..... Equation (4. 16)

where $-\infty \le x \le +\infty$

The expected value (mean) and the standard deviation are always needed to specify a Normal distribution. In practice they are computed from the data. The mean and standard deviation are referred to as the **location parameter** and the **shape parameter** respectively. The location

parameter provides the location of the apex of the bell curve, whereas the shape parameter determines the shape or the spread of the distribution. Lower values of the shape parameter will result in a tighter and steeper bell curve, whereas larger values of the shape parameter will result in a flatter and more spread out bell curve.

The cumulative probability (cumulative density) of a value x_i is the area under the bell-curve up to the value x_i .

Figure 4. 4: Cumulative density

The cumulative density is given by,

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$
..... Equation (4. 17)

Equation (4.17) is a difficult integration to perform. It can be simplified by setting $\mu = 0$ and

 $\mu = 1.$

From Equation (4.16), this results in a density function,

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$
..... Equation (4. 18)

where $-\infty \le z \le +\infty$

Equation (4.18) is the density function of what is called the **Standard Normal distribution**. The integration is easier, but still not that easy. To assist practitioners, the integration has been done by others and tabulated into **standard normal distribution tables**, which are available in all statistics texts, and engineering reference manuals. Standard normal tables are also abundant and available for use, as needed, on the internet. Most modern scientific calculators have statistical capabilities and can produce Normal distribution or Standard Normal distribution values.

In practice, ANY normal random variable (X) is converted to a **standard normal variate** (Z), (commonly called a **z-score**) and the corresponding cumulative density (cumulative probability) value (F(z)) is read from a standard normal table (commonly referred to as a **z-table**).

The conversion from normal variate (X) to the standard normal variate (Z) is given by,

$$z = \frac{x - \mu}{\sigma}$$
.... Equation (4. 19)

Example:

The spot speed of vehicles monitored at a traffic count station on an expressway indicates the speeds are normally distributed with a mean of 65 mph and a standard deviation of 7 mph.

- a) What is the probability that the speed of a vehicle is less than 55 mph?
- b) What is the probability that the speed of a vehicle is greater than 80 mph?
- c) What is the probability that the speed of a vehicle is between 60 mph and 75 mph?

d) What is the 85th percentile speed?

Solution:

a) This is a normal distribution with $\mu = 65$ and $\sigma = 7$.

The objective is to compute $P(X \le 55)$

The x = 55 value must be converted to a standard normal variate (z-score). The cumulative probability for the z-score shall then be read from a standard normal distribution table, in lieu of performing integration of Equation (4.17) or Equation (4.18).

From Equation (4.19),

 $z = \frac{x - \mu}{\sigma} = \frac{55 - 65}{7} = -1.43$ $P(X \le 55) = P(Z \le -1.43)$

Or, graphically,

www.SunCam.com Copyright[©] 2020 Kwabena Ofosu, Ph.D., P.E., PTOE

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Source: http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf

Thus, $P(X \le 55) = P(Z \le -1.43) = 0.0764 = 7.64\%$

The following shall be considered when using any published standard normal distribution tables:

1. Always look at the diagram associated with the table, and confirm that the area shaded under the curve is consistent with the shaded area of interest for the specific problem being worked on. In this example the area shaded under the curve on the table diagram and the shaded area of interest are consistent and to the left of the z-score.

2. If the area shaded under the curve on the table diagram and the shaded area of interest are not consistent, that is, on opposite sides of the z-score, then the complementation rule of probability shall be applied to obtain the (cumulative) probability value of interest.

3. Most modern texts have separate tables for positive and negative z-scores.

4. When reading a probability value for a z-score, the second decimal place of the z-score is taken by moving across the table.

5. If the z-score involves more than two decimal places, then interpolation may be used to obtain the probability value. However, for most engineering intents and purposes, rounding the z-score to two decimal places is adequate.

b) The objective is to compute $P(X \ge 80)$

The value x = 80 shall be converted to a z-score. The probability (cumulative probability) of the z-score may then be looked up on a Standard Normal distribution table, in lieu of performing integration of the Normal distribution density function.

From Equation (4.19),

$$z = \frac{x - \mu}{\sigma} = \frac{80 - 65}{7} = 2.14$$

 $P(X \ge 80) = P(Z \ge 2.14)$

Or, graphically,

From the Standard Normal distribution table,

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Source: http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf

The area shaded under the curve on the Standard Normal distribution table diagram and the shaded area of interest are on opposite sides of the z-score. The area shaded on the Standard Normal distribution table diagram is to the left of the z-score, whereas the shaded area of interest is to the right of the z-score. Thus, the complementation rule of probability shall be applied to probability value read from the Standard Normal distribution table for this z-score.

 $P(X \ge 80) = P(Z \ge 2.14) = 1 - 0.9838 = 0.0162 = 1.62\%$

c) $P(60 \le X \le 75)$

From Equation (4.19),

$$z_1 = \frac{x_1 - \mu}{\sigma} = \frac{60 - 65}{7} = -0.71$$

and

$$z_2 = \frac{x_2 - \mu}{\sigma} = \frac{75 - 65}{7} = 1.43$$

So,

 $P(60 \le X \le 75) = P(-0.71 \le Z \le 1.43)$

Graphically, this is the area under the curve between $x_1 = 60$ and $x_2 = 75$ (or $z_1 = -0.71$ and $z_2 = 1.43$).

Engineering Methods in Excel A SunCam online continuing education course

By looking at the areas under the curve associated with each z-score, it can be deduced that,

 $P(60 \le X \le 75) = P(X \le 75) - P(X \le 60)$

Or using the z-scores,

 $P(-0.71 \le X \le 1.43) = P(X \le 1.43) - P(X \le -0.71)$

which can be generalized as,

$$P(z_1 \le Z \le z_2) = P(Z \le z_2) - P(Z \le z_1)$$

..... Equation (4. 20)

or,

$$P(z_1 \le Z \le z_2) = F(z_2) - F(z_1)$$

..... Equation (4. 21)

From the Standard Normal distribution tables,

 $P(-0.71 \le X \le 1.43) = P(X \le 1.43) - P(X \le -0.71) = 0.9236 - 0.2389$ $P(-0.71 \le X \le 1.43) = 0.6847 \text{ or } 68.47\%$

d) By definition, the P^{th} percentile is the *x* value that has P% of the data less than or equal to it. In other words, the P^{th} percentile will have P% of the area under the density curve to its left.

Scanning through the probability values in the z-tables, the closest value to 0.85 is 0.8508 which corresponds to a z-score of 1.04. Note that interpolation may be applied if an increased level of accuracy is warranted.

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5 60	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5.57	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6.31	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6100	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7:89	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7.04	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7 <mark>95</mark>	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8 <mark>2</mark> 64	.8289	.8315	.8340	.8365	.8389
1.0	4.8413	.8438	.0461	.0405	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
	'					'				

Source: <u>http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf</u>

The z-score must be converted to an *x* value.

From Equation (4.19),

 $z_{85} = \frac{x_{85} - \mu}{\sigma}$

 $1.04 = \frac{x_{85} - 65}{7}$

Solving for x_{85} , the 85th percentile,

 $x_{85} = 72.28 \text{ mph}$

4.6 The Log-Normal Distribution

A random variable X has a Log-Normal distribution if $Y = \ln(X)$ is Normally distributed. A random variable that is Log-Normally distributed takes on only positive real values. There are many formulations of the probability density function of the Log-Normal distribution. One commonly used formulation is,

$$f(x) = \frac{1}{\sqrt{2\pi\beta}} \frac{1}{x} e^{-\frac{[\ln(x) - \alpha]^2}{2\beta^2}}$$
..... Equation (4. 22)

for $x > 0, \beta > 0$

where α is the mean of the ln(*x*) values, and β is the standard deviation of the ln(*x*) values.

It can be shown that the cumulative density function of the Log-Normal distribution is given by,

$$F(x) = P(X \le x) = \Phi\left(\frac{\ln(x) - \alpha}{\beta}\right)$$
..... Equation (4. 23)

for $x > 0, \beta > 0$

where

 Φ is the cumulative density function of the Standard Normal distribution.

The cumulative density that the random variable will take on an x value in the range [a, b] is given by,

$$P(a \le X \le b) = F(b) - F(a) = \Phi\left(\frac{\ln(b) - \alpha}{\beta}\right) - \Phi\left(\frac{\ln(a) - \alpha}{\beta}\right)$$

..... Equation (4. 24)

The inverse function (G(p)) of the cumulative density function enables a value of the variate (x) to be computed for a given cumulative probability value (p). Rearranging Equation (4.23), the inverse cumulative density function is given by,

$$x = G(p) = e^{\beta \cdot \Phi^{-1}(p)}$$
..... Equation (4. 25)

for $0 \le p < 1, \beta > 0$

where

 Φ^{-1} is the inverse function of the cumulative density function of the Standard Normal distribution.

The inverse function of a cumulative density function is the called the **Percent Point function** (also called the **Quantile function**) of the distribution. The Percent Point function is used extensively in conducting simulations and modeling systems as shall be presented later in this course.

Figure 4.5 shows an example of a probability density function (**pdf**) of a Log-Normal distribution.

Figure 4. 5: Log-Normal probability density function

The Log-Normal distribution has a long "tail" to the right. The Log-Normal distribution said to be a **skewed distribution** and **skewed to the right** (or **positively skewed**).

Figure 4.6 shows a cumulative density function (**cdf**) of a Log-Normal distribution.

Figure 4. 6: Log-Normal cumulative density function

Figure 4.7 shows an example of a percent point function.

Figure 4. 7: Log-Normal percent point function

The relationship between the mean (μ) of the x values and the mean (α) of the $\ln(x)$ values for a Log-Normal distribution is derived as,

$$\mu = e^{\alpha + \frac{\beta^2}{2}}$$
..... Equation (4. 26)

The relationship between the standard deviation (σ) of the *x* values and the standard deviation (β) of the ln(*x*) values is,

 $\sigma^{2} = e^{2\alpha + \beta^{2}} (e^{\beta^{2}} - 1)$ Equation (4. 27)

The Log-Normal distribution has many applications. It has been used to model inter-arrival times of industrial processes. In reliability engineering, the Log-Normal distribution is used to model the time to failure of machine parts that are subject to modes of failure that are of a fatigue-stress nature. The Log-Normal distribution is applied in establishing warranties of products. It is also used in the fields of finance and risk management.

