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Introduction 

1.1 Regression Analysis 
 The purpose of this course is not to explain or determine what type of data should or should not 

be collected for any given purpose. The aim is to explain some of the techniques used in extracting 

information such as the main features of the relationship between the variables in the data using the 

method of mathematical optimization. The course also makes a strong case for the importance of proper 

planning or proper experimental design to collect needed data. 

 In any system where quantities change, it is of interest to look at the effects, if any, of the variables.  
Indeed, there may be a relationship (in our case statistical relationship) which may be approximated by a 
simple mathematical relationship.  At other times, the functional relationship may be complicated.  Still 
there may be situations where there does not seem to be a meaningful relationship between the variables 

and yet we might want to express or relate those variables by some sort of mathematical equations. 
 A common method employed in obtaining the mathematical relationships is the method of 

Linear Regression (LR). This method (also known as the least squares method--LSM) involves the 

concept that the relationship is linear in the parameters.  We will also extend this to those situations where 

the relationships are nonlinear. This whole process of extracting the relationship between variables is 

referred to mathematical optimization. Linear Regression is a statistical method that allows us to study 

and summarize the relationships between two or more continuous (quantitative) variables.   

1.1.2 Simple Linear Regression 
 Simple Linear Regression is so called because it concerns the study of only one predictor 

(regressor or independent) variable and an accompanying response variable. By contrast, multiple 

linear regression, which we examine later, concerns the study of two or more predictor variables. 

Notation wise, in simple regression analyses, one variable, denoted by X, is regarded as the predictor 

or independent variable. The other related variable, denoted by Y, is regarded as the response, or 

dependent variable. In general, Linear Regression is about the study of the statistical relationship 

among the variables and is not a deterministic or a functional relationship (such as the relationship 

between degrees Celsius and degrees Fahrenheit). In deterministic or functional relationships, the 

relationship is perfect, and the equation exactly describes the relationship between the variables 

whereas in statistical relationship, the relationship between the variables is not perfect because of 

variability. There are four main conditions or assumptions that will govern our study of the simple 

Linear Regression model. 

 i). The mean of the response, Yi at each value of the predictor, Xi, as a linear function of Xi. 

ii).  The errors, εi, are Independent. 

iii).  The errors, εi, at each value of the predictor, Xi  are Normally distributed. 

iv).   The errors, εi, at each value of the predictor, Xi, have Equal Variances (denoted by σ2). 

In mathematical optimization, statistics, econometrics, decision theory, machine learning and 

computational neuroscience, a loss function or cost function is a function that maps an event or values 
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of one or more variables onto a real number (a real line) intuitively representing some "cost" associated 

with such event. A popular and convenient loss function used in applications like Linear Regression 

and general mathematical optimization is the squared loss function, which penalizes the residual 

(difference between the nominal and the output) quadratically. In the case of the squared loss for 

example if the predictor is off by a residual of 10, then the loss will be 102 or 100. An objective function 

which we optimize mathematically is either a loss function or its negative (in specific domains, is 

variously called a reward function, a profit function, a utility function, a fitness function, etc.), in which 

case it is to be maximized. In statistics, typically a loss function is used for parameter estimation, and 

the event in question is some function of the difference between the estimated and true values for an 

instance of data. 

 As earlier indicated, there are two main types of variables involved in Regression Analyses, namely 

predictor or independent variables X, and the response or dependent variables Y, namely: 

• Predictor or independent (also called regressor) variables namely X
i
 

• Response or dependent variables e.g., Y
i
 

Predictor variables are variables that can be set at or controlled to a desired value. The 

temperature of a freezer can be set at different levels to observe the time for a liquid to change its 

state from liquid to solid. Note that not all independent variables can be set or manipulated. For 

example, in the study of the effect of rainfall on the yield of a plot of land, it is not possible to 

manipulate or set the amount of rainfall. In such a case we observe the amount of rainfall and then 

measure the crop yield on the plot of land. In this case, the predictor or independent variable can take 

on values that are observed but not manipulated like the temperature of the freezer. Response 

variables on the other hand are variables that result when predictor or independent variables from 

manipulated. 

Thus, an independent or predictor variable is one that is not random and but is controlled 

during an experiment.  The dependent or response variable cannot be controlled but is rather observed 

as an outcome of the manipulation of the independent variable and thus is a random variable. In this 

course, we will focus primarily on the following elements of Regression Analyses, namely:  

• Parameters & Estimates 

• Probability Distribution of the Parameters 

• Covariance between two variables 

• Simple hypothesis tests involving parameters including one- and two-sided t and F tests 

• Confidence Interval for the parameters 

• Orthogonal Columns, Diagonal and Symmetric Matrices 

• Estimation of model R2, Adjusted R2, (𝜌 or r) to assess data efficacy 

• Multicollinearity and Variance Inflation Factors (VIF) 
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A regression equation is a prediction equation fitted to a set of experimental data values to describe a 

possible relationship between a single dependent variable Y and one or more independent variables 

X. In the case of the dependent variable Y and a single independent variable X, the situation becomes 

a regression of Y on X.  For n independent variables, it becomes the regression of Y on n independent 

variabesX1, X2,...Xn. 

 One method commonly used in expressing the relationship between the variables is the method 

of Least Squares.  In this method, the unknown parameters are estimated under certain assumptions and 

a fitted equation is obtained. The value of the equation can be examined by substituting known values to 

determine its predictability.  

 We will employ the method of Least Squares to explore the data and its underlying structure and 

to draw conclusions about any mathematical relationship between the response and the independent 

variables. The simplest kind of regression is the bi-variate or two variable linear regression and is given as 

follows: Model: Y = f(x), i.e., Y = α + βX which can better be expressed as: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝜀𝑖~𝑁𝐼𝐼𝐷(0, 𝜎𝑒
2), where i = error (sometimes called the Residual).   

The errors are assumed to be Normal Independent and Identically Distributed (NIID) with mean 

equal to 0 and variance equal to 𝜎𝑒
2  

 𝐿𝑒𝑡 𝑓(𝑥) = 𝑏0+𝑏1𝑥1  be the predicted value of the ith y value (when x= xi), and  

b0 = estimate of β0 

      b1 = estimate of β1    

Then the deviation of the observed value from the predicted value is given by: 

𝜀𝑖𝑗 = 𝑦𝑖 − 𝑓(𝑥𝑖) 

This equation can be expanded from the bi-variate to a polynomial regression. Under the Least Square’s 

method, we can also solve the multivariate or the multivariable linear regression which is expressed as  

 Y = f (X1, X2, ..., Xn)= A0 + A1X1 + A2X2 + ... + AnXn +𝜖ij 

We can also have a Multivariate polynomial regression.  For a polynomial of 2nd degree, we will have the 

following Model: Y= A0 + A1X1 + A2X2 + A11X1
2 + A22X2

2 + A12X1X2 …+𝜖ij 

 Nonlinear Regression can also be handled by the method of least squares so long as linear 

transformation is possible.  In any case, the aim of the curve fitting effort is to minimize this deviation  

𝜀𝑖𝑗 = 𝑦𝑖 − 𝑓(𝑥𝑖) 

Specifically, the aim is to minimize the sum of squares of the error (deviation) and the procedure used 

to accomplish this is the method of Least Squares. 
 

1.2 Model Solution    
Again, let a model be specified as: Y = 0 + 1xi + ij, where 1j = error (sometimes called the residual) 

and has zero mean and a given distribution.  As indicated earlier, the error is measured by the deviation 

of the observed value of y from the predicted/estimated value that is: ij = yi - f(xi). 
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The aim of the curve fitting effort is to minimize this deviation and more specifically, to minimize the 

sum of squares of the errors (i.e. the deviation). The procedure is used to solve this type of system is 

the method of Least Squares.  

 Define Q as: ( ) ( ) 2110

22 )(  +−=−== XbbYxfYeQ ii  

A way to solve the model is to decouple the composite equation Q into a set of normal equations and 

then optimize by taking partial derivatives with respect to the parameters of the model and set the 

resulting equations to zero. Since in this case we only have two parameters (β0, β1), we take partials of 

Q with respect to those two parameters and optimize by setting the resulting partials to zero, namely,  

  
0 1 0 1

1 1 1

2

0 1 0 1

1 1 1 1

2 ( ) 0 0
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n n n

i i i i

i i i

n n n n
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
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


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
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  𝑏0 = ∑𝑦𝑖 − 𝑏1 ∑𝑥𝑖 ⇒ 𝑏0 =
∑𝑦𝑖

𝑛
− 𝑏1

∑𝑥𝑖

𝑛
⇒ (𝑏0 = 𝛽̂0 = 𝑦̄ − 𝑏1𝑥̄)   ↙ 

 

  𝑏1 = 𝛽̂1 =
𝑛 ∑𝑥𝑖𝑦𝑖−∑𝑥𝑖 ∑𝑦𝑖

𝑛 ∑𝑥𝑖
2−(∑𝑥𝑖)

2
→ 𝛽̂1 =

𝑆𝑋𝑌

𝑆𝑋𝑋
  ↙ 

 

  𝛽̂0 = 𝑌̅ − 𝛽̂1X̅    ↙ 

  𝐷𝑒𝑓𝑖𝑛𝑒:      𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥̄)2 = ∑𝑥𝑖
2 −

(∑𝑥𝑖)

𝑛

2

⇒ 𝑛𝑆𝑥𝑥 = 𝑛 ∑𝑥𝑖
2 − (∑𝑥𝑖)

2↙ 

  𝐷𝑒𝑓𝑖𝑛𝑒:       𝑆𝑦𝑦 = ∑(𝑦𝑖 − 𝑦̄)2 = ∑𝒚𝒊
𝟐 −

(∑𝒚𝒊)
𝟐

𝒏
 ⇒ 𝑛𝑆𝑦𝑦 = 𝑛 ∑𝑦𝑖

2 − (∑𝑦𝑖)
2↙ 

  𝐷𝑒𝑓𝑖𝑛𝑒:   𝑆𝑥𝑦 = ∑(𝑦𝑖 − 𝑦̄)(𝑥𝑖 − 𝑥̄) = ∑𝑥𝑖𝑦𝑖 −
∑𝑥𝑖 ∑𝑦𝑖

𝑛
  ⇒ 𝑛𝑆𝑥𝑦 = 𝑛 ∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖 ↙ 

Example 1: Low operating temperature fuel cells such as proton exchange membrane fuel cells (PEM-

FC) require high purity hydrogen for maximum material performance and lifetime. The differential 

scanning calorimetry (DSC) method for purity determination is known to produce consistent values 

for the purity of polycyclic aromatic hydrocarbons (PAH). Measurements of percent PAH levels and 

the associated percent purity were obtained using the DSC method as shown in Table 1.   
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Table 1: The % Purity of Hydrocarbon at Given Levels  

S/N Hydrocarbon Level (%) X Purity (%) Y 

1 0.95 80.03 

2 1.11 88.34 

3 1.08 91.31 

4 1.22 92.75 

5 1.51 99.03 

6 1.45 97.33 

7 0.89 87.23 

8 1.17 92.31 

9 1.36 95.25 

10 1.34 94.21 

11 1.27 95.22 

12 1.18 90.33 

13 0.99 88.54 

14 1.12 90.02 

15 1.11 92.51 

16 1.29 91.68 

17 1.44 95.11 

18 1.24 93.75 

19 1.52 96.63 

20 0.74 86.59 

21 0.94 88.27 

22 1.04 90.20 

23 0.88 89.08 

24 1.30 92.00 

25 0.96 90.00 
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1.3 Computation of Error (Variability) 
The deviation of the observed value of y from the predicted value f(xi), also known as the 

error, is given by : 𝜀𝑖𝑗 = 𝑦𝑖 − f(𝑥𝑖) . The aim of the curve fitting effort is to minimize this deviation. 