4.7 The Gamma Distribution

The Gamma distribution has a probability density function given by,

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \cdot \frac{1}{x^{\alpha-1}} \cdot e^{-\frac{x}{\beta}}$$
.... Equation (4. 28)

for $x > 0, \alpha > 0, \beta > 0$

where,

the expected value (μ) of the distribution is,

 $\mu = \alpha.\beta$ Equation (4. 29)

and the variance (σ^2) of the distribution is,

$$\sigma^2 = \alpha.\beta^2$$
..... Equation (4. 30)

The term $\Gamma(\alpha)$ is called the **Gamma function**, and is defined as,

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$
..... Equation (4. 31)

The cumulative density function of the Gamma distribution works out to,

$$F(x) = \frac{\Gamma_x(\alpha)}{\Gamma(\alpha)}$$
..... Equation (4. 32)

where

$$\Gamma_{x}(\alpha) = \int_{0}^{x} x^{\alpha-1} e^{-x} dx$$
..... Equation (4. 33)

The percent point function of the Gamma distribution does not exist in a closed form. Percent point values for the Gamma distribution can only be approximated by numerical methods.

Figure 4.8 shows examples of probability density functions of Gamma distributions.

Figure 4. 8: Gamma probability density function

The Gamma distribution is used to model "waiting time" type variables in a variety of fields such as industrial and manufacturing processes, financial services and climate science. The Gamma distribution is in fact not a single distribution but actually a "family" of distributions each with unique and special properties. Each member of the Gamma distribution family is generated by a special combination of the distribution parameters (α , β). For example, $\alpha = 1$ generates the Exponential distribution covered earlier in this course.

4.8 The Beta Distribution

The Beta distribution is a member of the Gamma distribution "family". The Beta distribution has a probability density function given by,

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha).\,\Gamma(\beta)}.\,x^{\alpha - 1}(1 - x)^{\beta - 1}$$
..... Equation (4. 34)

for $0 < x < 1, \alpha > 0, \beta > 0$

where,

the expected value (μ) of the distribution is,

and the variance (σ^2) of the distribution is,

$$\sigma^{2} = \frac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$$
..... Equation (4. 36)

Equation (4.34), incorporates the Beta function,

$$B(x) = \frac{\Gamma(\alpha). \Gamma(\beta)}{\Gamma(\alpha + \beta)}$$
.... Equation (4. 37)

The cumulative density function is given by,

$$F(x) = I(x; a, b)$$

..... Equation (4. 38)

where I is the regularized beta function.

$$I(x) = \frac{B(x; a, b)}{B(a, b)}$$
.... Equation (4. 39)

where B(x; a, b) is the Incomplete Beta function.

$$B(x; a, b) = \int_{0}^{x} t^{\alpha - 1} (1 - t)^{b - 1} dt$$

..... Equation (4. 40)

A closed form of the percent point function does not exist. Thus, percent point values for Beta distributions must be evaluated by numerical methods.

Figure 4.9 shows an example of a probability density function of a Beta distribution.

Figure 4. 9: Beta probability density function

From Equation (4.34), the x values the Beta distribution can actualize are limited to the range (0, 1), in other words proportions, percentages, ratios, etc. Examples of the application of the Beta distribution include computing probabilities associated with the proportions of rear-end collisions at an intersection over a given period, the percentage of the annual maintenance budget spent on equipment XYZ, the proportion of product that fails QA/QC checks per production cycle etc., etc.

A special case of the Beta distribution occurs if $\alpha = 1$ and $\beta = 1$. The distribution reduces to a Uniform distribution.

4.9 The Weibull Distribution

The Weibull distribution is a member of the Gamma distribution "family". The Weibull distribution has a probability density function given by,

$$\Gamma_{x}(\alpha) = \int_{0}^{x} \alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} dx$$
..... Equation (4. 41)

for $x > 0, \alpha > 0, \beta > 0$

where,

the expected value (μ) of the distribution is

$$\mu = \alpha^{-\frac{1}{\beta}} \Gamma\left(1 + \frac{1}{\beta}\right)$$
..... Equation (4. 42)

and the variance (σ^2) of the distribution is,

$$\sigma^{2} = \alpha^{-\frac{2}{\beta}} \left\{ \Gamma\left(1 + \frac{2}{\beta}\right) - \left[\Gamma\left(1 + \frac{1}{\beta}\right)\right]^{2} \right\}$$
.... Equation (4. 43)

The cumulative density function works out to,

$$F(x) = 1 - e^{-\alpha x^{\beta}}$$
.... Equation (4. 44)

for $x \ge 0, \alpha > 0, \beta > 0$

Thus, the percent point function is given by,

$$x = G(p) = \left\{ -\ln (1-p)^{\frac{1}{\alpha}} \right\}^{\frac{1}{\beta}}$$
..... Equation (4. 45)

for $0 \le p < 1, \beta > 0$

Figure 4.10 shows examples of probability density functions of Weibull distributions.

Figure 4. 10: Weibull probability density function

The Weibull distribution is used extensively in reliability engineering to model lifetimes or failure times of manufactured components.

4.10 The Logistic Distribution

The Logistic distribution is a continuous random variable with a probability density function given by,

$$f(x) = \frac{e^{\frac{x-\mu}{\sigma}}}{\sigma \left(1+e^{\frac{x-\mu}{\sigma}}\right)^2}$$
..... Equation (4. 46)

where $-\infty \le x \le +\infty$ and $\sigma > 0$

The cumulative density function of the Logistic distribution works out to,

$$F(x) = \frac{e^{\frac{x-\mu}{\sigma}}}{1+e^{\frac{x-\mu}{\sigma}}}$$
..... Equation (4. 47)

where $-\infty \le x \le +\infty$ and $\sigma > 0$

The percent point function of the Logistic distribution works out to

$$x = G(p) = \mu + \left[ln\left(\frac{p}{1-p}\right) \right] \sigma$$
..... Equation (4. 48)

for $0 \le p < 1$

Figure 4.11 shows an example of a probability density function of a Logistic distribution.

Figure 4. 11: Logistic probability density function

It can be seen that the shape of the Logistic distribution resembles that of the Normal distribution, but has heavier tails. Also, the cumulative density function of the Logistic distribution, Equation (4.47), is simpler and easier to work with, compared to the Normal distribution. The Logistic distribution functions can be solved easily, manually. As a result, in the "good old days" when most calculations were done by hand, the Logistic distribution was often used in place of the Normal distribution. In the current era of computers and software, the Logistic distribution is still preferred for some purposes.

The Logistic distribution is still useful in modeling growth related processes and phenomena and is applied in many fields of economics, finance, public health, and agriculture science.

4.11 The Log-Logistic Distribution

The relationship between the Logistic distribution and the Log-Logistic distribution is analogous to that of the Normal distribution and the Log-Normal distribution. The probability density function of the Log-Logistic distribution is given by,

$$f(x) = \frac{e^{\frac{\ln(x) - \alpha}{\beta}}}{x\beta\left(1 + e^{\frac{\ln(x) - \alpha}{\beta}}\right)^2}$$
..... Equation (4. 49)

where x > 0 and $\beta > 0$, and α is the mean of the $\ln(x)$ values, and β is the standard deviation of the $\ln(x)$ values.

The cumulative density function of the Log-Logistic distribution works out to,

$$F(x) = \frac{e^{\frac{\ln(x) - \alpha}{\beta}}}{1 + e^{\frac{\ln(x) - \alpha}{\beta}}}$$
..... Equation (4. 50)

The percent point function of the Log-Logistic distribution works out to

$$x = G(p) = e^{\alpha + \left[ln\left(\frac{p}{1-p}\right) \right] \beta}$$
.... Equation (4. 51)

for $0 \leq p < 1$

Figure 4.12 shows an example of a probability density function of a Log-Logistic distribution.

Figure 4. 12: Log-Logistic probability density function

The Log-Logistic distribution has been used to model the lifetime of organisms as well as service times in industrial processes.

4.12 The Triangular Distribution

The Triangular distribution is a triangular shaped continuous distribution where the actualized values (x) are over a range [a, b], with a mode of c. The parameters of the Triangular distribution are such that,

 $-\infty \le x \le +\infty$ a < b, and $a \le c \le b$

A graphical example is as follows,

Figure 4. 13: Triangular probability density function

Mathematically, the probability density function is given by,

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \text{for } a \le x < c \\\\ \frac{2}{(b-a)} & \text{for } x = c \\\\ \frac{2(b-x)}{(b-a)(b-c)} & \text{for } c < x \le b \\\\ 0 & \text{for all other } x \end{cases}$$
..... Equation (4. 52)

The cumulative density function works out to,

$$F(x) = \begin{cases} \frac{(x-a)^2}{(b-a)(c-a)} & \text{for } x \le c \\ \\ 1 - \frac{(b-x)^2}{(b-a)(b-c)} & \text{for } x > c \\ \\ & \dots \dots \dots \text{ Equation (4. 53)} \end{cases}$$

The percent point function works out to,

$$x = G(p) = \begin{cases} a + \sqrt{p(b-a)(c-a)} \ for \ p \le \frac{(c-a)}{(b-a)} \\ \\ b - \sqrt{(1-p)(b-a)(b-c)} \ for \ p > \frac{(c-a)}{(b-a)} \end{cases}$$

..... Equation (4. 54)

where 0

The expected value (μ) of the distribution is

$$\mu = \frac{a+b+c}{3}$$
..... Equation (4. 55)

The variance (σ^2) of the distribution is,

$$\sigma^{2} = \frac{a^{2} + b^{2} + c^{2} - ab - ac - bc}{18}$$
.... Equation (4. 56)

The Triangular distribution is generally used when there is insufficient data to justify using some other distribution. The values of the parameters used are typically subjective. In other words, a Triangular distribution is an educated guess of the correct description of the random variable. Nevertheless, the triangular distribution is used in simulations related to decision-making methodologies in business, finance and project management.

4.13 Other Continuous Distributions

The following is a non-exhaustive list of other continuous distributions that are in use in various fields of specialty. Students are strongly encouraged to review the statistics and probability literature and study the properties of these distributions and their utility for various types of analyses, such as simulation and systems modeling.

- The Alpha Distribution
- The Anglit Distribution
- The Arcsin Distribution
- The Asymmetric Double Exponential Distribution
- The Asymmetric Log Double Exponential Distribution
- The Bessel I-Function Distribution
- The Bessel K-Function Distribution
- The Beta Normal Distribution
- The Bi-Weibull Distribution

- The Bradford Distribution
- The Brittle Fracture Distribution
- The Burr Type 2 Distribution
- The Burr Type 3 Distribution
- The Burr Type 4 Distribution
- The Burr Type 5 Distribution
- The Burr Type 6 Distribution
- The Burr Type 7 Distribution
- The Burr Type 8 Distribution
- The Burr Type 9 Distribution
- The Burr Type 10 Distribution
- The Burr Type 11 Distribution
- The Burr Type 12 Distribution
- The Cauchy Distribution
- The Chi Distribution
- The Chi-Squared Distribution
- The Cosine Distribution
- The Double Exponential Distribution
- The Double Gamma Distribution
- The Double Weibull Distribution
- The Doubly Non-Central Beta Distribution
- The Doubly Non-Central F Distribution
- The Doubly Non-Central T Distribution
- The Doubly Pareto Uniform Distribution
- The Error (Subbotin) Distribution
- The Exponential Power Distribution
- The Exponentiated Weibull Distribution
- The Extreme Value Type 1 (Gumbel) Distribution
- The Extreme Value Type 2 (Frechet) Distribution
- The F Distribution
- The Fatigue Life Distribution
- The Folded Cauchy Distribution
- The Folded Normal Distribution
- The Folded T Distribution
- The G-And-H Distribution

- The Generalized Asymmetric Laplace Distribution
- The Generalized Exponential Distribution
- The Generalized Extreme Value Distribution
- The Generalized Gamma Distribution
- The Generalized Half Logistic Distribution
- The Generalized Logistic Type 2 Distribution
- The Generalized Logistic Type 3 Distribution
- The Generalized Logistic Type 4 Distribution
- The Generalized Logistic Type 5 Distribution
- The Generalized Logistic Distribution
- The Generalized McLeish Distribution
- The Generalized Pareto Distribution
- The Generalized Topp And Leone Distribution
- The Generalized Tukey Lambda Distribution
- The Generalized Inverse Gaussian Distribution
- The Generalized Trapezoid Distribution
- The Geometric Extreme Exponential Distribution
- The Gompertz Distribution
- The Gompertz-Makeham Distribution
- The Gompertz-Makeham Distribution
- The Half-Cauchy Distribution
- The Half-Normal Distribution
- The Hyperbolic Secant Distribution
- The Inverse Gaussian Distribution
- The Inverted Beta Distribution
- The Inverted Gamma Distribution
- The Inverted Weibull Distribution
- The Johnson Sb Distribution
- The Johnson Su Distribution
- The Kappa Distribution
- The Kumaraswamy Distribution
- The Landau Distribution
- The Log Beta Distribution
- The Log Double Exponential Distribution
- The Log Gamma Distribution

- The Logistic-Exponential Distribution
- The Log-Skew-Normal Distribution
- The Log-Skew-T Distribution
- The Maxwell Distribution
- The McLeish Distribution
- The Mielke's Beta-Kappa Distribution
- The Muth Distribution
- The Non-Central Beta Distribution
- The Non-Central Chi-Square Distribution
- The Non-Central F Distribution
- The Non-Central T Distribution
- The Normal Mixture Distribution
- The Ogive Distribution
- The Pareto Second Kind Distribution
- The Pareto Distribution
- The Pearson Type 3 Distribution
- The Power Function Distribution
- The Power Lognormal Distribution
- The Power Normal Distribution
- The Rayleigh Distribution
- The Reciprocal Inverse Gaussian Distribution
- The Reciprocal Distribution
- The Reflected Generalized Topp Leone Distribution
- The Reflected Power Distribution
- The Semi-Circular Distribution
- The Skew Double Exponential Distribution
- The Skew Normal Distribution
- The Skew T Distribution
- The Slash Distribution
- The Slope Distribution
- The T Distribution
- The Topp and Leone Distribution
- The Trapezoid Distribution
- The Truncated Exponential Distribution
- The Truncated Normal Distribution

- The Truncated Pareto Distribution
- The Tukey Lambda Distribution
- The Two-Sided Ogive Distribution
- The Two-Sided Power Distribution
- The Two-Sided Slope Distribution
- The Uneven Two-Sided Power Distribution
- The Von Mises Distribution
- The Wakeby Distribution
- The Wald Distribution
- The Wrapped Cauchy Distribution

4.14 Continuous Random Variables in Excel

In this section the continuous random variables worked in Section 4.5 shall be reworked using *Microsoft Excel*.

Revisiting the Normal Distribution Example:

The spot speed of vehicles monitored at a traffic count station on an expressway indicates the speeds are normally distributed with a mean of 65 mph and a standard deviation of 7 mph.

- a) What is the probability that the speed of a vehicle is less than 55 mph?
- b) What is the probability that the speed of a vehicle is greater than 80 mph?
- c) What is the probability that the speed of a vehicles is between 60 mph and 75 mph?
- d) What is the 85th percentile speed?

Solution:

a) We have with $\mu = 65$ and $\sigma = 7$. The objective is to compute $P(X \le 55)$

Open a new session of *Excel*.

Enter the data as follows:

KI 📕	5 - °	Ŧ				Boo	k1 - Excel							
FILE			PAGE LAYOU				IEW N		VELOPER	BLUEBEAM	LASERFIC	HE Ofosu, Kv	vabe 🔻	D
Paste			11 · A A						matting *	🖹 Delete 🔹	↓ • ₼ • ∢ •	 Create PDF Change Se Batch PDF 	ttings	
lipboard	Fa	Font		Align	ment G	Number	Gi i	Styles		Cells	Editing	Bluebear	л	/
C5	* :	$\times \checkmark$	f_x											•
A	В	С	D	Е	F	G	н	I	J	К	L	M N	0	[
Mean		65 mph												
Std De	v	7 mph												
}														
a)	x		55 mph											
5	P(X <x)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>													
i														
·														
3														
)														
0														_
1														_
2														_
3														-
4														_
5														-
o 7														-
/ B														-
9														-
0														-
1														
$\neg \leftarrow \rightarrow$	Bin	omial N	ormal	÷				:	4					Þ
EADY 🔡	8										3 🗉 -		— + 100	9%
														_

Click on **Insert Function**. Under **Or select a category**, select **Statistical**. Under **Search for a function**, type "Normal".

Hit Go.

The list narrows down.

Insert Function	? 💌
Search for a function:	
normal	<u>G</u> o
Or select a <u>c</u> ategory: Recommended	
Select a functio <u>n</u> :	
NORM.S.DIST NORM.INV NORMINV NORMSDIST NORMDIST	
NORM.S.INV PHI	-
NORM.S.DIST(z,cumulative) Returns the standard normal distribution (has a mean of zero deviation of one).	o and a standard
Help on this function OK	Cancel

Scroll to NORM.DIST

Select NORM.DIST.

Review the description.

For this function, there is no need to convert an x value to a z-score, the function handles the conversion.

Insert Function		?
Search for a function:		
normal		Go
Or select a <u>c</u> ategory:	Recommended 🔹	
Select a functio <u>n</u> :		
NORMDIST NORM.S.INV PHI NORM.DIST		
NORMSINV CONFIDENCE CONFIDENCE.NORM		-
	standard_dev,cumulative) istribution for the specified mean and st	andard
Help on this function	ОК	Cancel

Hit OK.

The Function Arguments window opens.

Function Arguments	? <mark>×</mark>
NORM.DIST	
x	= number
Mean	= number
Standard_dev	= number
Cumulative	🔣 = logical
Returns the normal distribution	= or the specified mean and standard deviation. X is the value for which you want the distribution.
Formula result = <u>Help on this function</u>	OK Cancel

Complete the arguments entries as follows.

ľ			INSERT P	AGE LAYOUT		IULAS DATA			DEVELOPER	BLUEBEAM	LASERFIC		abe
	*		- 11	ĂĂ	= =		neral 🔹 🞼	Conditional Fo	ormatting -	🖫 Insert 🔻	$\sum - A_{ZT}$	🛛 📴 Create PDF	
-	- E -				$\equiv \equiv$	= = \$	- % , 🕎	Format as Tabl	le -	🖫 Delete 🗉	V - M -	🚫 Change Set	tings
Pa	ste	BI	<u>u</u> - <u> </u>	🖄 - A -	€ <u></u> - €	≫~ €.0 .00	.00 →.0	Cell Styles -		🛗 Format -	ب 🕭	២ Batch PDF	
= li	pboard 🗔		Font	6	Align	ment 🖬 Ni	umber 🕞	Styles		Cells	Editing	Bluebeam	ь I .
			~ . /	f. No									
N	ORM.DIST	* :	\wedge \checkmark	$\int x = NC$	DRIVI.DIST	(C4,B1,B2)							
	А	В	С	D	E	F	G H	I	J	К	L	M N	0
	Mean	6	i5 mph										
	Std Dev		7 mph										
3													
_	a)	x		5 mph	Function	n Arguments						? — X —	
		P(X <x)< td=""><td>4,B1,B2)</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	4,B1,B2)			-							
					NORM.	.DIST							
					_		X C4			= 55			
					_	м	ean B1		1	= 65			
						Standard_	dev B2		1	= 7			
0					_	Cumula	tive		1	 logical 			
1					-					=		_	
2					Returns	the normal distril	oution for the s	pecified mean an	nd standard o	leviation.			
-					_		Cumulative is	s a logical value:	for the cum	lative distributi	on function, u	se TRUE: for	
					-		t	he probability de	ensity functio	on, use FALSE.		· · –	
3													
4 5					Formula	result =							
4 5 5										_			
4 5 5 7					Help on	this function					ОК	Cancel	
4 5 7 3													
4 5 5 7													

This is a cumulative probability calculation. Under **Cumulative**, type in "TRUE".