More specifically, the aim is to optimize the sum of squares error-SSE by minimizing the squares 

of the deviation. 

∑𝜀𝑖𝑗↙
2

𝑛

𝑖=1

= ∑(𝑦𝑖

𝑛

𝑖=1

− 𝑦̂𝑖)
2 = ∑[𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖)]

2 =  SSE

𝑛

𝑖=1

 

𝑆𝑆𝐸 = ∑[𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖)]
2
, 𝑏𝑢𝑡:    𝛽0 = 𝑌̄ − 𝛽1𝑋̄ 

𝑆𝑆𝐸 = ∑[𝑌𝑖 − 𝑌̄ + 𝛽1𝑋̄ − 𝛽1𝑋𝑖)]
2

⇒ ∑[(𝑌𝑖 − 𝑌̄) − 𝛽1(𝑋𝑖 − 𝑋̄)]
2

 

𝐸𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔: 𝑆𝑆𝐸 = ∑(𝑌𝑖 − 𝑌̄)
2

− 2𝛽1 ∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄) +𝛽1
2 ∑(𝑋𝑖 − 𝑋̄)

2

 
𝑆𝑆𝐸 = 𝑆𝑦𝑦 − 2𝛽1𝑆𝑥𝑦 + 𝛽1

2𝑆𝑥𝑥 

𝐵𝑢𝑡: 𝛽1 =
𝑆𝑥𝑦

𝑆𝑥𝑥
⇒ 𝛽1𝑆𝑥𝑥 = 𝑆𝑥𝑦    𝑏𝑦 𝑐𝑟𝑜𝑠𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

𝑇ℎ𝑢𝑠;  𝑆𝑆𝐸 = 𝑆𝑦𝑦 − 2𝛽1𝑆𝑥𝑦 + 𝛽1
2𝑆𝑥𝑥 ⇒    𝑆𝑆𝐸 = 𝑆𝑦𝑦 − 2𝛽1𝑆𝑥𝑦 + 𝛽1𝑆𝑥𝑦 

𝑆𝑆𝐸 = 𝑆𝑦𝑦 − 𝛽1𝑆𝑥𝑦 ⇒ 𝑆𝑆𝐸 = 𝑆𝑦𝑦 − (
𝑆𝑥𝑦

𝑆𝑥𝑥
) 𝑆𝑥𝑦 

𝐻𝑒𝑛𝑐𝑒: 𝑆𝑆𝐸 = 𝑆𝑦𝑦 −
(𝑆𝑥𝑦)

2

𝑆𝑥𝑥
⇒ SSE =

𝑆𝑦𝑦𝑆𝑥𝑥 − (𝑆𝑥𝑦)
2

𝑆𝑥𝑥
 

1.4 Estimate of Variability  
For a polynomial of size p with n observations or data points, the degrees of freedom 

associated with all the parameters is p. The degrees of freedom associated with the entire data set is 
always (n-1). The degrees of freedom that is unaccounted for, which represents the degrees of freedom 

(df)for the residual. is  𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = (𝑛 − 𝑝). For example, consider the two-parameter model used 

for the data in table 1. Each of the parameters 𝛽0 𝑎𝑛𝑑 𝛽1 ℎ𝑎𝑠 𝑜𝑛𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚. Thus, the 

degrees of freedom for the residual or error is 𝑑𝑓𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = (𝑛 − 2). In least squares analyses, the 

variability 𝑆𝑒2 due to the residual or error is defined as the sum of squares error SSE divided by the 
df error, that is:  

 𝑆𝑒
2 =

𝑆𝑆𝐸

𝑛−2
=

1

𝑛−2
∑[𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)]

2 

𝐵𝑢𝑡: 𝑆𝑆𝐸 = 𝑆𝑦𝑦 −
(𝑆𝑥𝑦)

2

𝑆𝑥𝑥

=
𝑆𝑦𝑦𝑆𝑥𝑥−(𝑆𝑥𝑦)

2

𝑆𝑥𝑥

, 𝐻𝑒𝑛𝑐𝑒: 𝑆𝑒
2 = 

𝑆𝑥𝑥𝑆𝑦𝑦−(𝑆𝑥𝑦)
2

(𝑛−2)𝑆𝑥𝑥
 

1.4.1 Variance of the Parameters: β0 and β1, p=2 

𝑆𝑒
2 =

𝑆𝑆𝐸

𝑛−p
=

1

𝑛−2
∑[𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)]

2
, p= number of  parameters in the model including constant β0 

But: SSE = Syy −
(Sxy)

2

Sxx
=

SyySxx−(Sxy)
2

Sxx
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Hence:  Se
2 =

SxxSyy−(Sxy)
2

(n−p)Sxx
,   𝑆𝑒 = √𝑆𝑒 ↙ based  table 1, 𝑆𝑒

2 =
𝑆𝑥𝑥𝑆𝑦𝑦−(𝑆𝑥𝑦)

2

(𝑛−2)𝑆𝑥𝑥
= 4.698  ↙ 

𝛽̂1 = 𝑏1 =
𝑆𝑥𝑦

𝑆𝑥𝑥
= ∑(𝑦𝑖−𝑦̄)(𝑥𝑖−𝑥̄)

∑(𝑥𝑖−𝑥̄)2
 ↙,     𝛽̂0 = 𝑏0 = 𝑦̄ − 𝑏1𝑥̄   ↙ 

∴ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝛽1;  𝑉(𝛽1) = 𝑉 [
∑(𝑥𝑖 − 𝑥̄)𝑦𝑖 − 𝑦̅(𝑥𝑖 − 𝑥̄)

∑(𝑥𝑖 − 𝑥̄)2
] = 𝑉 [

∑(𝑥𝑖 − 𝑥̄)𝑦𝑖

∑(𝑥𝑖 − 𝑥̄)2
] 

NOTE: ∑     − y̅(xi − x̄) = − y̅∑xi + ny̅ x̅ = −
∑xi ∑yi

n
+

∑xi ∑yi

n
= 0 

∴ 𝑉(𝛽1) = 𝑉 [
∑(𝑥𝑖−𝑥̄)𝑦𝑖

∑(𝑥𝑖−𝑥̄)2
]=

∑(𝑥𝑖−𝑥̄)2

 (∑(𝑥𝑖−𝑥̄)2)2
𝑉(𝑦𝑖) =

1

∑(𝑥𝑖−𝑥̄)2
𝑉(𝑦𝑖) = Sb1

2 =
𝑆𝑒
2

𝑆𝑥𝑥
= 𝑉(𝛽

1
) = 4.423   ↙ 

𝛽̂0 = 𝑏0 = 𝑦̄ − 𝑏1𝑥̄ = 𝑦̄ − 𝛽1𝑥̄     

∴ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝛽0;  𝑉(𝛽0) = 𝑉(𝑦̄ − 𝛽1𝑥̄) = 𝑉(𝑦̄) + 𝑥̄2𝑉(𝛽1)     

𝐵𝑢𝑡  𝑉(𝑦̄) = 𝑉 (
∑𝑦𝑖

𝑛
) = (

𝑛

𝑛2)𝑉(𝑦𝑖) =
𝑆𝑒

2

𝑛
     𝑎𝑛𝑑  𝑥̄2𝑉(𝛽

1
) = 𝑥̄2 (

𝑆𝑒
2

𝑆𝑥𝑥
) 

∴ V(β0) = Sb0
2 = Se

2 [
1

n
+

X̄2

Sxx
] = 6.180  ↙      

The motivation for determining the variances for the parameters is so we can assess their 

stability and significance. This is implemented by conducting test of  hypotheses and constructing 

confidence intervals for the parameters. 
 

Mathematical Inference for Model Parameters 
In many engineering settings, there are typically large numbers of random quantities.  Often, 

we do not know the probability structure of these variables or their underlying characteristics, but we 

do want to determine these quantities to have better control of the system operation. This is usually 

accomplished by taking observations on the random variables. But we cannot take those reading willy-

nilly because there are biases, errors, and noise inherent any such process.   Based on the classical 

definition of probability, the determination of the probability or the expected value associated with 

the random variables would require an 'infinite number of observations.  However, having only 

samples of finite sizes, we can usually estimate the values in question in the form of sample statistics.  

The ultimate result of a statistical inference is always a decision to act or not to act.  In some 

instances, the decision could be to accept, in place of the unknown parameter, the observed or 

computed value of the estimator without requiring that it be exactly the true value. On the other hand, 

we may decide to reject or not reject the assumptions about certain distribution without conceding 

that such a statement is true beyond doubt.  The use of statistical inference enables us to control the 

possible errors that could arise because of our decisions and to ensure that these errors, while 

inevitable, are as small and as economically possible 

The total error in a specified model is made up of the errors from the different model 

components or elements. Mathematical or inferential statistics is divided into two main branches, 
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namely i.) estimation, and ii.) test of hypotheses. For good estimation, a large sample is needed.  In 

practical and most realistic situations, only extremely limited samples may be all that is available or 

possible. Such a limitation forces us to assume that the error distribution is already known or that it 

can be assumed beforehand and thus the ensuing analysis is only meant to verify that the sampling 

distribution of the error has not changed. Estimation and Tests of Hypotheses are avenues to verify 

such assumptions or claims. 

2.1 Estimation 

2.1.1 Point Estimates 
There are two types of estimators, namely point estimators and interval estimators. A point 

estimates is a single value or number, a point on the real line, which we feel is a good guess for the 

unknown population parameter value that is being sought.  The motivation for conducting an 

experiment stems from the understanding that in most cases it is impractical to obtain the value of 

the parameter that we seek because that would require the almost impossible task of observing the 

outcome of an infinite population.  This being the case, the problem then reduces to designing an 

experiment and then attempting to extract as much information as possible from the experiment by 

taking samples from the experiment and using sample statistic as estimators of the value sought.  

The following are the point estimates for the mean and variance. For the mean, we have  

𝜇𝑥 =
∑𝑋

𝑛
𝑎𝑛𝑑 𝜇𝑋̅ =

∑ 𝜇𝑥
𝑘
𝑗=1

𝑘
, where k =number of subgroups and n is the sample size, and for 

the variance, we have σX
2 =

∑(x−x̅)2

n−1
, and the variance of the sample mean equals: σX̅

2 =
σX

2

√n
 

Using the data table 1, the point estimates of the different parameters as follows: 

𝛽̂1 = 𝑏1 = 16.3019  

𝛽̂0 = 𝑏0 = 72.5334  

𝑆𝑒
2 = 4.698, S𝑒 = 2.167, Sβ0 = 2.486, Sβ1 = 2.103  

2.1.2 Interval Estimates 
We know that the estimate (the estimated value) is subject to error of measurement (in the 

case of the constant) and variability (in the case of the random variable).  In other words, a single 

number such as we get in a point estimate does not include any indication of how high the probability 

is that the estimate has taken on a value close to the unknown parameter value. Consequently, it is 

instructive to have some information on the deviation from the true value. In this case, we can 

construct an interval within which we believe that in repeated sampling, the parameter that we seek 

would be contained.  Confidence Intervals provide the probability associated with the strength of our 

belief that the value of the parameter or constant sought is within a given range based on the sample 

information. To carry out these tests requires critical values of the test statistics. The table values for 

these critical values such as those for the Student-t distribution, the Normal distribution, the Chi-
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Square, and F-distribution, among others, are available in the most basic statistics textbooks and so 

would not be reproduced here. 