x∎	5	- ¢-	Ŧ				Book1 - E	xcel	10			? 📧 –	= ×
FI	LE H	OME I	INSERT PA	AGE LAYOUT	FORM	IULAS DATA	REVIEW	VIEW	DEVELOPER	BLUEBEAM	LASERFIC	CHE Ofosu, Kwab	
Pas	te V	BIL	- 11 U - = -	· A •		= 🛱 Gener ≡ 🛱 - \$ - ≫ - €.0 \$	% *	🗄 Conditional 🖗 Format as Ta 🖗 Cell Styles v	1	E Insert → E Delete → E Format →	∑ • ^A Z▼ • ↓ • ₩ • 		gs
Clip	board 🖓		Font	E.	Alignn	nent 🕤 Num	ber 🖫	Styl	25	Cells	Editing	Bluebeam	~
NC	RM.DIST	• :	X 🗸	fx =NO	RM.DIST(C4,B1,B2,TRUE)							~
	А	В	С	D	E	FG	6 н	I	J	К	L	MN	0
	Mean		i5 mph										
	Std Dev		7 mph										
3	-1			an a b									
4 5	a)	x P(X <x)< td=""><td>2,TRUE)</td><td>mph</td><td>Function</td><td>Arguments</td><td></td><td></td><td></td><td></td><td></td><td>? 💌</td><td></td></x)<>	2,TRUE)	mph	Function	Arguments						? 💌	
6		P(A~X)	2,1KUE)		NORM.	DIST							
7							X C4		1	= 55			
8						Mea	n B1			= 65			
9						Standard_de	v B2			= 7			
10						Cumulativ	e TRUE			= TRUE			
11 12										= 0.076563726			
13					Returns t	the normal distribut							
14						C		is a logical valu the probability		ulative distributi on, use FALSE.	ion function, u	ise TRUE; for	
15													
16					Formula	result = 0.0765637	26						
17 18							20			_			
18 19					Help on t	this function					ОК	Cancel	
20													
21									1				
	() ·	Binor	mial Nor	mal 🤆	Ð				÷ •				
EDI	i 🔚									⊞ [8 📙 -	· · · · · · · · · · · · ·	

Review the **Formula result**. Hit **OK**.

The result is posted to the current cell.

x 🗓 📙 <			PAGE LAYOUT	FORML	JLAS		ok1 - Excel VIEW	VIEW DI	EVELOPER	BLUEBEAM	LASERFI		fosu, Kwabe	
Paste	Calibri B I		1 · A A	= = = = = = {= ==	■ Ē* ■ Ē • ≫⁄•	General \$ - % * 5.00 - 3.00 Number	▼ Part Co For ↓ Ce	nditional Fo rmat as Tabl II Styles •		Insert ▼ Delete ▼ Format ▼ Cells	∑ - ^A Z▼ ↓ - M	 The cree Cree Chat Chat Chat 	eate PDF ange Settings	
C5	*	$\times \checkmark$	$f_x = NC$	RM.DIST(C	4,B1,B2,	,TRUE)								
A	В	С	D	E	F	G	н	I	J	К	L	м	N	0
1 Mean		65 mph												
2 Std Dev		7 mph												
a)	x	5	5 mph											
u)	P(X <x)< td=""><td>0.07656</td><td>- ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.07656	- ·											
	. (
•														
)														
D														
1														
2														
4														
5														
5														
7														
8														
9														
0														
1	Bin	omial No	rmal	+)				:	4					•
READY 🔚	l							-			╗ ┍┑ -		+	100%
														20070

b) $P(X \ge 80) = 1 - P(X < 80)$

Update the spreadsheet as follows:

X	5	T (? 1	Ŧ				В	ook1 - Exc	el					? 🗹 -		3
	ILE H	OME I		AGE LAYOU				REVIEW		EVELOPER		LASERFIC	CHE	Ofosu, Kwał	•	O
Pa	ste	Calibri B I L	- 11 1 -	т А́ Ф т <u>А</u>		= = ≫⁄ •	General \$ - % €.0 .00 .00 →.0	· Fa	Conditional Fo Format as Tab Cell Styles -	ermatting * le *	E Insert → Delete → Format →	v - M -	- Øc		ngs	
lij	pboard 🗔								Styles			Editing		Bluebeam		
28	3	* :	XV	fx												
	А	В	с	D	E	F	G	н	I	J	К	L	м	N	0	
	Mean		5 mph													
	Std Dev		7 mph													
	a)	x		5 mph												
		P(X <x)< td=""><td>0.076564</td><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.076564	L												
1	b)	X	80) mph												
		P(X>80)														
								_								
		Binor	nial Nor	mal	(+)					•						ļ

In the current cell, type the following:

" = 1 - Normal"

However, before you complete the entry the candidate list appears.

Select NORM.DIST. Double click on NORM.DIST.

	I 🖬 🔊			PAGE LAYOUT	EOPA	IULAS	DATA	Book1 - Exce REVIEW	VIEW D	DEVELOPER	DILIEDEAM	LASEDE		? 📧 – Ofosu, Kwabe	-
Pa	ste			1 · A A				I ▼ /2 C % > /2 F ∏ C		ormatting - le -	🖫 Insert 寸	∑ - ^A Z▼	-		
N	ORM.DIST	• :	X 🗸	<i>fx</i> =1-1	N										
	А	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0
	Mean		5 mph				_/_								
	Std Dev		7 mph				/								
3 1	a)	x	51	5 mph											
5	a)	^ P(X <x)< td=""><td>0.07656</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.07656												
5		. (
7	b)	x	8	0 mph											
8		P(X>80)	=1-N												
9			€ N		-	/									
0			€ N/	4 EGBINOM.DIST											
1 2				TWORKDAYS											
2 3				TWORKDAYS.II	ITL										
4				DMINAL DRM.DIST		Returns th	e normal c	distribution for	the specifier	mean and	tandard deviatio	20			
5				DRM.INV					ine specifie						
6				DRM.S.DIST											
7			€ NC € NC	DRM.S.INV											
8			JE NC		-										
9															
1															
1		Binor	and Mar	rmal	+)	1				: •					•

The function prompt appears.

X	1 🗄 🏷	- 0-	Ŧ				Bo	ok1 - Excel					? 🕋 –	
		OME I		AGE LAYOU						EVELOPER	BLUEBEAM	LASERFIC	CHE Ofosu, Kwab	e • 0
1	ste		- 11 U -	- Δ [*] /	- = =	= 🖻	General	∽ ⊑ Co	nditional Fo	rmatting -	🖀 Insert 寸	Σ • ^A _Z •	Create PDF	
	L 📴 🗸				`≡≡		\$ - %	🤊 🐨 Fo	mat as Tabl	2 -	a E× Delete →	U - M -	🔅 Change Settin	gs
Pa	ste	BI	<u>u</u> . <u>.</u> .	🖄 - A	* e =	87 -	€.0 .00 .00 →.0	Ce	l Styles -		🛗 Format -			
	pboard 🗔						Number				Cells	Editing	Bluebeam	
N	ORM.DIST	• :	X 🗸	fr =1	NORM.DI	ST(
	A	B	C i5 mph	D	E	F	G	Н	I	J	K	L	MN	0
	Mean Std Dev	-	7 mph											
2 3	Stu Dev		7 шрп											
4	a)	x	55	mph										
5	-,	P(X <x)< td=""><td>0.076564</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.076564	-										
6														
7	b)	x	80	mph										
8		P(X>80)	=1-NORM	.DIST(
9			NORM	1.DIST(x, me	an, standard	l_dev, cumu	lative)							
10														
1														
2														
.3														
.4														
6														
17														
18														
19														
20														
1														
	$\leftarrow \models . \ .$	Binor	mial Nor	mal	+					4				Þ

Point-and click to enter the arguments in the order shown in the tooltip, separating each argument with a comma (",").

C8 I X fx =1-NORM.DIST(C7,B1,B2,TRUE A B C D E F/ G H I J K L M N O 1 Mean 65 mph Image: Simph	X∎	. 5	- @-	Ŧ				Book1 -	Excel				? 🛧 –	. 🗆 X
Clipboard 15 Font Alignment Number 16 Styles Cells Editing Bluebeam C8 * <th>FILE</th> <th>H</th> <th>OME IN</th> <th>ISERT P.</th> <th>AGE LAYOUT</th> <th>FORMULAS</th> <th>DATA</th> <th>REVIEW</th> <th>VIEW</th> <th>DEVELOPE</th> <th>R BLUEBEAM</th> <th>LASERFICH</th> <th>HE Ofosu, Kwab</th> <th> O.</th>	FILE	H	OME IN	ISERT P.	AGE LAYOUT	FORMULAS	DATA	REVIEW	VIEW	DEVELOPE	R BLUEBEAM	LASERFICH	HE Ofosu, Kwab	O.
C8 I I I J K L M N O 1 Mean 65 mph C D E F G H I J K L M N O 1 Mean 65 mph I I I I I I I I M N O 2 Std Dev 7mph I	Paste 		B I U											ngs
A B C D E F G H I J K L M N O 1 Mean 65 mph Image: Constraint of the straint o				Font						styles	Cells	Editing	Diuebeam	
1 Mean 55 mph Implementation Implem	C8		× : .	\times \checkmark	Jx = 1-N	ORM.DIST(C7,	B1,62,TRUE							~
4 a) x 55 mph Imph Imph </th <th>2 Sto</th> <th>ean</th> <th>65</th> <th>mph</th> <th>D</th> <th>E</th> <th>F G</th> <th>i I</th> <th>1</th> <th>IJ</th> <th>K</th> <th>L</th> <th>MN</th> <th>0</th>	2 Sto	ean	65	mph	D	E	F G	i I	1	IJ	K	L	MN	0
7 b) x 30 mph Image: constraint of the constrai	4 a) 5					_/								
9 NORM.DIST(x, mean, standard dev, cumulative) NORM.DIST (x, mean, standard dev, cumulative distribution function IMORM.DIST returns the cumulative distribution function IMORM.DIST returns the cumulative distribution function NORM.DIST returns the cumulative distribution function 11 C C FALSE - probability mass function NORM.DIST returns the cumulative distribution function Imore that is the cumulative distribution function 12 C <td>7 b)</td> <td></td> <td></td> <td>P</td> <td></td> <td>B2,TRUE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7 b)			P		B2,TRUE								
10 <	9						umulative)							
	111 122 133 144 155 166 177 188 199 200									ORM.DIST retu	Irms the cumulative	e distribution fu		

Close the parenthesis. Hit **Enter** on your keyboard.