2.1.1 Confidence Intervals for 0, 1 for a significance level α 
The confidence Interval for 

0
is given as:  

  𝛽0 ± tα

2
Se√[

1

n
+

x̄2

Sxx
]with (n − 2)df, where ⇒ 𝑉(𝛽0 ) = Sb0

2 = Se
2 [

1

n
+

X̄2

Sxx
] 

P [ 𝛽̂0 − 𝑡𝛼
2
𝑆𝑒√[

1

𝑛
+

𝑥̄2

𝑆𝑥𝑥
] ≤ 𝛽0 ≤  𝛽̂0 + 𝑡𝛼

2
𝑆𝑒√[

1

𝑛
+

𝑥̄2

𝑆𝑥𝑥
] ] = 1−∝ 

For n=25, df=(n-2) =23. Assuming a 95% two-sided confidence interval, ∝= 0.5, 𝑎𝑛𝑑 
∝

2
= 0.025 

From the student -t table,  𝑡𝛼

2 
(𝑑𝑓=23) = 2.069,     𝑡𝛼

2
𝑆𝑒√[

1

𝑛
+

𝑥̄2

𝑆𝑥𝑥
] =  𝑡𝛼

2
𝑆𝑏0

= (2.069)(2.486) = 5.143 

𝛽̂0 ± 𝑡𝛼
2
𝑆𝑒√[

1

𝑛
+

𝑥̄2

𝑆𝑥𝑥
] = 75.5334 ± 5.143 = (

80.6764

70.3904
) 

𝑃[ 80.6764 ≤ 𝛽0 ≤  70.3904] = 95%↙ 

This confidence interval shows that in repeated sampling, we should expect to find the value of the 

parameter (𝛽0 )in this interval 95% of the time.  

Similarly, for 
1
 , we have: 𝛽1 ± tα

2
Se√

1

Sxx
, with (n − 2)df, where: ⇒ 𝑉( 𝛽1) = (Sb1

2 ) =
𝑆𝑒

2

𝑆𝑥𝑥
 

P [ 𝛽̂1 − 𝑡𝛼
2
𝑆𝑒√

1

𝑆𝑥𝑥
≤ 𝛽1 ≤  𝛽̂1 + 𝑡𝛼

2
𝑆𝑒√

1

𝑆𝑥𝑥
 ] = 1−∝ 

For n-20, df=(n-2) =23. Assuming a 95% two-sided confidence interval, ∝= 0.5, 𝑎𝑛𝑑 
∝

2
= 0.025 

From the student-t table, 𝑡𝛼

2 
(𝑑𝑓=18) = 2.069, thus  tα

2
Se√

1

Sxx
=  𝑡𝛼

2
𝑆𝑏1

= (2.069)(2.103) = 4.351 

β̂1 − tα
2
Se√

1

Sxx
= 16.3019 ± 4.351 =  (

20.6529

11.9509
) 

𝑃[ 20.6529 ≤ 𝛽1 ≤  11.9509] = 95%↙ 

The 95% confidence interval indicates that in repeated sampling from the population, we 

should except to find the slope (𝛽1 ) in this interval 95% of the of time.  

The key idea in how we define the confidence interval (CI) statements and, indeed all 

confidence interval statements, is the idea of repeated sampling because we are looking at the 

probability of the occurrence of events for a population parameter that has a probability distribution. 

391.pdf

http://www.suncam.com/


 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT REGRESSION ANALYSES 

A SunCam online continuing education course 

 

 
www.SunCam.com  Copyright© 2020 O. Geoffrey Okogbaa, PE Page 14 of 51 

 

Note that the sampling distribution for the variance is assumed to be the student-t distribution 

because of the sample size.  If the sample size is large (in this case n>30), then the normal distribution 

would be used in place of the student-t distribution. Additionally, also note that the degrees of 

freedom(df) for the test statistic is the same as the degrees of freedom(df) for the residual error 

variance, why? Recall that we indicated earlier that the variance of each component (or parameter) of 

the model is a proportion of the total model variance and hence each such fraction will have the same 

degrees of freedom as that of the sum of squares error. 

2.2 Test of Hypotheses 
A test of hypothesis is a test on an assumption or statement that may or may not be true 

concerning the parameter of interest. The truth or falsity of such a test can only be known if the entire 

population is examined.  Since this is impractical in most situations, a random sample is taken from 

the population and the information used to deduce whether the hypothesis is likely true or not.  

Evidence from the sample that is inconsistent with the stated hypothesis leads to a rejection whereas 

evidence supporting the hypothesis leads to its acceptance. The acceptance of a statistical hypothesis 

does not necessarily imply that it is true.  Thus, hypotheses that are formulated with the hope of their 

rejection are called null hypotheses and denoted by Ho. The rejection of Ho leads to the acceptance of 

an alternate hypothesis denoted by H1. The decision to reject or not reject a hypothesis is based on 

the value of the test statistic.  The test statistic is compared to a critical value.  The critical value is 

based on the level of significance of the test and represents values in the critical region as defined by 

the significance level.  Depending on the nature of the test, the hypotheses are specified thus:  

Less than      Ho:  µ = µo and H1: (µ < µo) 

Greater than Ho:  µ = µo and H1: (µ > µo) 

Not Equal     Ho.  µ = µo and H1: (µ  µo) 

2.2.1 Errors Associated with Decisions on Test of Hypothesis 
The decision to reject or not reject a test naturally leads to two possible types of error 

scenarios.  The reason for the error is that the decision is made based on information from a sample 
rather than the actual population itself.  The fact is that we are trying to ascertain the true state of 
nature using information from the sample. We of course do not know the true state of nature and 
would like to INFER such from the sample. This notion is perhaps one of the most important foundations of 
statistics, namely the fact that while we do in fact seek the population value we can only approach that value by way of 
the sample value which in and of itself is of limited value unless it points us to or gives us the population value. All 
samples are taken not for their own sake but to provide information or inference about the population 

value.  The errors are the errors of Type I (), and Type II (). 

Type I Error (): This is the type of error is committed when the null Hypothesis (H0) is rejected. 

Type II Error (): This is the type of error committed when the null Hypothesis (H1) is not rejected.  
This is loosely referred to as accepting the null Hypothesis.  
 

2.2.2 Steps in Hypotheses Testing 
(i). Set up the Hypothesis and its alternative 
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Example Ho :µ = 19.5 g 

H1 :µ < 19.5 g , with critical value: 𝑍 < −𝑍𝛼 

(ii). Set the significance level of the test  and the sample size n. Specify or compute σ 

Example:   Let  = 0.05, n = 25, σ = 2, where 𝑍𝛼 = 𝑍0.05 = 𝑍0.95 = 1.645 

(iii). Choose a sampling distribution and the corresponding test statistic to test H0 with the 

appropriate assumptions. 

Example:  Assuming σ known, X  is normally distributed with mean µ and standard deviation 
𝜎

√𝑛
  

Also, for the test statistic, we have: 𝑍 =
𝑋̅−𝜇

𝜎

√𝑛

  

(iv). Set up a critical region for this test statistic where Ho will be rejected 100p percent (e.g. 

95%) of the samples when Ho is true. 

Example:   

i). In our example where H1:µ < 19.5 g, the critical region would consists of all computed 

values of the test statistic (Z) less than the table or specified value (- Z ). Thus, the decision would be 

to reject the null hypothesis H0 if ZC < -Z.   

 = 0.05, n = 25, σ = 2, X =18.9, µ=19.5, Also Z=Z 0.95 =1.645 

Hypothesis:  Ho: µ = 19.5 g 

H1: µ < 19.5 g 

With σ known the sampling distribution is the normal and the test statistic is the standardized Z, hence 

Z =
X̅−μ

σ

√n

=
18.9−19.5

2

√25

= −1.5 

Critical Region: All values of the test statistic less than -1.5, (that is Z<-1.5) 
Reject if ZC < -Z 0.25, ZC = -1.5, -Z0.25 =-1.645 
Since -1.5 > -1.645, therefore do not Reject H0.  Thus, there is no evidence based on the data to 
suggest that the true mean of the population is not equal to 19.5 grams. 
 

ii). Similarly for  H1:µ > 19.5 g,  the critical region would consists of all computed values of 

the test statistic (Z) greater than the table or specified value ( Z ). Thus, the decision would be to reject 

the null hypothesis H0 if Z >Z.  Again, Let  = 0.05, n = 25, σ = 2, X =20.5, µ=19.5, Also Z=Z 

0.95 = Z 0.05 =1.645 
Hypothesis:  Ho : µ = 19.5 g 

H1 : µ > 19.5 g 

hence Z =
X̅−μ

σ

√n

=
20.5−19.5

2

√25

=
5(1.0)

2
= 2.5 

Reject if Z >Z 0.05, Z = 2.5, Z0.05 =1.645 

Since 2.5 > 1.645, therefore Reject H0.  Thus, there is evidence based on the data to suggest that the 

true mean of the population is greater than 19.5 grams 
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iii). For  H1:µ  19.5 g,  the critical region would consists of all computed values of the test 

statistic (Z) greater or less than the table or specified value ( Z ).   

That is Reject if: Z>𝑍𝛼

2
  or Z< -𝑍𝛼

2
  Also. this can be expressed as the absolute value of  |𝑍| >  𝑍𝛼

2
 . 

Thus, the decision in this case would be to reject the null hypothesis H0: if Z >𝑍𝛼

2
.  

Again, Let  = 0.05, /2 = 0.025, n = 25, σ = 2, X =20, µ=19.5, Also Z/2 =Z 0.975 =1.96 

Hypothesis:  Ho.  µ= µo 

H1:  µ  µo 
 

hence Z =
X̅−μ

σ

√n

=
20−19.5

2

√25

=
5(0.50)

2
= 1.25 

Reject if |𝑍| >Z 0.25, Z = 1.25, Z0.25 =1.96 
Since 1.25 < 1.96, therefore Reject H0. Thus, there is evidence based on the data to suggest that the 
true mean of the population is not equal to 19.5 grams. 
 

2.2.3 Example Using Data from Table 1   

i). Example 

From the theoretical foundations of  this problem, it is believed that the intercept (β0) on the 

Y-axis is about 78%. Given the value obtained from the experiment where (𝛽̂0) = 75.001 is there 

any reason to believe that the value from the experiment is different from the theoretical value at the 
90% significance level (α=0.1)?. The test of Hypothesis based on the statement of the problem is: 

H0: β0 = 78.00  , H1: β0  ≠ 78.00 

Based on the statement of the Hypothesis, the Rejection criteria is: |𝑡𝛽0| > 𝑡𝛼

2
 

Note that since the sample size is less than 30, we will use the student-t distribution as the sampling 

distribution of the variance of 𝛽0. Note:  𝑡𝛼

2
 (𝑑𝑓 = 23) = 𝑡0.05 (𝑑𝑓 = 23) = 1.714 

𝑡𝛽0 =
𝛽̂0−β0

sβ0

=
75.001−77.0

1.449321
= −1.3793    

Since |𝑡𝛽0| < 𝑡𝛼

2
, i.e., (1.3793 < 1.714), Do Not Reject H0, hence there is NO reason to believe that 

the experimental value is statistically different from the theoretical value. 
ii). Example 

From the several previous studies of  this problem, it was postulated that the slope is positive 

with a value of  12.0.  However, more recent studies indicate that the slope has been increasing because 

of  better environmental regulation and scrubbing methods. Based on current experimental data where  

(𝛽̂1) = 15.44928, is there reason to believe that there is an increase in the slope based on a 

significance level of  (α=0.10)? The test of Hypothesis for this problem may be stated as 

 H0: β1 = 12.0  , H1: β1 > 12.0 

Based on the statement of the Hypothesis, the Rejection criteria is: 𝑡𝛽1 > 𝑡𝛼 
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Note that since the sample size is less than 30, we will use the student-t distribution as the sampling 

distribution of the variance of 𝛽1. Note:  𝑡𝛼 (𝑑𝑓 = 23) = 𝑡0.1 (𝑑𝑓 = 23) = 1.3190 

tβ1 =
β̂1−β1

sβ1

=
15.44928−12.0

1.226046
= 2.8133    

Result: Since: 𝑡𝛽1 > 𝑡𝛼  , (2.8133 > 1.3190), we Reject the null hypothesis. This is an indication that 

there is reason to believe that there is significant increase in the slope from the original value of  12.0 

iii). Example 
If  a new laboratory published a report that indicated a slope of  17.00. Can this new datapoint 

be considered as statistically different from the recently established slope value of  15.44928? Assume 

a significance level of (α=0.10)? The test of Hypothesis for this problem may be stated as 

 H0: β1 = 17.00  , H1: β1 < 17.00 

Based on the statement of the Hypothesis, the Rejection criteria is: Reject H0 if: tβ1 < − tα 

Note that since the sample size is less than 30, we will use the student-t distribution as the sampling 

distribution of the variance of 𝛽1. Note:  𝑡𝛼 (𝑑𝑓 = 23) = 𝑡0.1 (𝑑𝑓 = 23) = 1.3190 

tβ1 =
β̂1−β1

sβ1

=
15.44928−17.00

1.226064
= −1.2648    

Result: −1.2648 >  −1.330  . Hence Do Not Reject H0. There is no reason to believe that the data 

from the new laboratory is different from the recently established slope value. 
 

2.3 What is Mean Response  
You may recall that the fitted model came about by regressing the values of Y on the values 

of X using several data points. The resulting model is thus an aggregate of the different data point 

hence the resulting response 𝑌̂ is a mean value.   
 

2.3.1 Confidence Interval on Mean Response 
The mean response 𝑌 ̂ for a given value x0 is expressed as: 𝑌̂(𝑥0) , where: 
 

𝑌̂(x = 𝑥0) = 𝛽̂0 + 𝛽̂1𝑥0 

𝐵𝑢𝑡 𝛽̂0 = 𝑌̄ − 𝛽̂1𝑥̄ ⇒ 𝑌̂(𝑥0) = 𝑌̄ − 𝛽̂1𝑥̄ + 𝛽̂1𝑥0 

𝑌̂(𝑥0) = 𝑌̄ + 𝛽̂1(𝑥0 − 𝑥̄) 

𝑉(𝑌̂(𝑥0)) = 𝑉[𝑌̄ + 𝛽̂1(𝑥0 − 𝑥̄)] = 𝑉(𝑌̄) + (𝑥0 − 𝑥̄)2𝑉(𝛽1) 

𝑉(𝑌̂(𝑥0)) =
𝜎2

𝑛
+

𝜎2(𝑥0 − 𝑥̄)2

𝑆𝑥𝑥
= (

𝑆𝑒
2

𝑛
+

𝑆𝑒
2(𝑥0 − 𝑥̄)2

𝑆𝑥𝑥
) 

Hence the variance of the mean response is given by:  𝑉 (𝑌̂(𝑥0)) = (
𝑆𝑒

2

𝑛
+

𝑆𝑒
2(𝑥0−𝑥̄)2

𝑆𝑥𝑥
) 

For a given value of  x0, the 100(1-)% Confidence Interval on the mean response 𝑌̂(𝑥0) is given by 

Ŷ(x = x0) ± tα

2
,(n −2)Se [

1

n
+

(x0−x̄)2

Sxx
]

1

2
   =   β̂0 + β̂1(x0) ± tα

2
,(n−2)Se [

1

n
+

(x0−x̄)2

Sxx
]

1

2
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Example: Using the data on Table 1 

Establish the confidence internal for the mean response at 𝑌̂(x = 1.25) 𝑎𝑡 𝑥 = 𝑥0 = 1.25 at 

=0.10( or /2=0.05), tα

2
,(n−2) = 𝑡0.05,23 = 1.714 

μ̂|ŶX0
= Y ̅ + β̂1(x0 − x̄) = 91.9312 + 14.54461(1.25 − 1.164) 

                                            = 91.9312 + 1,25083 = 93.192 

 93.192 ± tα

2
,(n−2)Se [

1

n
+

(x0−x̄)2

Sxx
]

1

2
= 93.192 ± 1.714(1.2636)√[

1 

25 
+

0.086

1.0622
]   

   𝐶𝐼:      93.192 ± 1.714(1.2636)(0.347799) =   93.192 ± 0.753267 =       [
93.9453

92.4387
]        

 𝑃 [ 92.4387 ≤ μ
|𝑌𝑋0

≤  93.9453] = 95%↙ 

2.3.2 Confidence Interval on Future Value Response 
Realistically, the predicted values are useful within the range of data that was used in the 

prediction and analyses. In some cases, it may be necessary to interpolate or extrapolate if it can be 

assumed that the model behavior is valid within the desired regions even if the data collected does not 

quite encompass all the regions.  When that is the case, the variance as we currently have it will not be 

useful for establishing the confidence intervals for a future value or (q) such future values. We will use 

the following procedure to determine the variance for the prediction of one future value or (q) future 

values.  

Procedure:  

Suppose a single observation at x= x0

 

has the response Y0, where Y0 is independent of Ŷ(x0). 

We can examine the variance of Y0

 

based on the interval defined by the difference between Y0 and 

Ŷ(x0), i.e. 𝑌0 − 𝑌̂(𝑥0).  This difference 𝑌0 − 𝑌̂(𝑥0) is the range or the measure of how far off Y0 is from 

what we consider the true model region. Thus, the variance of the difference is given by 𝑉[𝑌0 − 𝑌̂(𝑥0)],   

where: 

𝑉[𝑌0 − 𝑌̂(𝑥0)] = 𝑉 [𝑌0 + (−1)2𝑉 (𝑌̂(𝑥0))] 

𝑉[𝑌0 − 𝑌̂(𝑥0)] = 𝑉(𝑌0) + 𝑉 (𝑌̂(𝑥0))=𝜎2 + 𝜎2 [
1

𝑛
+

(𝑥0−𝑥̄)2

𝑆𝑥𝑥
] 

V[Y0 − Ŷ(x0)] = σ2 [1 +
1

n
+

(x0 − x̄)2

Sxx
] 

𝑤𝑖𝑡ℎ 𝑆𝑒
2 = 𝜎2,  Thus for  one future value: V[Y0 − Ŷ(x0)] = Se

2 [1 +
1

n
+

(x0−x̄)2

Sxx
] 

For q future values, the best we can do is to use the mean of the q values and then examine the 

difference Ȳ0 − Ŷ(x0) 
V[Ȳ0 − Ŷ(x0)] =

σ2

q
+ σ2 [

1

n
+

(x0−x̄)2

Sxx
]=  σ2 [

1

q
+

1

n
+

(x0−x̄)2

Sxx
] 

Let  σ2 = Se
2 
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The variance of (q) future predicted values is given by: V[Ȳ0 − Ŷ(x0)] = Se
2 [

1

q
+

1

n
+

(x0−x̄)2

Sxx
] 

 

The (1-α) % CI for a single predicted value y0 is given by: 𝑦̂0 ± (𝑡 𝛼

2,7
) 𝑠𝑒√1 +

1

𝑛
+

(𝑥0−𝑥̄)2

𝑆𝑥𝑥
 

P [ŷ0 − (tα 

2
,(n−2) ) se√1 +

1

n
+

(x0−x̄)2

Sxx
< y0 < ŷ0 + (tα 

2
,(n−2)) se√1 +

1

n
+

(x0−x̄)2

Sxx
] ↙ 

For the (1-α) % CI for (q) future predicted values yq is given by: 

P [ŷq − (tα 

2
,(n−2)) se√1 +

1

q
+

(x0−x̄)2

Sxx
< yq < ŷq + (tα

2,
,(n−2)) se√1 +

1

q
+

(x0−x̄)2

Sxx
] ↙ 

 

Example: Assume that we have a cutting operation for a certain metal alloy.  The feed rate (FR) in 

inches per minute (IPM) and the material removal rate (MRR) in in3/minute is as shown on table 2. 

 𝑋̅ = 3.7900, 𝑌̅ = 11.5600, 𝑆𝑋𝑋 = 23.8420, 𝑆𝑌𝑌 = 174.8840, 𝑆𝑋𝑌 = 62.4820   

𝛽0 = 1.4754, 𝛽1 = 2.6608, 𝑆𝑒
2 = 1.0386, 𝑆𝑏0 = 0.8597, 𝑆𝑏1 = 0.2103   

𝑌̂ = 1.4754 + 2.6608𝑥 
For one future value of  x (x0= 2) 
𝑛 = 10, 𝑞 = 1, 𝑥0 = 2, 𝑦̂0(𝑥0 = 2) = 6.1365, 𝑆𝑥𝑥 = 23.8420   𝑠𝑒 = 1.0386,    𝑡0.025,8 = 2.306 
The variance of one future predicted value is given by 

V[Y0 − Ŷ(x0)] = Se
2 [1 +

1

n
+

(x0−x̄)2

Sxx
] ⇒ 𝑆𝑒 (Y0 − Ŷ(x0)) = √Se

2 [1 +
1

n
+

(x0−x̄)2

Sxx
] = 1.1548    

The 95% Confidence Interval is: 

ŷ0 ± (tα 
2

,8
) se√1 +

1

n
+

(x0 − x̄)2

Sxx
= 6.135 ± 2.306(1.1548) = (

8.7980

3.4720
) 

P[3.4720 < y0 < 8.7980] = 95%↙ 

TABLE 2: Feed Rate & The Associated Material Removal Rate for A Metal Alloy 

S/N X (FR) in/min Y (MRR) in3/min X2 Y2 XY 

1 1.560 5.100 2.434 26.010 7.956 

2 1.780 6.100 3.168 37.210 10.858 

3 1.980 8.100 3.920 65.610 16.038 

4 2.980 8.800 8.880 77.440 26.224 

5 4.100 11.200 16.810 125.440 45.920 

6 4.200 13.100 17.640 171.610 55.020 

7 5.200 14.100 27.040 198.810 73.320 

8 5.100 14.800 26.010 219.040 75.480 

9 4.900 16.200 24.010 262.440 79.380 

10 6.100 18.100 37.210 327.610 110.410 

∑  37.900 115.600 167.123 1511.220 500.606 
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The variance of (q) future predicted values is given by:  

n = 10, q = 4, x0 = 2, ŷ0(x0 = 2) = 6.13565, Sxx = 23.8420   se = 1.0386,    t0.025,8 = 2.306 

V[Ȳq − Ŷ(x0)] = Se
2 [

1

q
+

1

n
+

(x0−x̄)2

Sxx
 ] ⇒ 𝑆𝑒 (Ȳq − Ŷ(x0)) = √Se

2 [
1

q
+

1

n
+

(x0−x̄)2

Sxx
 ] = 0.7244  

ŷq ± (tα 
2

,8
) se√1 +

1

n
+

(x0 − x̄)2

Sxx
= 6.135 ± 2.306(0.7244) = (

7.8050

4.4656
) 

P[4.4656 < Ȳq < 7.8050] = 95%     ↙ 
2.4 Analysis of Variance (ANOVA)for Regression 

Analysis of variance or ANOVA is a statistical method in which observed aggregate variability 

found inside a data set is split into two component parts, name, systematic factors, and random factors. 

ANOVA uses a statistical test to determine if there exists a significant difference between the variable 

means. It tests whether the means of various groups are equal or not. In ANOVA, the variance 

observed in a variable is partitioned into different components based on the sources of variation. An 

important fact to note is that while we use ANOVA to find out whether the means differ significantly, 

we actually compare the variances in order to accomplish this, hence the name – ANalysis Of Variance.  

Thus, the ANOVA table consists of Sum of Squares which when divided by the appropriate degrees 

of freedom give the variance associated with a component. The significance of a component is 

obtained by taking at the ratio of the Mean Square (MS) of the component to the Mean Square Error 

which is essentially the F-Test because it is the ratio of two variances also called the Fisher F-Test. 