The result is displayed in the current cell.

	pboard G	виц	Font		€ 78	87 -	General \$ - % * €.0 -00 Number	🕎 Ce	II Styles ▼		🔛 Delete 🔹	• •	 Create PDF Change Setting Batch PDF Bluebeam 	gs
	A	В	c	D	E	F	G	н	I	J	к	L	M N	0
	Mean		5 mph	_			-			-		-		
	Std Dev													
3														
4	a)	x	55	mph										
5		P(X <x)< td=""><td>0.076564</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.076564											
6														
	b)	x		mph										
8		P(X>80)	0.016062											
9 10														
11														
12				`										
13														
4														
.5														
16														
17														
18														
19														
20														
21	↓	Binom	nial Nor		(+)					4				

c) $P(60 \le X \le 75)$

Update the spreadsheet as follows:

		· <> ÷ OME INSE	RT PAG	E LAYOUT	FORMUL	AS DA	TA REVI	1 - Excel EW VIE	W DEV	ELOPER	BLUEBEAM	LASERFIC		fosu, Kwabe	
Pa	ste	Calibri	• 11 • 🖽 • 🗸	• A A			General ▼ \$ ▼ % *	Cond	litional Form at as Table * Styles *	atting -	Events of the second se	∑ • ^A Z▼• ↓ • ₩ •	📴 Cre ۞ Chi 📴 Bat		T
C1	.2	- : X	. √ f.	x											
	А	В	С	D	E	F	G	н	Ι	J	К	L	м	N	0
	Mean Std Dev		mph mph												
	a)	x P(X <x)< td=""><td>55 0.076564</td><td>mph</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	55 0.076564	mph											
	b)	x P(X>80)	80 0.016062												
D	c)	x1	60	mph											
1 2 3		x2 P(x1 <x<x2)< td=""><td>75</td><td>mph</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<x2)<>	75	mph											
_	4 1	Binomial	Norma	al (i	-)					4					Þ

In the **Formula Bar** type the following:

(Pay attention to the parentheses.

Use the tooltips as they appear.

Use point-and-click as needed versus typing in all entries.)

KII 🖬 5 FILE H	· ♂· ↓ OME INSERT	PAGE LAYOUT		DATA	Book1 - E		DEVELOPER	PHIEREAM	LASEREICI	? ा − HE Ofosu, Kwabe	
Paste	B I <u>U</u> -	· 11 · A A A ·		Gene	ral • 6	Conditional F Format as Tal Cell Styles •	ormatting - ble -	Insert ▼ S Delete ▼ H Format ▼	∑ • ^A Z▼ • ↓ • M • ∢ •	 Create PDF Change Settings Batch PDF 	
lipboard 🕞	Font	5	Alignment	G Nun	nber 🕞	Styles	5	Cells	Editing	Bluebeam	1 4
NORM.DIST	- : 🗙 🗸	/ <i>fx</i> =(NO	RM.DIST(C11,	B1,B2,TRU	E)-NORM.DI	ST(C10,B1,B2	,TRUE))				
A Mean Std Dev	B 65 mph 7 mph		E	F	G	H I	J	K	L	M N	0
3 4 a) 5	x P(X <x) 0.0<="" td=""><td>55 mph 76564</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)>	55 mph 76564									
7 b) 3 -	x P(X>80) 0.03	80 mph 16062									
0 c) 1 2	x1 x2 P(x1 <x<x2) 2,tr<="" td=""><td>60 mph 75 mph</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<x2)>	60 mph 75 mph									
3 4	F(A1 \ \ \ Z) [2,110										
5 6 7											
8											
1											

Hit **Enter** on the keyboard.

The result displays in the current cell.

	ste	в <u>г</u> <u>ч</u> -	· 🖽 🔹 -	🔿 - <u>A</u> -	€₽	87 -	General ▼ \$ ▼ % * €.00 .000 Number 5	📝 Cell S	tyles *		Ensert • Delete • Format • Cells	· · ·	🚫 Chi ២ Bat	ange Settings	
C	13	* : X	🗸 j	fx											
	Α	В	С	D	E	F	G	Н	I	J	К	L	М	N	0
	Mean	65	mph												
	Std Dev	7	mph												
3															
	a)	x	55	•											
5		P(X <x)< td=""><td>0.076564</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.076564												
6															
	b)	X	80	•											
8 9		P(X>80)	0.016062												
	c)	x1	60	mph											
11	9	x2		mph											
12		P(x1 <x<x2)< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<x2)<>		•											
13		1 (12 31 312)	010000011												
14															
15															
16															
17															
18															
19															
20															
21															
	4 F	Binomial	Norm	al 🤆	Ð				: [4					Þ

d) The 85^{th} percentile speed is the *x* value that has a cumulative probability of 0.85. This can be calculated by the inverse cumulative density function (also called the quantile function, or the percent point function).

Update the spreadsheet as follows:

		· ♂· ÷ OME INSE			FORMU			L - Excel			DILIEDEANA	LACEDERCI	? 📧 HE Ofosu, k	
Pa		Calibri B I <u>U</u> -	• 11			■ E* [■ E • ≫⁄••			litional Form at as Table • ityles •	ELOPER natting *		∑ • ^A Z▼• ▼ • ₩ •)F Gettings F
C1	15	- : ×	V 1	fx										
	А	В	С	D	E	F	G	н	I	J	К	L	M	N 0
	Mean Std Dev		mph mph											
	a)	x P(X <x)< td=""><td>55 0.076564</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	55 0.076564	•										
5 7	b)	x	80	mph										
8 9		P(X>80)	0.016062											
.0 .1 .2	c)	x1 x2 P(x1 <x<x2)< td=""><td></td><td>mph</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<x2)<>		mph										
3	d)	P(X1<<<2)	0.085911											
L5		x												
.7 .8														
19 20														
21	►	Binomial	Norm	al G	F)				:	4				

Click on **Insert Function**. Under **Or select a category**, select **Statistical**. Under **Search for a function**, type "Normal".

X	l 🖯 5	- @·	Ŧ				Во	ok1 - Excel						? 📧 -		×
F	ILE H	OME	INSERT P	AGE LAYOUT	FORMUL	.AS	DATA RE	EVIEW Y	VIEW DE	VELOPER	BLUEBEAM	LASERF	ICHE	Ofosu, Kwak	•	O
Pa	ste	Calibri B I		A A	===	87 -		> 🐺 For	nditional Form rmat as Table Il Styles * Styles	_	Ensert • Delete • Format • Cells	∑ - 2⁄r ↓ - # €diting	- 🔕	Create PDF Change Settir Batch PDF Bluebeam	ngs	
BI	NOM.DIST	* 1	$\times \checkmark$	$f_x =$					/_							1
	А	В	С	D	E	F	G	н		J	К	L	М	N	0	_[
	Mean	(55 mph													
_	Std Dev		7 mph			_										
3	,					I	insert Function		/			? X				-
;	a)	X	55	mph		-	Search for a func	tion:								-
		P(X <x)< td=""><td>=</td><td>4</td><td></td><td></td><td>normal</td><td>V</td><td></td><td></td><td></td><td>Go</td><td></td><td></td><td></td><td>-</td></x)<>	=	4			normal	V				Go				-
, 7						_										-
, B							Or select a <u>c</u> ate	gory: Statis	tical		•					1
9						-	Select a function	:								1
10							AVEDEV					<u>^</u>				
1							AVERAGEA									
12							AVERAGEIF AVERAGEIFS									
3						_	BETA.DIST BETA.INV					+				_
.4						_	AVEDEV(numb	er1,number	2,)							_
5						_					lata points from					-
L6 L7						_	contain numbe		umbers or hai	nes, arrays	, or references th	Idl				-
L7 L8						_										-
19						-				_						-
20						-	Help on this fund	<u>ction</u>			ОК	ancel				-
1																1
	4 F -	Bino	mial Nor	mal	÷				:	4					•	Л

Hit Go.

The list narrows down.

nsert Function			? ×	1
Search for a function:				
normal			<u>G</u> o	
Or select a <u>c</u> ategory: Recommende	ed	•		
Select a functio <u>n</u> :				
NORM.S.DIST NORM.INV NORMINV NORMSDIST NORMDIST NORM.S.INV PHI			× III ×	
NORM.S.DIST(z,cumulative) Returns the standard normal distri deviation of one).	bution (has a	mean of zero	and a standard	-
Help on this function		ОК	Cancel	

Scroll to NORM.INV Select NORM.INV. Review the description. Confirm this is the function that is needed.

Insert Function	
Search for a function:	
normal <u>G</u> o	
Or select a category: Recommended	
Select a functio <u>n</u> :	
NORM.S.DIST	
NORMINV NORMSDIST NORMDIST NORM.S.INV PHI	
NORM.INV(probability,mean,standard_dev) Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.	
Help on this function OK Cancel	
	•

Hit OK.

The Function Arguments window opens.

Function Arguments	?	x
NORM.INV		
Probability	🐹 = number	
Mean	🐹 = number	
Standard_dev	🐹 = number	
	=	
Returns the inverse of the	ormal cumulative distribution for the specified mean and standard deviation	ı.
	Probability is a probability corresponding to the normal distribution, a num between 0 and 1 inclusive.	nber
	between o and 1 metasive.	
Formula result =		
romula result -		
Help on this function	OK Cance	1

Complete the arguments entries as follows. (Use point-and-click) as needed.