ANOVA as we know today was first used by Sir Ronald Fisher in 1925 in his book 'Statistical Methods 

for Research Workers' 

Table 3 ANOVA Table for Simple Linear Regression 

Source of 

Variation 

DF SS MS F 

Regression 1 𝑆𝑆𝑅 = ∑(𝑦̂ − 𝑦̅)2 MSR=SSR/1 F=MSR/MSE 

Error n-2 𝑆𝑆𝐸 = ∑(𝑦 −  𝑦̂)2 MSE=SSE/(n-2)  

Total n-1 𝑆𝑆𝑇 = ∑(𝑦 − 𝑦̅)2   

For a Simple Linear Regression (SLR): 

• Let n = number of data points 
• Let the number of parameters p =2 (b0 and b1) 

• The degrees of freedom (df) for Regression= (p-1) = (2-1) =1  

• The degrees of freedom (df) for Error or Residual= (n-p) =(n-2)  

• The Total degrees of freedom is equal to the degrees of freedom of Regression  

            and the degrees of freedom df of Error = (p-1)+(n-p)=(p-1)+(n-p)=(n-1) 
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Computation of Sum of Squares (SS) 

𝑆𝑆𝑇 = ∑(𝑦 − 𝑦̅)2 = 𝑆𝑌𝑌, ℎ𝑜𝑤? 

∑(y − y̅)2 = ∑[(y − y̅)(y − y̅)] = ∑[y2 − 2yy̅  + y̅2] 

∑[y2 − 2yy̅  + y̅2] = (∑y2 − 2y̅∑y + ny̅2) = (∑y2 − 2
∑y

n
∑y + n(

∑y

n
)
2
)  

(∑y2 − 2
(∑y)2

n
+ n(

∑y

n
)
2
) = (∑y2 − 2

(∑y)2

n
+ n

(∑y)2

n2 )   

𝑆𝑒
2 = 1.0786,    𝑆𝑒  = √𝑆𝑒

2 = 1.0386 

(∑y2 − 2
(∑y)2

n
+ n

(∑y)2

n2 ) = (∑y2 − 2
(∑y)2

n
+

(∑y)2

n
) = (∑y2 −

(∑y)2

n
) = SYY↙ 

Also, SSR = ∑(ŷ − y̅)2 = β̂1SYY = b1 SYY  how ? ↙  

∑(ŷ − y̅)2 = ∑((β0 + β1x) − y̅)
2
, But β0 = (y̅ − β1 x̅) ⇒⇒ ∑(y̅ − β1 x̅ + β1x − y̅)2 

∑(𝑦̂ − 𝑦̅)2 = ∑(𝛽1x − 𝛽1 𝑥̅)2 = ∑(𝛽1x − 𝛽1 𝑥̅)(𝛽1x − 𝛽1 𝑥̅) = (𝛽1
2∑𝑥2 − 2𝑥̅𝛽1

2∑𝑥2 + 𝑛𝑥̅2𝛽1
2)   

⇒⇒ (𝛽1
2∑𝑥2 − 2𝑥̅𝛽1

2∑𝑥2 + 𝑛𝑥̅2𝛽1
2) = (𝛽1

2[∑𝑥2 − 2𝑥̅∑𝑥 + 𝑛𝑥̅]) 

β1
2[∑x2 − 2x̅∑x + nx̅] = β1

2 (∑x2 − 2
∑x

n
∑x + n(

∑x

n
)
2

) = β1
2 (∑x2 − 2

(∑x)2

n
+ n

(∑x)2

n2 ) 

β1
2 (∑x2 − 2

(∑x)2

n
+ n

(∑x)2

n2 ) = β1
2 (∑x2 − 2

(∑x)2

n
+

(∑x)2

n
)   

SSR = β1
2 [∑x2 −

(∑x)2

n
] = β1

2(SXX), But β1 =
SXY

SXX
⇒⇒ β1

2(SXX) = (
SXY

SXX
) (

SXY

SXX
) (SXX) = β1SXY ↙ 

𝑆𝑒
2 = 1.0786,    𝑆𝑒 = 1.0386 

 

TABLE 4. ANOVA Table for Testing the Significance Simple Linear 
Regression Parameters 

Source of 
Variation 

Degrees of 
Freedom (df) 

Sum of Squares 
(SS) 

Mean Square 
(MS) 

F 

Regression 1 SSR=b1SXY MSR=SSR/1 F=MSR/MSE 

Residual 
or Error 

n-2 SSE=SST-SSE MSE=SSE/(n-2)  

Total n-1 SST=Syy   

One of the most important Linear Regression tests using ANOVA tests is the test of 

hypothesis for the slope β1, that is: H0: β1 = 0 versus HA: β1 ≠ 0. If we find that the slope of the 

regression line is significantly different from zero, we will conclude that there is a significant 

relationship between the independent and dependent variables. Significance Test for Linear 

Regression. Assume that the error term ϵ in the linear regression model is independent of x, and is 

normally distributed, with zero mean and constant variance. We can decide whether there is any 

significant relationship between x and y by testing the null hypothesis, namely, H0: β1 = 0.  If we get 

a large F value (one that is bigger than the F critical value found in a table), it means we have significant. 
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The F statistic just compares the joint effect of all the variables together.    

        

TABLE 5. ANOVA Table Using Data from Table 2 

Source of 
Variation 

Degrees of 
Freedom (df) 

Sum of Squares 
(SS) 

Mean Square 
(MS) 

F p 

Regression 1 166.25 166.25 154.221 0.000 

Error 8 8.6276 1.078   

Total 9 174.884    

 Measurement of Goodness of Fit of the Regression Line 

3.1 Coefficient of Determination-- R2 
 R-square(R2) is called coefficient of determination. It is obtained by simply multiplying R by 

R to get the R-square value (R2). In other words, Coefficient of Determination is the square of 

Coefficient of Correlation. R-square or coefficient. of determination shows the percentage variation 

in y which is explained by all the x variables together. In other words, it represents the amount or 

proportion of variation in the response variable y that is explained by the model or regression line. By 

measuring and relating the variance of each variable, the correlation of determination gives an 

indication of the strength of the relationship. It is a measure of fit of Regression Line. The higher the 

value (of R2) the better the model can be said to have been able to explain away or rather capture the 

variation in y. Clearly, 0≤R2≤1 and the upper bound is achieved when the fit of the data is perfect, 

that is, all residuals are zero or close to zero. The value is always between 0 and 1. It can never be 

negative since it is a squared value.  

By definition 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

𝛽1𝑆𝑋𝑌

𝑆𝑌𝑌
= (1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
), Using the data from table 2 and table 5, we 

have: SSR=166.25, SST=174.884, 𝑅2 =
166.25

174.884
= 0.951 𝑜𝑟 95%  

NOTE: Later we will show how to obtain this value and other using EXCEL ↙  

3.2 Coefficient of Correlation--R or r (Pearson Coefficient) 
The Coefficient of Correlation r (square root of R2 multiplied by the sign of β1), also 

known as the Pearson Coefficient of Correlation, is the degree of relationship between two variables 

say x and y. It can go between -1 and 1.  A value of one 1 indicates that the two variables are moving 

in unison. They rise and fall together and have perfect correlation. A value of -1 means that the two 

variables are again perfectly moving in unison but in the opposite directions. Any two variables in this 

universe (regardless of how unrelated they are) can be argued to have a correlation value that is 

nonzero.  If they are not correlated, then the correlation value can still be computed which would be 

0 or close to zero. The correlation value always lies between -1 and 1. Correlation can be rightfully 

explained for simple linear regression because there is only one x and one y variable. For multiple 

linear regression, r is computed, but then it is difficult to explain because multiple variables are 
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involved. Hence R-square (R2) which focuses on the variation of y as explained by the variables xi’s is 

a better metric.  R2 can be explained for both simple linear and multiple linear regressions. 

For a population, ρ(rho) = (
Cov(x, y)

V(x)V(y)
) =

σxy

σxσy
. For a sample (r = ρ) ⇒ rxy =

SXY

√SXXSYY

 

Thus 𝑟𝑥𝑦 = (𝑠𝑖𝑔𝑛 𝑜𝑓 𝛽1)√𝑅2  ↙ ,  From tables 2 and 5,    rxy = √R2 = √0.951 = 0.975 ↙  

3.3 Adjusted Coefficient of Determination—Adjusted R2 
At this juncture it is important to recall the relationship between the total sum of squares 

SS(total) and the sum of squares due to the parameters in the model which essentially is the sum of 

squares due to regression, namely SS(Regress). That relationship can be expressed as: 

𝑆𝑆𝑇𝑜𝑡 = 𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠 + 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 ⇒ 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 = (𝑆𝑆𝑇𝑜𝑡 − 𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠) 

  As can be seen from the equation of the relationship, as more independent variables or 

predictors are added to the model, the SSR(Regress) will increase while the SSE(Error) will decrease 

since SST(Total) will not change. This would result in an increase in R2 and the more parameters are 

added, the smaller the SSE(Error) and the larger SSR(Regress). Going by this, it is quite possible to 

literarily drive the SS(Error) and hence the variance to zero and R2 to 1.  Also recall that each parameter 

in the model takes up one degree of freedom. The more the number of parameters in the model, the 

less the degrees of freedom available to compute the variance, where the variance is given as:  

𝜎𝑒
2 =

𝑆𝑆𝑒
2

𝑛−𝑝
, 𝑎𝑠 (𝑛 − 𝑝) ⇒ 0,⇒ 𝜎𝑒

2 ≃ 0, where p is the number of parameters in the model. 

This is called overfitting and can return an unwarranted high R-squared value. Adjusted R-squared is 

used to determine how reliable the correlation is and how much is determined by the addition of 

independent variables.  

 R2 shows how well proposed model fits the data. Adjusted R2 also indicates how well 

parameters fit a curve or line but adjusts for the number of terms in a model. If more and more 

unnecessary variables are added to a model, adjusted R-squared will decrease. If more useful variables 

are added, then the Adjusted R2 will increase. Regardless, the Adjusted R2 will always be less than or 

equal to R2. In a model that has more independent variables, adjusted R-squared will help determine 

how much of the correlation with the response is due to the addition of those variables. The adjusted 

R-squared compensates for the addition of variables and only increases if the new predictor enhances 

the model above what is predicted. Conversely, it will decrease when a predictor improves the model 

less than what is predicted. To compute R-Square(R2), Adjusted R2, we use the following 

expression:R2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
,   𝑅2(Adjusted) = 1 −

(1−R2)(n−1)

n−p−1
 , R2 = R-Square, n = sample size 

p = Number of parameters in the model less the constant β0). Note that R2   ≥ 𝑅2
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ↙  

Using our data from tables 2 and 5 : 𝑅2
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −

(1−0.951)(10−1)

10−1−1
= 0.94375  
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3.4 Pure Error Sum of Squares and R2 

There is only one situation where R2 cannot become zero or literarily made zero and that is 

when there is replication. Replication occurs when for a specific value of X, we have two or more 

values of Y for the single reading at X. All things been equal one would expect the values of Y for 

each X to be the same. The only reason the values would be different would be due to natural 

variability or pure error.  

In that case sum of squares error (SSE) = SSPE (pure error) + SSLF (lack of fit). In such a 

case overfitting will not be possible because we have a non-zero estimate of SS (pure error) and R2 

cannot be 1 because SSE will never be zero since we will always have a non-zero SS (pure error). Note 

that: 

𝑅2 = (1 −
𝑆𝑆𝐸 (𝑆𝑆𝑃𝐸+𝑆𝑆𝐿𝐹)

𝑆𝑆𝑇
) cannot be 1 because SSE cannot be zero with nonzero SSPE. If SSLF is 

not significant then we can combine it with SSPE for testing purposes. This means that the variability 

we have is due mostly to pure or natural variability and not to any assignable cause. 
 

 3.4.1 Computation of SSPE and SSLF Given Replication  
When we have replication, this means that repeated readings of Y were taken at the same 

values of X. For example, at a specific X value of Xi, we can have Y readings of (Yi1, Yi2. Yi3). In 

this case say X is set at 25, we will have (X=25, Y=100, X=25, Y=101, X=25, Y=98). We can see in 

this example that we have different outcomes for Y at a given level of X. Everything else being equal 

the only reason we will have different readings must be because of natural variability or pure error 

which we cannot control. So, our residual variance has two contributors namely, pure error and lack 

of fit (also called assignable cause error).  If we do a good job specifying the model, then the lack 

of fit or assignable cause error would be statistically insignificant.   

i). Lack of Fit.  Lack of fit is defined as: 𝑦̅𝑖 − 𝑦𝑖𝑗 , Hence sum of the squares: SSLF = ∑ ∑ (y̅i − ŷij)
2n

j
c
i . 

ii). Pure error. Pure error is defined as: 𝒚𝒊𝒋 − 𝒚̅𝒊 , Hence sum of the squares: 𝑺𝑺𝑷𝑬 = ∑ ∑ (𝒚̅𝒊 − 𝒚̂𝒊𝒋)
𝟐𝒏

𝒋
𝒄
𝒊 . 

 

3.4.2 Degrees of Freedom for SSPE and SSLF   
The df for the Residual Sum of Squares SSE=(n-p), where p is the number of parameters in 

the model including the constant term β0.  
The pure error degrees of freedom are pooled from each replicated group of observations. In 

general, if there are g groups of X’s where ki is the number of replicates in the ith group, and each 

group in X has identical setting for each effect Y. The pure error df is thus as follows: 𝑐 = ∑ (𝑘𝑖 − 1)𝑔
𝑖  

.The degrees of freedom for lack of fit: SSLF = df (SSE)-df (SSPE) = (n-p)-(c)=n-c-p 
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3.4.3 Modeling Example for Replication 
Example:  Assume that for an experiment with replication, we employ a two-parameter model to 

describe the relationship as follows:  𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀𝑖𝑗 . The data is shown in table 6.  

 
Table 6:  ANOVA 

Source of 
 Variation 

df SS MS F 

Regression 1 SSR= 𝜷𝟏𝑺𝑿𝒀 = ∑ ∑ (𝒚̂𝒊𝒋 − 𝒚̅)
𝟐𝒏

𝒋
𝒄
𝒊  𝑴𝑺𝑹 =

𝑺𝑺𝑹

𝟏
 𝑭 =

𝑴𝑺𝑹

𝑴𝑺𝑬
 

Residual  
Error 

n-2 SSE = ∑ ∑ (𝒚𝒊𝒋 − 𝒚̂𝒊𝒋)
𝟐𝒏

𝒋
𝒄
𝒊  𝑴𝑺𝑬 =

𝑺𝑺𝑬

𝒏 − 𝟐
 

 

Lack of  
Fit 

c-2 SSLF=∑ ∑ (𝒚̅𝒊 − 𝒚̂𝒊𝒋)
𝟐𝒏

𝒋
𝒄
𝒊  𝑴𝑺𝑳𝑭 =

𝑺𝑺𝑳𝑭

𝒄 − 𝟐
 𝑭 =

𝑴𝑺𝑳𝑭

𝑴𝑺𝑷𝑬
 

Pure Error n-c SSPE=∑ ∑ (𝒚𝒊𝒋 − 𝒚̅𝒊)
𝟐𝒏

𝒋
𝒄
𝒊  𝑴𝑺𝑬 =

𝑺𝑺𝒑𝑬

𝒏 − 𝒄
 

 

Total n-1 SST=∑ ∑ (𝒚𝒊𝒋 − 𝒚̅)
𝟐𝒏

𝒋
𝒄
𝒊    

 

Table 7: Data for Lack of Fit and Pure Error Analyses 

  X Y Ybar Y-Ybar (Y-Ybar)2 X2 Y2 XY 

  75 28 35 -7 49 5625 784 2100 

  75 42 35 7 49 5625 1764 3150 

  100 112 124 -12 144 10000 12544 11200 

  100 136 124 12 144 10000 18496 13600 

  125 160 155 5 25 15625 25600 20000 

  125 150 155 -5 25 15625 22500 18750 

  150 152 152 0 0 22500 23104 22800 

  175 156 140 16 256 30625 24336 27300 

  175 124 140 -16 256 30625 15376 21700 

  200 124 114 10 100 40000 15376 24800 

  200 104 114 -10 100 40000 10816 20800 

SUM 1500 1288 1288 0 1148 226250 170696 186200 

 

𝑛 = 11,∑𝑋 = 1500, 𝑋̅ = 136.3636, ∑𝑌 = 1288, 𝑌 ̅ = 177.0909  
∑𝑋2 = 226250, ∑𝑌2 = 170696, ∑𝑋𝑌 = 186200     
𝑆𝑋𝑋 = 21704.545 , 𝑆𝑌𝑌 = 19882.909, 𝑆𝑋𝑌 = 10563.636   

𝛽1 =
𝑆𝑋𝑌

𝑆𝑋𝑋
= 0.4867, 𝛽0 = (𝑌̅ − 𝛽1𝑋̅) = 50.7225,  𝑐 = ∑ (𝑘𝑖 − 1)6

𝑖 = (1 + 1 + 1 + 0 + 1 + 1 = 5) 

𝑆𝑆𝑃𝐸 = ∑∑(𝑌𝑖𝑗 − 𝑌̅𝑖 )
2

= 1148      

𝑆𝑆𝑅 = 𝛽1𝑆𝑋𝑌 = 5141.322, 𝑆𝑆𝑇 = 𝑆𝑌𝑌 = 19882.909    
𝑆𝑆𝐸 = (𝑆𝑆𝑇 − 𝑆𝑆𝑅) = (19882.909 − 5441.322) = 14741.678   
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Table 8: ANOVA 

Multiple R 0.50851         

R Square 0.25858         

Adjusted R2 0.17621         

Std. Error 40.4716         

Observations 11         

Source  df SS MS F p 

Regression 1 5141 5141 3.1389 0.1102 

Residual 9 14742 1638     

      lack of fit 4 13594 3398 14.77 0.006 

      pure error 5 1148 230     

Total 10 19882.9091       

  Coeff Std Error t Stat P-value   

Intercept 50.7225 39.3979 1.28744 0.23006   

X 0.4867 0.274711 1.771689 0.110212   

The model we proposed does not seem to be adequate? Well the value of R2 (26%) is very low and 

lack of fit is statistically significant based on the F-test and the p value (p< 0.6%). As result we tried a 

higher order model to see if the efficacy of the model would improve. The model we finally arrived at 

was: 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋 2 + 𝛽3𝑋
3 + 𝜀𝑖𝑗    

 
Table 9: ANOVA  for the Expanded Model 

Multiple R 0.96931        

R Square 0.93956        

Adjusted R2 0.91367        

Standard Error 13.10147        

Observations 11         

Source df SS MS F Sig. F 

Regression 3 18681.37006 6227.123 36.27836 0.000123 

Residual 7 1201.539028 171.64843     

lack of fit 2 53.53903 26.76951 < 1 n.s 

pure error 5 1148 230     

Total 10 19882.90909       

  Coeff Std. Error t Stat P-value   

Intercept -685.4919 167.00345 -4.104657 0.004546   

X 15.533255 4.063666 3.822473 0.006521   

X2 -0.091602 0.0311534 -2.940365 0.021702   

X3 0.0001697 0.00007575 2.240673 0.060018   

 

Based on the R2 (94%) and the lack of fit F and p values for lack of fit, we can notice that this is a 

much improved model. Hence this will be our final model for the data on table 7.  
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3.5 Coefficient of Variation 
The Coefficient of  Variation (CV) is a useful criterion for representing the quality of  the fit 

and measures the spread of  the noise around the regression line. So, CV is the residual estimate of  

the error standard deviation, measured as a percent of  the average response Y. The natural 

dispersion around the regression line as measured by s is a measure of  CV. 

CV = (𝑆𝑒/𝑌̅)(100), 𝑤ℎ𝑒𝑟𝑒: 𝑌̅ = ∑𝑌/𝑛. G 

From the data on table 2, CV = (
Se

Y̅
) (100) = (

1.386

11.560
) 100 = 11.9% 

Some Observations About the Least Squares Method 

4.1 Linear, Intrinsically Linear and Intrinsically Nonlinear Models 
Our major focus in Least Squares Regression (LSR) is on models that are linear or intrinsically 

linear. Linear models are linear in the parameters, but they may or may not be linear in the variables. 

A model that is linear in both the parameters as well as the variables is a linear regression model and 

so also is a model that is linear in the parameters but nonlinear in the variables. A model that is 

nonlinear in the parameters but which by suitable transformation can be made linear-in-the-parameter 

are intrinsically linear. On the other hand, if a model is nonlinear in the parameters and such a model 

cannot be linearized in the parameters, it is called intrinsically nonlinear regression model whether the 

variables of such a model are linear or not. For intrinsically nonlinear models, the model is fitted by a 

method of successive approximations and/or by numerical simulation. 

 
4.2 Deriving the Normal Equation by Inspection 
Again, let a basic LSR model be specified as: Y = 0 + 1xi + i.  Through the optimization process, 

we were able to develop the Normal Equations to the problem as follows: 

 . 
 


=+

=+

)2......(

)1.........(
2

10

10

iiii

ii

yxxbxb

yxbnb  

When the problem becomes more complex (still linear in the parameters but with many 

predictor variables, say a polynomial with several independent variables, it becomes very tedious to 

Table 10: Samples of Linear, Intrinsically Linear and Intrinsically nonlinear 

Equation Linear Transformation Intrin. 
Linear 

Intrin. 
Nonlinear 

Y = β0 + β1x + β2 x
2

+ β3x
3 

yes None n/a n/a 

𝑌 = 𝑎𝑒𝑥 no ln(𝑦) = ln(𝑎) + 𝑥 yes no 

𝑌 =
𝛽0𝑋

𝛽1 + 𝑋
 

no 1

Y 
=

β1 + X

β0X
= (

∅

X
+ ∅) ⇒ Y′

= aX′ + A 

yes no 

𝑦 =
𝑒(𝛽0+𝛽1𝑥)

1 + 𝑒(𝛽0+𝛽1𝑥)
+ 𝜀𝑖 

no None no yes 
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develop the normal equations. The Least Squares method makes it possible to take advantage of  the 

problem structure to quickly develop the Normal Equations.  This would be dealt with in more depth 

when we examine the Matrix method. The LSR method guarantees us that if  the data is healthy and 

the normal equations are developed properly, then we would always have a solution to the problem. 

The structure makes it possible to accommodate models that are both linear and intrinsically linear.  

As indicated earlier, the solution to the set of Normal Equations takes advantage of the 

structure of the LSR problem. The nature of the normal equations under LSR makes the problem 

more determined. One of the prominent properties of LSR is the fact that the number of Normal 

Equation is equal to the number of unknown parameters to be estimated.  Also, the structure 

that results from the Normal Equation is that of a symmetric matrix. 

 Let us start by examining the basic LSR problem which consists of one predictor variable and 

one response variable. We will use the inspection process to set up the Normal Equations as follows: 

Y = 0 + 1xi +  

Based on what we know; we expect two equations in two unknowns. 

1. For the LHS, write down the sum of the coefficient of each parameter in the model except 

the error term. For the parameter β0 the coefficient is 1. If we sum 1 n times, we get n. put this 

as the first element in the first row/column 

2. [ n ] 

3. For the parameter β1, the coefficient is x. If we sum ‘x’ n times, we get ∑𝑥.  

4.  Put this in the first row as follows: 

5. [
n ∑𝑥

] 

6. To construct the second row, we copy down every term on the first row to the first column as 

shown. Please recall that the resulting matrix from the Normal Equations is a symmetric matrix 

7. [
n ∑𝑥

∑𝑥
] 

8. Next, starting from the second row, fill-out the elements in each row by doing the following. 

Multiply the element at the beginning of  the row by the elements in the first row and sum. 