Pa	ste pboard	BIU	- 11 → A -			General ▼ \$ ▼ % ≯ €.0 .00 5 Number 0		itional Form at as Table • tyles • Styles	-	Insert •		🚫 Ch ២ Bat	eate PDF ange Settings tch PDF Sluebeam		
C1	15	- : X	fx	=NORM.	INV(C14,B1,B	2)									
	А	в	C [E F	G	Н	I	J	К	L	м	N	0	
1	Mean	65	mph												
2	Std Dev	7	mph												
3															
1	a)	x	55 mph												
5		P(X <x)< td=""><td>0.076564</td><td>F</td><td>unction Argum</td><td>ients</td><td></td><td></td><td></td><td></td><td>? ×</td><td></td><td></td><td></td></x)<>	0.076564	F	unction Argum	ients					? ×				
5				r	NORM.INV										
	b)	X	80 mph		Probability C14										
3		P(X>80)	0.016062		Mean	B1		=	65						
9	-1		60 mmh		Standard dev	B2		=	7						
	c)	x1 x2	60 mph 75 mph					()	70.0550						
1		P(x1 <x<x2)< td=""><td></td><td></td><td>Returns the inve</td><td>rse of the normal</td><td>l cumulative d</td><td></td><td>72.25503 for the sp</td><td></td><td>i standard</td><td></td><td></td><td></td></x<x2)<>			Returns the inve	rse of the normal	l cumulative d		72.25503 for the sp		i standard				
13		F(A1-A-A2)	0.005511		deviation.										
	d)	P(X <x)< td=""><td>0.85</td><td></td><td></td><td>Standard</td><td></td><td></td><td>viation of</td><td>the distribution</td><td>, a positive</td><td></td><td></td><td></td></x)<>	0.85			Standard			viation of	the distribution	, a positive				
15	-/	x	I,B1,B2)				numb	er.							
16				-											
17				F	Formula result =	72.25503373									
8					Help on this fun	ction				ОК	Cancel				
19					Telp on this full		_								
20															
21			Normal	(+)											

Review the **Formula result**. Hit **OK**.

The result displays.

		OME INSE		SE LAYOUT	FORMU		ATA REV	k1 - Excel /IEW VII	EW DEV	ELOPER	BLUEBEAM	LASERFIC	HE O	fosu, Kwabe	
	∎ X □ ⊡ - ste ✓	Calibri B I <u>U</u> -								natting -	E Insert → Delete → Format→				
	board 🗔						Number	Fail	Styles		Cells	Editing	В	luebeam	
CI	.5	- : X	J J	fx =NO	RM.INV(C	L4,B1,B2)									
	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
	Mean		mph												
	Std Dev	/	mph												
	a)	x	55	mph											
		P(X <x)< td=""><td>0.076564</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.076564												
	b)	x	80	mph											
3		P(X>80)	0.016062												
9															
	c)	x1 x2		mph											
1 2		x2 P(x1 <x<x2)< td=""><td></td><td>mph</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x<x2)<>		mph											
.2		P(X1\/\X2)	0.085511												
	d)	P(X <x)< td=""><td>0.85</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.85												
5		x	72.25503												
6															
7															
8															
9															
0															
1	< >	Binomial	Norm	al 🤅	-										Þ

Complete.

Example:

An engineer collected the following data for the completion time (in minutes) of an industrial process. (The data can be found in the *Excel* file provided with your Suncam course materials, on the spreadsheet named "LogNormal").

FILE Paste		E INSERT						EW VIE			BLUEBEAM		HE O	fosu, Kwabe eate PDF ange Settings	
Clipb	oard 🗔	F	ont	Es.	Alignm	ent 🗔	Number 🛛		Styles		Cells	Editing	E	luebeam	1.4
E16	*	\pm \times	$\checkmark f_x$												
	A	В	С	D	E	F	G	н	I	J	К	L	м	N	C
1 ti	me(mins)														
2	1.49														
3	1.39														
1	7.52														
5	28.63														
5	1.07														
7	8.66														
3	0.83														
9	1.88														
LO	3.65														
1	2.78														
2	0.54														
3	9.19														
4	2.61														
15	2.16														
6	0.82]									
17	0.92														
18	9														
9	1.86														
20	5.79														
21	1.653														
2	8.3														
3	8.94														
4	2.35														
5	0.71														
		Binomial	Normal	LogNor		+			:	_	i				•

Prior knowledge and experience suggests the Log-Normal distribution is the appropriate distribution to describe this data.

In order to work with the Log-Normal distribution, each value must be converted to its natural logarithm value.

x	5-	⊘					Book	1 - Excel					?	T –	
	ILE HOM	IE INSER	T PAG	E LAYOUT	FORMU	JLAS DA	TA REVI	EW VIEW	DEVEL	OPER	BLUEBEAM	LASERFIC	HE Of	osu, Kwabe	- 0
Pa	ste	; <u>U</u> -	- 11	· A ▲	= = : = = : @ #=		Seneral ▼ \$ ▼ % *	Format a	nal Forma as Table - es -	tting -	Insert ▼ Insert ▼ Delete ▼ IIII Format ▼	∑ • ^A Z™ • ↓ • M • <i>e</i> •	💿 Crea ۞ Cha ២ Bato	ate PDF nge Settings :h PDF	
Cli	pboard 🕞		Font	G	Alignm	ent 🖬	Number 5		Styles		Cells	Editing	BI	uebeam	~
N	ORM.INV 👻	: 🗙	🗸 f.	x =LN(4	2										~
	А	В	С	D LN(number)	F	G	Н	Ι	J	К	L	М	Ν	C 🔺
1	time(mins)	log(x)													
2	1.49	=LN(A2)													
3	1.39														
4	7.52														
5	28.63														
6	1.07														
7	8.66														
8	0.83														
9	1.88														
10	3.65														
11	2.78														
12	0.54														
13	9.19														
14	2.61														
15	2.16														
16	0.82														
17	0.92														
18	9														
19	1.86														
20	5.79														
21	1.653														
22	8.3														
23	8.94														
24	2.35														
25	0.71														-
	< ▶	Binomial	Norma	al LogN	ormal	+			: 4	(
ED	т 🔚		1			<u> </u>						3 🗉 -	+	+	100%

Which yields,

X∎	🗄 🍤 -	€. ÷						1 - Excel						* -		
				GE LAYOUT		LAS D	ATA REV	IEW VIE	W DEV	ELOPER	BLUEBEAM	LASERFICE	HE Of	osu, Kwabe	- 6	2
- us						■ ₽ ■ □ - ≫ -	General ▼ \$ ▼ % * €-0 .00 .00 →.0	Forma	itional Form at as Table • tyles •	atting -	E Insert ▼ Delete ▼ Format ▼	$\sum_{z} \cdot \frac{A_{z}}{2} \cdot \cdot$ $(\downarrow \cdot) \cdot \cdot$	📴 Cre 🚫 Cha ២ Bate	ate PDF ange Settings ch PDF		
Clip					Alignme	nt Gi	Number 1	ā l	Styles		Cells	Editing	В	luebeam		^
B 3	Ŧ	: 🗙	🗸 j	fx												٧
	А	В	С	D	Е	F	G	н	Ι	J	К	L	М	Ν	C	
1	time(mins)	log(x)														
2	1.49	0.398776														
3	1.39															
1	7.52															
5	28.63															
5	1.07															
7	8.66															
3	0.83															
9	1.88															
0	3.65															
1	2.78															
2	0.54															l
3	9.19															
4	2.61															
5	2.16															
.6	0.82															
7	0.92 9															ł
8																
9	1.86 5.79															
1	1.653															
2	1.053															1
2 3	8.94															
5 4	2.35															1
5	0.71															1
_	0.71	Binomial	Norm	al Lock	ormal	(+)										31L 1
	DY 🔚	Binomial	Norm	ai Logi	ormai	•				4				_	Þ	1

And then replicate for the other values.

XI .	5-	C ² - ∓						1 - Excel						F -		
FILE				GE LAYOUT			ATA REVI	EW VIEV	V DEV	ELOPER	BLUEBEAM	LASERFIC	HE Of	osu, Kwabe		0
	K E	alibri	- 11	· A A		■ *	General • \$•%	Condi Forma	tional Form t as Table •	atting *	E Insert ▼ E Delete ▼ E Format ▼	∑ • ^A Z▼•	📴 Crea	ate PDF inge Settings	5	
Paste •	💉 B	ΙŪ・		🐎 - <u>A</u> -	€≣ ∔≣	87 -	€.0 .00 .00 →.0	🐷 Cell St	yles -		Format -	⊘ -	២ Bato	ch PDF		
Clipboa							Number 5					Editing		uebeam		
B2	Ŧ	: X		fx =LN()	A 2)											
4	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	
	e(mins)															_
2		0.398776														_
3		0.329304														
1		2.017566														_
5		3.354455														-
•		0.067659														-
/		2.158715														
3		-0.18633														_
9		0.631272														_
LO		1.294727														-
1		1.022451														-
12		-0.61619														-
.3		2.218116														-
4		0.95935														-
.5		0.770108														
16		-0.19845														-
.7		-0.08338														-
18		2.197225														-
19 20		0.620576														-
20	1.653															-
22	1.053															-
23	8.94															
4	2.35															
25	0.71	-0.34249														
-																-
4		Binomial	Norm	ai LogN	ormal	\oplus				▲	.6 🏢 🗊				Þ	

Compute the mean of the $\log(x)$ values.

x∎	🗄 🔊 -	⊘						1 - Excel						A –	
FILE					FORMULA		A REVI	EW VIEW	DEV	ELOPER	BLUEBEAM	LASERFIC	HE O	fosu, Kwabe	- 0
Paste	B oard 5	I <u>U</u> ,	- 11	- A^ A → A	≡ ≡ ≡ ≡ ≡ ≡ € € € ≫	Ge	neral ▼ ▼ % ۶	r Conditi Format Cell Sty	onal Form as Table - les -	atting -	Insert Insert Cells	∑ • A _Z • ↓ • A• • ↓ •	📴 Cre 🚫 Chi ២ Bat	eate PDF ange Settings sch PDF	
NOF	RM.INV -	: 🗙	1	fx =AVE	RAGE(B2:B5	L									
		В	0		E		G	н	I	J	К	L	м	N	С
_	me(mins)				=AVERAGE(
2		0.398776			AVERAGE(n		number2],	.)							
;		0.329304													
1	7.52	2.017566													
5		3.354455													
;	1.07	0.067659													
	8.66	2.158715													
	0.83	-0.18633													
	1.88	0.631272													
0	3.65	1.294727													
1	2.78	1.022451													
2	0.54	-0.61619													
3	9.19	2.218116													
4	2.61	0.95935													
5	2.16	0.770108													
6	0.82	-0.19845													
7	0.92	-0.08338													
8	9	2.197225													
9		0.620576													
0	5.79	1.756132													
1	1.653	0.502592													
2		2.116256													
3		2.190536													
4		0.854415													
5	0.71	-0.34249													
4	•	Binomial	Norm	al LogN	lormal	+			:	4					Þ
OIN	r 🔚								_	_		3 🗉 -			100%

The result is as follows.

x∎	🗄 🍤 -	⊘⊸ ∓					Book	1 - Excel						T -	
FI	LE HOM	INSE	RT PAG	GE LAYOUT	FORMUL	AS D	ATA REV	EW VIEW	V DEV	ELOPER	BLUEBEAM	LASERFIC	HE O	fosu, Kwabe	- 0
Pas		alibri 3 I <u>U</u> -	• 11	• A a •			General ▼ \$ ▼ % *	Forma	tional Form t as Table = yles =	atting *	Haran Sert → Example The Series → Example Format →	∑ • ^A Z▼• ↓ • ^A ₩•	💼 Cre 🚫 Chi ២ Bat	ate PDF ange Settings ch PDF	
Clip					Alignmen	t Gil	Number 7		Styles		Cells	Editing	В	luebeam	· ·
E2		: 🗙	🗸 J	fx											
	А	В	С	D	E	F	G	н	Ι	J	K	L	М	N	С
	time(mins)	log(x)		Mean:	1.086036										
2	1.49	0.398776													
3	1.39	0.329304													
4		2.017566													
5		3.354455													
6		0.067659													
7		2.158715													
8	0.83	-0.18633													
9		0.631272													
10		1.294727													
11		1.022451													
12		-0.61619													
13		2.218116													
14		0.95935													
15		0.770108													
16		-0.19845													
17		-0.08338													
18		2.197225													
19		0.620576													
20		1.756132													
21		0.502592													
22		2.116256													
23		2.190536													
24		0.854415													
25	0.71	-0.34249													
	< →	Binomial	Norm	al LogN	lormal	(+)				4					►
REA	DY 🔚											3 🗉 -		+	100%

Compute the standard deviation of the $\log(x)$ values.

X∎	🗄 🍤 -	@∓					Book	d - Excel					?	A -		×
FII					FORMUL			IEW VIEV		ELOPER		LASERFIC				2
					= = = = = = € = € § Alignmen						Insert Insert Cells	∑ • ^A Z▼ • ↓ • A• • etiting		eate PDF ange Settings ch PDF luebeam		/
NO	RM.INV *	: 🗙	× .	fx =s⊤	DEV.S(B2:B51	L										•
				D	E	F	G	н	I	J	К	L	м	N	o	;[
1	time(mins)	log(x)		Mean:	1.086036											
2	1.49	0.398776		Std dev:	=STDEV.S(32:B51										
	1.39	0.329304			STDEV.S(n	umber1,	[number2],)								
	7.52	2.017566														
	28.63	3.354455														
5	1.07	0.067659														
'	8.66	2.158715														
3	0.83	-0.18633														
)	1.88	0.631272														
0	3.65	1.294727														
1	2.78	1.022451														
2	0.54	-0.61619														
.3	9.19	2.218116														
4	2.61	0.95935														
.5	2.16	0.770108														
6	0.82	-0.19845														
7	0.92	-0.08338														
.8	9	2.197225														
9	1.86	0.620576														
20		1.756132														
1	1.653	0.502592														
2		2.116256														
3		2.190536														
4	2.35	0.854415														
25	0.71	-0.34249														
	L ▶	Binomial	Norn	nal Log	Normal	+			:						Þ	ĺ
POIN	AT 🔚					_						3 🔟 -	_		100%	6

The result is as follows.

X∎	🗄 🍤 -	⊘						1 - Excel						* -		
FII					FORMUL						BLUEBEAM				K	
Past		alibri 3 I <u>U</u> -	• 11	• A A		₽ □ - ? -	General ▼ \$ ▼ % > €.0 →.0	Condi	tional Form t as Table • yles •	atting •	Insert ▼ Delete ▼ Format ▼	∑ • ^A Z▼• ↓ • ^A • ↓ •	💿 Cre 🚫 Ch ២ Bat	eate PDF ange Settings sch PDF	;	
Clip	oard 🕞		Font	Fa	Alignmer	nt 🗔	Number 7	â	Styles		Cells	Editing	В	luebeam		1
E3	Ŧ	: 🗙	~	fx												,
		В		D	E	F	G	Н	I	J	К	L	м	N	c	-
-	ime(mins)			Mean:	1.086036		0		1	,	K	L.	IVI	IN		iŀ
2		0.398776		Std dev:	1.098015											1
3		0.329304		Sta act.	1.050015											1
4		2.017566														1
5		3.354455														1
5		0.067659														1
7	8.66	2.158715														1
3	0.83	-0.18633														1
9	1.88	0.631272														
LO	3.65	1.294727														
1	2.78	1.022451														
2	0.54	-0.61619														1
3	9.19	2.218116														1
4	2.61	0.95935														1
.5	2.16	0.770108														
.6	0.82	-0.19845														
7	0.92	-0.08338														
.8	9	2.197225														
19		0.620576														
20		1.756132														
21	1.653	0.502592														
22		2.116256														
23		2.190536														
24		0.854415														
5	0.71	-0.34249														
	Þ	Binomial	Norm	nal LogN	lormal	+			:	4					Þ	1
EAI)ү 🔚									_		I 🗉 –			100%	6

Conduct a probability calculation.

 $P(X < 10) = P(\log(x)) < \log(10)$

 $P(\log(x)) < 2.303$

X	🗄 🍤 -	C					Boo	k1 - Excel					?	<u> </u>		×
E	ILE HOM			GE LAYOUT	FORMU			IEW VIEW	DEV	ELOPER	BLUEBEAM	LASERFICH	HE Of	osu, Kwabe	- 0	1
Pa		3 I <u>U</u> -		× A × ⊗ × A ×					as Table ' les -		Insert ▼ The Pelete ▼ Format ▼	∑ • ^A Z™ • ↓ • M • ∢ •	២ Bate	inge Settings ch PDF		
Clip	board 🕞		Font	Fai	Alignme	ent G	Number	5	Styles		Cells	Editing	В	uebeam	1	^
N	DRM.INV 🔻	: 🗙	🗸 j	$f_x = \log$												v
	А	В	С	D	E	F	G	Н	Ι	J	K	L	М	Ν	C	Ē
1	time(mins)	log(x)		Mean:	1.086036	j										
2	1.49	0.398776		Std dev:	1.098015											
3	1.39	0.329304														
4	7.52	2.017566														
5	28.63	3.354455		x	log(x)	P(X<10)										
6	1.07	0.067659		10	2.302585	=log										
7		2.158715				🕭 LOG	_									
8	0.83	-0.18633				€ LOG1	-									
9		0.631272				E LOGE	ST NORM.DIST	Returns the	lognorm	al distribu	tion of x, where	ln(x) is normall	v distribu	ted with param	neters	1
10		1.294727					ORM.DIST	rectarits the	lognonni		cion or x, where		y distribu	tea with paran	ICCCIS	ŕ
11		1.022451														
12		-0.61619				🐼 LOGN	ORMDIST									L
13		2.218116													_	
14	2.61															
15		0.770108													_	
16		-0.19845													_	
17		-0.08338													_	
18		2.197225													_	
19		0.620576													_	
20		1.756132													_	
21		0.502592													_	
22		2.116256													_	
23		2.190536													_	
24		0.854415													_	
25	0.71	-0.34249														
	< ►	Binomial	Norm	al LogN	lormal	(+)				4					Þ	
ENT	er 🔚								_			3 🛄 -		+	100%	I

Or, alternately one may look up the Log-Normal function via the Insert Function icon.

				GE LAYOUT	FORM			VIEW VIE		ELOPER	BLUEBEAM			fosu, Kwabe	
	**		- 11	· A A			ieneral	Cond	itional Form	atting -	hadad .		_	ate PDF	
Pas	ste p	7 11		A .	= =		\$ - %	Porm	at as Table ≖		Ë× Delete →			ange Settings	
	- V	<u>1</u> <u>U</u> •		∑ × A ×	€E -9E	»?	0 .00 0.∉- 00	🐷 Cell S	tyles -		🛗 Format -	1	២ Bate	ch PDF	
Clip	board 🕞		Font		Align			G.			Cells	Editing	BI	luebeam	~
			4	£											
N	DRM.INV *		 . 	$f_x = LOC$	NORM.	DIST(D6)									~
	Α	В	С	D	E	F	G	Н	Ι	J	К	L	М	N	C
1	time(mins)	log(x)		Mean:	1.0860	36									
2	1.49	0.398776		Std dev:	1.0980	15									
3	1.39	0.329304													
4	7.52	2.017566													
5	28.63	3.354455		x	log(x)	P(X<10)									
6	1.07	0.067659		10	2.3025	85 =LOGNOR	M.DIST(E	06)							
7	8.66	2.158715			(T								
8	0.83	-0.18633			Funct	tion Arguments	5						?	×	
9	1.88	0.631272			LOG	NORM.DIST									
10	3.65	1.294727					х	D6		i	= 10				
11	2.78	1.022451					Mean			1	= number				
12	0.54	-0.61619				Stan	dard_dev				= number				
13	9.19	2.218116					mulative								
14	2.61	0.95935				cu	mulauve				= logical				
15	2.16	0.770108			_						=				
16	0.82	-0.19845				rns the lognorm dard_dev.	ial distribu	tion of x, wher	e In(x) is nor	mally distri	ibuted with par	ameters Mean	and		
17	0.92	-0.08338						Mann is the	mann of Inf	a					
18	9	2.197225						Mean is the	mean of In()	xj.					
19	1.86	0.620576													
20	5.79	1.756132													
21	1.653	0.502592			Form	ula result =									
22	8.3	2.116256			Help	on this function	n					ОК	Cance		
23	8.94	2.190536													
24	2.35	0.854415													
25	0.71	-0.34249													
		Binomial	Norm	-	lormal	(+)	1		:					1l	

Completing the arguments,

Function Arguments			? 💌
LOGNORM.DIST			
х	D6 💽	=	10
Mean	E1 💽	=	1.086035583
Standard_dev	E2 💽	=	1.098014737
Cumulative	TRUE 💽	=	TRUE
Returns the lognormal distribu Standard_dev.	tion of x, where In(x) is normally distri X is the value at which to evalu		0.00000000
Formula result = 0.866059098			
Help on this function			OK Cancel