Note that the element in the first row is never used in this multiplication 

9. [
n ∑ 𝑥

∑𝑥 ∑𝑥2] 

 
For the RHS, the vector, we have a node length array (a 2x1 ) is constructed as follows 

 [ ] 

1. Multiply the coefficient of β0 (which is 1) by y and sum. This is ∑y. This value goes in 

the first row of the vector.  [
∑y

] 
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2. Multiply the coefficient of β1 (which is x) by y and sum. This is ∑xy. This value goes in 

the second row    [
∑y
∑xy

] 

Thus, the Normal Equation will look as follows 
nβ0 + β1∑xi       = ∑yi ………… . (1)  
β0∑xi + β1∑xi

2  = ∑xiyi …    … . (2) 
Or in matrix form for it would look like 

[
n ∑x

∑x ∑x2
] [

β0

β1
] = [

∑y
∑xy

] 

Now we will demonstrate this approach with a more realistic problem 
Recall the polynomial given as:  
𝑌 = β0 + 𝛽1𝑥 + 𝛽2 𝑥

2 + 𝛽3𝑥
3 + 𝛽4𝑥

4    
In this example, we will have Normal Equations which by inspection will look like: 
The LHS 
        

𝑋𝑇𝑋 =

[
 
 
 
 
 

𝑛 ∑𝑥 ∑𝑥2 ∑𝑥3 ∑𝑥4

∑𝑥 ∑𝑥2 ∑𝑥3  ∑𝑥4 ∑𝑥5

∑𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6

∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7

∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7  ∑𝑥8

  

]
 
 
 
 
 

 ,        𝑋𝑇𝑌 =

[
 
 
 
 
 

∑𝑦
∑𝑥𝑦

∑𝑥2𝑦

∑𝑥3𝑦

∑𝑥4𝑦]
 
 
 
 
 

  

 
If our model is a 2nd degree polynomial, then we have 

𝑌 = β0 + 𝛽1𝑥 + 𝛽2 𝑥
2 

The normal equation for both LHS and RHS is: 
 

[

𝑛 ∑𝑥 ∑𝑥2

∑𝑥 ∑𝑥2 ∑𝑥3

 ∑𝑥2 ∑𝑥3 ∑𝑥4

] [

𝛽0

𝛽1

𝛽2

]  =   [

∑𝑦
∑𝑥𝑦

∑𝑥2𝑦
] 

 

As we will show later, the matrix (XTX) resulting from the LSR is always Square and symmetric.  

These two properties are key to solving larger systems  

 
The Matrix Approach 

3.1 Matrix Analyses 
The dimensions of the set of Normal Equations (the number of these normal equation is equal 

to the number of parameters) are such that the system of equations is solvable so long as the data is 

not ill due to very significant differences in the magnitude of the data. In order words, in a matrix 

form the matrix always has an inverse so long as the determinant is not zero.  
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 As the model becomes larger, due to the increase in the number of parameters in the model, 

it becomes a bit more tedious and time consuming to solve for the estimates of the parameters of the 

model. In such a case, we resort to matrix algebra. One of the advantages of the matrix approach is 

that once the problem has been formulated in matrix form, the solution can be applied to any size 

problem. 

 Let:  Y= β0+ β1Xi+ i,   Y=Xβ+ 

Define: Y = Vector of observations from the experiment-- (n x1 vector) 

 X= Matrix of independent variables-- (nx2) Matrix 

 XT=A transpose of the X matrix 

 β = Vector of parameters to be estimated-- (2x1) vector 

 = Vector of errors or deviations (nx1) vector 























•

•=

ny

y

y

Y

2

1

;   























••

••=

nx

x

x

X

1

1

1

2

1

;   







=

1

0




 ;   























•

•=

n







2

1

,   








••

••

n

T

xxx
X

21

111
 









=









••

••























••

••=



2

21

2

1

111

1

1

1

xx

xn

xxx

x

x

x

XX
n

n

T
,  









=























•

•








••

••
=




xy

y

y

y

y

xxx
YX

n

n

T

2

1

21

111  

The normal equations can be rewritten in matrix form as:  

( ) YXXX TT =̂   

( ) ( )YXXX TT 1ˆ −
=  , where  𝛽̂=is the vector of the estimates of the parameters 

( ) 















=

















=
















=













−

xy

y

xyx

xn

b

b

xy

y

b

b

xyx

xn
YXXX TT

1

1

0

1

0̂  

In the Least Squares approach, the X
T
X matrix is always a square, symmetric  matrix   

391.pdf

http://www.suncam.com/


 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT REGRESSION ANALYSES 

A SunCam online continuing education course 

 

 
www.SunCam.com  Copyright© 2020 O. Geoffrey Okogbaa, PE Page 31 of 51 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 
 

Example: Given the data of table 12, Use the method of least squares to determine the parameters 

of the model.   Y=b0+b1X 

( )
( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

( )( ) 2568.03667.39303.222.10ˆ,9303.2
10.13

387.38ˆ

1.139/3.3011.115/

387.389/1.913.3009.345/

122.10,3667.3,134.9229/

65.1036,11.115,09.345,1.91,3.30,9
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Table 11:    ANOVA Table in Matrix Form 

Source df SS SS (Matrix Form) MS F 

b0 1 ( )  CFny = /
2

 ( 11 ) /T TY Y n CF=  

 

  

b1/b0 1 
XYSb1

 CFYX TT −    

error n-2 Subtraction ( )YXYY TTT −    

Total n-1 CFyi − 2
 CFYY T −    

Table 12:   Data for Simple Linear Regression Model 

i 1 2 3 4 5 6 7 8 9 

Xi 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 

Yi 4.8 5.7 7.0 8.3 10.9 12.4 13.1 13.6 15.3 

Table 13:    ANOVA Table for the Regression Model based on Data on Table 12. 

Source df SS SS (Matrix Form) SS MS F p 

b0 1 ( )  CFny = /
2

 ( 11 ) /T TY Y n  

=922.134 

- - -  

b1lb0 1 
XYSb1  CFYX TT −  112.485 112.5 26.00  

error 7 Subtraction ( )YXYY TTT −  2.04 0.291   

Total 8 CFyi − 2
 CFYY T −  114.52    
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
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4.2  A Note About the Least Squares Method 

 The X
T
X matrix is a symmetric square matrix. Because it is a square matrix, we can always 

find an inverse of the matrix except when the determinant is zero or close to zero.  This happens 

when the magnitude of the differences in the data is quite high.  A way to overcome this problem is 

to use transformation, such as the log or square root transformation or even appropriate scaling. An 

important property of the XTX matrix is that it is always symmetric and square matrix. 
 

4.2.1 Diagonal and Symmetric Matrices and Regression Analyses 
 A diagonal matrix is a square matrix (n x n) which consists of zeros off the main diagonal.  

                       
An important property of a diagonal matrix is that the inverse of the matrix is simply a matrix 

whose diagonal element is the reciprocals of the elements of the original diagonal matrix. This means 

that for any given problem design, if we can come up with the appropriate Normal Equations from 

which we can construct a Diagonal Matrix, our solution approach would be greatly simplified.. 

A square matrix A is considered symmetric if the transpose of the matrix (AT) is the same as 

the original matrix A. Additionally, the entries on the main diagonal may be arbitrary but the mirror 

images across the diagonal must be equal. The (3,3) square matrices below are symmetric. For the first 

matrix, the elements on the upper triangle off the diagonal, namely (1,2)=4, (1,3)=5, and (2,3=1,  are 

the same as the elements on the lower triangle off the diagonal,, namely (2,1)=4, (3,1)=5, and (3,2)=1. 

For the second symmetric matrix, the elements on the upper triangle off the diagonal, namely (1,2)=2, 

(1,3)=9, and (2,3=0 are the same as the elements on the lower triangle off the diagonal,, namely 

(2,1)=2, (3,1)=9, and (3,2)=0 

 

[
2 4 5
4 5 1
5 1 3

],   [
1 2 9
2 −3 0
9 0 7

] 

 

391.pdf

http://www.suncam.com/


 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT REGRESSION ANALYSES 

A SunCam online continuing education course 

 

 
www.SunCam.com  Copyright© 2020 O. Geoffrey Okogbaa, PE Page 33 of 51 

 

As indicated previously, the matrix resulting from the Normal Equations of LSR problem 

formulation is a square and symmetric matrix. The question is how do these two properties help? 

In the case of symmetry, it means that we can establish the XTX matrix by inspection. A more 

complicated question is how to we achieve diagonality. To achieve diagonality, the columns 

representing the predictor variables on X matrix must be pairwise orthogonal. To achieve this would 

require that the columns representing the predictor variable have been scaled or transformed either 

before (by proper experimental design) or after data had been collected so that they are pairwise 

orthogonal. 

Two columns are orthogonal iff. ∑𝑥𝑖𝑘∑𝑥𝑗𝑘 = 0. Orthogonality is often realized by problem 

design or through data transformation or data scaling. We will later show that the diagonality and 

symmetric nature of the XTX matrix are especially important properties. 

We will use the following example to demonstrate how we achieve orthogonal columns and 

hence Diagonal X
T
X matrix.  In this example, 3 predictor variables (A, B, C) yielded the response 

shown on table 14. 

     

 

 

 

 

 

 

 

 

The model formulation is as follows: 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜖𝑖𝑗  

Where X1, X2, X3 are the transformed predictors for A, B, C respectively.  

The transformation equation is as follows; 𝑋1 =
𝐴−100

50
, 𝑋2 =

𝐵−20

10
, 𝑋3 =

𝐷−60

20
. Using this 

transformation, we generate the following data on table 11 with respect to X1, X2, X3.  

(X1= {-1,0, 1}, (X2= {-1,1}, (X3= {-1,0,1} 

Note: 𝐶𝐹 =
(𝑌𝑇11𝑇𝑌)

𝑛
=

(∑𝑌)2

𝑛
    

CFYXSSR TT −=   

𝑆𝑆𝑇 = 𝑆𝑌𝑌      
𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑅          
  
  

Table 14: Sample Data 

A B C Y 

50 10 80 0.005 

50 30 40 0.035 

100 10 60 0.045 

100 30 60 0.018 

150 10 40 0.008 

150 30 80 0.054 
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Table 15: Predictor Variables After Transformation 

Y X1 X2 X3 X1X2 X1X3 X1
2 X2

2 X3
2 X1Y X2Y X3Y 

0.005 -1 -1 1 1 -1 1 1 1 -0.005 -0.005 0.005 

0.035 -1 1 -1 -1 1 1 1 1 -0.035 0.035 -0.035 

0.045 0 -1 0 0 0 0 1 0 0 -0.045 0 

0.018 0 1 0 0 0 0 1 0 0 0.018 0 

0.008 1 -1 -1 -1 -1 1 1 1 0.008 -0.008 -0.008 

0.054 1 1 1 1 1 1 1 1 0.054 0.054 0.054 

SUM 0 0 0 0 0 4 6 4 0.022 0.049 0.016 

 

𝑋𝑇𝑋 =

[
 
 
 
 

𝑛 ∑𝑥1 ∑𝑥2 ∑𝑥3

∑𝑥1 ∑𝑥1
2 ∑𝑥1𝑥2 ∑𝑥1𝑥3

∑𝑥2 ∑𝑥1𝑥2 ∑𝑥2
2 ∑𝑥2𝑥3

∑𝑥3 ∑𝑥1𝑥3 ∑𝑥2𝑥3 ∑𝑥3
2 ]

 
 
 
 

 ,           𝑋𝑇𝑌 = [

∑𝒀
∑𝑿𝟏𝒀
∑𝑿𝟐𝒀
∑𝑿𝟑𝒀

] 

 

XTX = [

6 0 0 0
0 4 0 0
0 0 6 0
0 0 0 4

] = (Diagonal matrix),  𝑋𝑇𝑌 = [

0.165
0.022
0.049
0.016

] 

 

𝐻𝑒𝑛𝑐𝑒; (𝑋𝑇𝑋)−1 [

0.1667 0 0 0
0 0.25 0 0
0 0 0.1667 0
0 0 0 0.25

] = 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠       

𝑎𝑛𝑑: [(𝑋𝑇𝑋)−1]𝑋𝑇𝑌 = [

𝛽
0

𝛽
1

𝛽
2

𝛽
3

] 

 

[

𝛽0

𝛽1

𝛽2

𝛽3

] = [

0.1667 0 0 0
0 0.25 0 0
0 0 0.1667 0
0 0 0 0.25

] [

0.165
0.022
0.049
0.016

] = [

0.0275
0.055
0.008
0.004

]. This gives the solution to the problem. 