The result is displayed accordingly.

x∎	🗄 🔊 -	⊘					Bool	d - Excel					?	A –	• >
FIL		INSER		GE LAYOUT				IEW VIEW		ELOPER		LASERFIC	HE Of	osu, Kwabe	- 0
Past •						E E - \$ ≫ - 5 went 5 1							🚫 Cha	inge Settings	
								3	Styles		Cells	Editing	D	uebeam	
F6	*	: 🗙	V .	$f_x = LOG$	NORM.D	IST(D6,E1,E2	,TRUE)								
	А	В	С	D	E	F	G	Н	Ι	J	К	L	М	N	C
	ime(mins)	log(x)		Mean:	1.08603	6									
2		0.398776		Std dev:	1.09801	5									
3	1.39	0.329304													
1		2.017566													
5		3.354455		х	log(x)	P(X<10)									
5		0.067659		10	2.30258	5 0.866059									
	8.66	2.158715													
3		-0.18633													
9	1.88	0.631272													
.0		1.294727													
1		1.022451													
2	0.54	-0.61619													
3	9.19	2.218116													
.4	2.61														
5		0.770108													
.6		-0.19845													
7		-0.08338													
.8		2.197225													
9		0.620576													
0		1.756132													
21		0.502592													
2		2.116256													
3		2.190536													
24	2.35	0.854415													
5	0.71	-0.34249													
4	•	Binomial	Norm	nal LogN	lormal	+			:	4					Þ
READ	DY 🔛											i 🏼 🔤		+	100%

Next, use the inverse cumulative density function (the quantile function) to determine the value that has a cumulative probability of 0.75, otherwise known as the 75th percentile.

FILE				AGE LAYOUT				TA RE		IEW DE	VELOPER matting *	BLUEBEAM	LASERFIC	HE C	? 📧 — [Dfosu, Kwabe reate PDF	
Paste	En - √ B	I <u>U</u> -		· A ▲	-	= = = = == {	≣ ≫	§ - % : ₀;		mat as Table I Styles -		EX Delete 🔹	₩ - #4 - ∢ -		hange Settings atch PDF	
Clipbo	ard G		Font			Alignme		Number	6	Styles		Cells	Editing		Bluebeam	~
NOR	M.INV 🔻	: 🗙	~	$f_x = \log \left(\frac{1}{2} \right)$	7											v
1	A	в	c	D	•	E	F	G	н	I	J	К	L	м	N	C 🔺
1 +0	ne(mins)		C	Mean:	1	L.086036		0	-	1	,	K	L	IVI	IN	
2		0.398776		Std dev:		1.098015										
3		0.329304		ota dev.	-											
4		2.017566														
5		3.354455		x	lo	g(x)	P(X<10)									
6		0.067659					0.866059									
7		2.158715														
8	0.83	-0.18633														
9	1.88	0.631272		P(X <x)< td=""><td></td><td>0.75</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>		0.75										
10	3.65	1.294727		x	=10	og										
11	2.78	1.022451				€ LOG]								
12	0.54	-0.61619														
13		2.218116				LOGE	ST ORM.DIST									
14		0.95935					ORM.DIST ORM.INV	Returns	the inverse	of the loano	rmal cumu	ative distributio	on function of a	x. where	In(x) is normally	/ distrib
15		0.770108														
16		-0.19845			(🐼 LOGN	ORMDIST]								
17		-0.08338														_
18		2.197225														
19		0.620576														_
20		1.756132														_
21		0.502592														_
22		2.116256														_
23		2.190536														_
24		0.854415			-											_
25	0.71	-0.34249			_	_					_					-
		Binomial	Norr	mal Log	Nor	mal	+			:	4					Þ
ENTER	1												8 🛄 -		+ +	

Going through the Inset Function icon,

FI	E HOM	E INSER	T PA	GE LAYOUT	FORML	JLAS DAT	ra revie	EW VIEW	/ DEV	ELOPER	BLUEBEAM	LASERFICH	HE OF	fosu, Kwabe	- 6	á
Pas Clip	× ∎.	I <u>U</u> -	- 11	• A • A •	€ ÷E	≫~ ^{€.}	eneral ▼	Conditi Format	ional Form as Table	-	E Insert → E Delete → E Format → Cells	∑ · AZT· ↓ · AB· ↓ · AB· ↓ Editing	📴 Cre ۞ Chi ២ Bat	ange Settings ch PDF		
E10		: X		0		IV(E9,E1,E2)										
	А	В	c	D	E	F	G	н	I	J	К	L	м	N	c	5
-	time(mins)	-	-	Mean:	1.086036		-			-		-				iľ
2		0.398776		Std dev:	1.098015											1
3	1.39	0.329304														1
1	7.52	2.017566														1
5	28.63			x	log(x)	P(X<10)										1
5	1.07	0.067659				5 0.866059										1
,	8.66	2.158715														1
в	0.83	-0.18633														1
9	1.88	0.631272		P(X <x)< td=""><td>0.75</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.75	5										
10	3.65	1.294727		x	=LOGNOF	RM.INV(E9,E	1,E2)									1
11	2.78	1.022451											_			
12	0.54	-0.61619			F	unction Argu	iments							? 💌		
13	9.19	2.218116				LOGNORM.IN	1V									1
14	2.61	0.95935					Probability	E9			E = 0.75					1
15	2.16	0.770108					Mean	E1			= 1.0860	35583				1
16	0.82	-0.19845				5	tandard_dev	E2			= 1.0980	14737				1
17	0.92	-0.08338					and_dev	-4			<u>()</u>					1
18	9	2.197225				Daturns the im		o an ormal and	nulativa di	etributi	= 6.2129 function of x, w		emplie die	tributed		1
19	1.86	0.620576				with paramete				schoution	runction of x, w	mere m(x) is no	many dis	stributed		1
20	5.79	1.756132					St	andard dev	is the stan	dard devia	ation of In(x), a p	ositive number				1
21	1.653	0.502592					50		in the start	cord actin	and a straight a b	control manifest				1
22	8.3	2.116256														1
23	8.94	2.190536				Formula result	- 6 21 2046									1
24	2.35	0.854415				ronnula result	- 0.212946	222								1
25	0.71	-0.34249			1	Help on this fu	unction					OK	C	ancel		ŀ
	•	Binomial	Norm		lormal	(+)	_			•					Þ	

Yielding the result,

X∎	🖯 🎝 -	⊘~ ∓					Book	1 - Excel					?	<u>F</u> – I	
FI	LE HOM	INSE	RT PA	GE LAYOUT	FORMUL	LAS DA	TA REVI	EW VIEW	DEVI	ELOPER	BLUEBEAM	LASERFIC	HE Ofo	su, Kwabe	- 0
Pas	te 💉 B	alibri 3 I <u>U</u> -	•	👌 - 🛕 -	€≣∌≣∣∛	। ₽ - ₽ -	\$ - % * .₀ .₀0	Format 🐺 Conditi	as Table * les *		Insert Insert Cells	↓ - ₩ -	💮 Char ២ Batc	nge Settings	
E10) -	: 🗙	V j	fx =LO	SNORM.IN	/(E9,E1,E2))								
	А	В	С	D	E	F	G	н	I	J	К	L	м	Ν	C
1 1	time(mins)	log(x)		Mean:	1.086036										
2		0.398776		Std dev:	1.098015										
3		0.329304													
1	7.52	2.017566													
5	28.63	3.354455		x	log(x)	P(X<10)									
5	1.07	0.067659		10	2.302585										
7		2.158715													
3	0.83	-0.18633													
9	1.88	0.631272		P(X <x)< td=""><td>0.75</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></x)<>	0.75										
LO		1.294727		x	6.212947										
1	2.78	1.022451			· · · · · ·										
2	0.54	-0.61619													
3	9.19	2.218116													
4	2.61	0.95935													
5	2.16	0.770108													
6	0.82	-0.19845													
17	0.92	-0.08338													
18	9	2.197225													
9	1.86	0.620576													
20	5.79	1.756132													
21	1.653	0.502592													
22	8.3	2.116256													
23	8.94	2.190536													
24	2.35	0.854415													
25	0.71	-0.34249													
	L - F	Binomial	Norm	nal Logi	Normal	+			:	4					Þ
REAI	DY 🔚								_	_		i 🏼 🗉		+	100%

Successful completion.

5. CONCLUSION

This course presented an overview of Monte Carlo simulation, and a review of random variables and statistical distributions, and how they can be implemented in *Excel*.

This course began with an introduction to simulation problems encountered by engineers in various fields. The fundamental principles of simulation as well as the structure of simulation problems were then presented. A review of random variables followed, in which the discrete random variables and the continuous random variables were presented in detail. Upon completion of this course, participants will have gained skills in statistical distributions, and will be able to apply theses skills in the simulation and modeling of a real engineering system.

This course has enabled participants to identify professional situations where the innovative application of techniques learned in this course are relevant and will be of benefit to their productivity, efficiency, and the quality of their work product. Practitioners are strongly encouraged to look out for situations in their domains of expertise where random variables, simulation and systems modeling are applicable and will be of benefit to their work product and to their organization.

A successful application of engineering methods in *Excel* requires a careful and meticulous approach, and can only be mastered and retained by practice and repetition. It has been my utmost pleasure presenting this topic to you. Thank you.

REFERENCES

Johnson, R. A. (2011). Miller and Freund's Probability and Statistics for Engineers (Eighth ed.).

- Larson, R., & Hostetler, R. (2007). Precalculus. Houghton Mifflin Company.
- May, A. D. (1990). Traffic Flow Fundamentals.
- Meeker, W. Q., & Escobar, L. A. (1998). *Statistical Methods for Reliability Data*. John Wiley & Sons.
- The National Institute of Standards and Testing. (2013). NIST/SEMATECH e-Handbook of Statistical Methods. Retrieved November 2019, from http://www.itl.nist.gov/div898/handbook/
- The National Institute of Standards and Testing (NIST). (2011). Probability Distributions. Retrieved December 2019, from https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/probdist.htm
- Wolfram MathWorld. (2019). Statistical Distributions. Retrieved November 2019, from http://mathworld.wolfram.com/topics/StatisticalDistributions.html

Images were all drawn/ prepared by Kwabena. Ofosu