 

IMPORTANT: Please note if XTX matrix is a Diagonal matrix, we can compute the inverse matrix 

(XTX)
-1

 by simply taking the reciprocals of the diagonal elements in the XTX matrix 
 

4.2.2 Significance of the Diagonality of the X
T

X Matrix 

If the columns of the predictor matrix X are pairwise orthogonal or simply orthogonal, then 

the resulting XTX matrix is a diagonal matrix.  This property has significant implication on the 
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independence or lack thereof of the predictor variables. If diagonal, the inverse of the XTX 

matrix is simply the reciprocals of the diagonal elements of the XTX diagonal matrix. 
 

Using EXCEL for Regression Analysis 
EXCEL has a Data Analysis toolbox that is part of EXCEL Analysis ToolPack. The Data Analyzer 
is an EXCEL add-on that must be installed first.  It does not come with regular EXCEL. 
For the Add-on do the following 

1. Open a fresh EXCEL page which contains the main Tab such as:  

File Home Insert Draw Data, etc 
2. Click on File 

3. Click on Option (located close to the bottom) 

4. The EXCEL option panel will open up 

5. On the left-hand side of the panel, click on Add-in 

6. The Add-in window will open  

7. Click on the Analysis Tool-Pack 

8. Click OK 
This will load the Data Analysis ToolPack and it will (typically) be located on the extreme right 
To get to the Data Analyzer do the follow 

1. On the main panel, click on Data Tab to reveal the subgroups under Data 

2. In the Analysis subgroup (usually to the far right), you will see Data Analysis and Solver.  

3. Click on Data Analysis Button  

4. Select Regression and click OK. 

5. In the Regression dialog box, configure the following settings: Select the Input Y Range, 

which is your dependent variable. ...  

6. Click OK and observe the Regression analysis output created by Excel. 

To use other EXCEL functions, go to the main panel or home tab.  
1. Click on the tab labelled Formula.  

2. Click on the tab labelled fx-- insert function. This utility contains a several functions 

including: Math & Trig, Statistical, Database, Engineering, logical, etc.  

For example, in the Math Trig function, you can compute Matrix inverse, etc.   

Screen shots of how to use the regression Function in Excel is provided in the Appendix 

 

Multivariate Linear Regression 

6.1 Multivariate Polynomial Regression Method 

We will now formally present multivariate regression. Most of what will be presented here are similar 
to the material presented earlier. However, we will present them in a different context, namely that of 
a dense XTX matrix due in large part to the large number of predictor variables. A typical multivariate 
model would look like the following. 
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Y = f (X1, X2, ..., Xn) 

   =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4+. . . . . +𝛽𝑛𝑋𝑛 

Also:         𝑌 = 𝐴0 + 𝐴1𝑋1 + 𝐴2𝑋2 + 𝐴11𝑋1
2 + 𝐴22𝑋2

2+. . . . . +𝐴12𝑋1𝑋2 

Let: =       Y=  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4+. . . . . +𝛽𝑛𝑋𝑛 + 𝜀𝑖𝑗 

𝑋 =

[
 
 
 
 
 
 
1 𝑋11 𝑋21 𝑋31 𝑋41 . . 𝑋𝑛1

1 𝑋12 𝑋22 𝑋32 𝑋42 . . 𝑋𝑛2

1 𝑋13 𝑋23 𝑋33 𝑋43 . . 𝑋𝑛3

1 𝑋14 𝑋24 𝑋34 𝑋44 . . 𝑋𝑛4
. . . . . . . .
𝑛. 𝑋1𝑛 𝑋2𝑛 𝑋3𝑛 𝑋4𝑛 . . 𝑋𝑛𝑛]

 
 
 
 
 
 

= 𝑛 𝑥 𝑛, 𝑌 =

[
 
 
 
 
 
 
𝑦1

𝑦2

𝑦3

.

.

.
𝑦𝑛]

 
 
 
 
 
 

 n x1 

   

 𝑋𝑇 

[
 
 
 
 
 
 

1 1 1 1 . . 1
𝑋11 𝑋12 𝑋13 𝑋14 . . 𝑋1𝑛

𝑋21 𝑋22 𝑋23 𝑋24 . . 𝑋2𝑛

𝑋31 𝑋32 𝑋33 𝑋34 . . 𝑋3𝑛
. . . . . . .
. . . . . . .

𝑋𝑛1 𝑋𝑛2 𝑋𝑛3 𝑋𝑛4 . . 𝑋𝑛𝑛]
 
 
 
 
 
 

 = n x n 

 

𝑋𝑇𝑋 =

[
 
 
 
 
 
 
 

𝒏 ∑𝑋1 ∑𝑋2 ∑𝑋3 ∑𝑋4 . . ∑𝑋𝑛

∑𝑋1 ∑𝑿𝟏
𝟐 ∑𝑋1𝑋2 ∑𝑋1𝑋3 ∑𝑋1𝑋4 . . ∑𝑋1𝑋𝑛

∑𝑋2 ∑𝑋1𝑋2 ∑𝑿𝟐
𝟐 ∑𝑋2𝑋3 ∑𝑋2𝑋4 . . ∑𝑋2𝑋𝑛

∑𝑋4 ∑𝑋1𝑋4 ∑𝑋2𝑋4 ∑𝑋3𝑋4 ∑𝑿𝟒
𝟐 . . ∑𝑋4𝑋𝑛

. . . . . . . .

. . . . . . . .
∑𝑋𝑛 ∑𝑋1𝑋𝑛 ∑𝑋2𝑋𝑛 ∑𝑋3𝑋𝑛 ∑𝑋4𝑋𝑛 . . ∑𝑿𝒏

𝟐 ]
 
 
 
 
 
 
 

   ,     𝑋𝑇𝑌 =

[
 
 
 
 
 
 
 
 

∑𝑌

∑𝑋1𝑌
∑𝑋2𝑌
∑𝑋3𝑌
∑𝑋4𝑌

.

.
∑𝑋𝑁𝑌]

 
 
 
 
 
 
 
 

 

 

(X𝑇X)−1(X𝑇Y) = β⃗ =

[
 
 
 
 
𝛽̂1

𝛽̂2

.

.
𝛽̂𝑛]

 
 
 
 

 

The solution to the system is given by the vector 𝛽⃗⃗  ⃗ , where:   𝛽 = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌)  
SS (sum of squares) for the parameters 

SS(𝛃𝟎 𝐭𝐡𝐫𝐨𝐮𝐠𝐡 𝛃𝒏) = 𝛽𝑇(𝑋𝑇𝑌) , SS for 𝛃𝟎 =
(∑𝑌)2

𝑛
= 𝐶𝐹 = (

𝑌𝑇11𝑇𝑌

𝑛
)  

where CF = Correction Factor 
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          Y   = n x 1 vector 

    YT = Transpose of vector Y, 1 x n  

1 = an n x 1 vector of 1's  

1T = Transpose of vector of 1's 

To check whether the quantity (𝑌𝑇11𝑇𝑌) is indeed a scalar, we examine the dimension of the quantity. 
The dimension of the quantity is:(1x n)(n x1)(1x n)(n x1)= A scalar or a number not a vector or matrix. 
 

6.2 Stepwise Regression 
In multiple regression analyses it not often known with certainty which of the many variables 

ought to be included in the multiple regression mode to provide the best fit. Stepwise regression is a 

way to build a model by adding or removing predictor variables, using some type criteria such as F-

tests or t-tests or p value The variables to be added or removed are chosen based on the test statistics 

of the estimated coefficients. The explanatory variables for a multiple regression model are chosen 

from a group of candidate variables by going through a series of automated steps. At every step, the 

candidate variables are evaluated, one by one, typically using the t-statistics and p values for the 

coefficients of the variables being considered. There two approaches for Stepwise regression, namely 

Forward, and Backwards.  

Forward selection begins by determining which one of the regressor or explanatory variables 

provides most information about Y. This variable is retained in all future models. At the second stage 

the procedure considers the remaining (k-1) variables and determines which, in conjunction with the 

first variable, provides most additional information about Y. This procedure continues until there are 

no further variables that make worthwhile extra contributions to the fit of the model. The  

successive contributions are compared using an F-test, t-test and p-value. A contribution is worthwhile 

if the observed exceeds a critical value.   

Backward elimination involves starting with all candidate variables, testing the deletion of each 

variable using a chosen model fit criterion, deleting the variable (if any) whose loss gives the most 

statistically insignificant deterioration of the model fit, and repeating this process until no further 

variables can be deleted without a statistically insignificant loss of fit. 

  We can solve this problem the easy way by estimating the significance of the regression 

parameter. In this approach we can only estimate the constant term β0 and the regression parameter 

β without distinguishing which of the four parameters are significant. This would not be entirely useful 

because it would not give us a sense as to which of regressor variables have significant impact in the 

model. Thus, it would be instructive to determine which of the predictor variables are significant in 

the model and how much they contribute to explaining away the model variance.  

Thus, we will employ another approach that would essentially take care of this impractical 

approach by way of sequentially extracting each parameter in the model in a dependent way. For 
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example, we will extract the constant term β0 parameter and then extract the first parameter given that 

we have accounted for the constant term namely, 𝛽1|𝛽0. Then we will go on and extract the second 

parameter 𝛽2 given that we have extracted the constant term and the first parameter and so on until 

we extract the last parameter 𝛽4. This will look as follows on the ANOVA table 

(𝛽1|𝛽0), (𝛽2|𝛽0, 𝛽1) , ( 𝛽3|𝛽0, 𝛽1, 𝛽2), (𝛽4|𝛽0, 𝛽1, 𝛽2, 𝛽3) 

  First, we will go the first route where we estimate the constant term β0 and the regression 

term β and from that point of view determine if the regression is significant or not. The data for the 

Stepwise regression is shown on Table 16 together with a description of the data concerning annual 

sales of 20 Green Franchise stores. We will go through the detailed development of the Multivariate 

ANOVA table and then subsequently we will use EXCEL to do the analysis. Please bear with this 

process because it is a little long and detailed, but it builds on the materials we developed earlier 

   

 

 

The data (X1, X1, X2, X3, X4) are for 20 Green Franchise stores. 

Table 16: Annual Sales of Green Franchise Stores 

S/N Y X1 X2 X3 X4 

1 231 3 294 8.2 8.2 

2 156 2.2 232 6.9 4.1 

3 10 0.5 149 3 4.3 

4 519 5.5 600 12 16.1 

5 437 4.4 567 10.6 14.1 

6 487 4.8 571 11.8 12.7 

7 299 3.1 512 8.1 10.1 

8 195 2.5 347 7.7 8.4 

9 20 1.2 212 3.3 2.1 

10 68 0.6 102 4.9 4.7 

11 570 5.4 788 17.4 12.3 

12 428 4.2 577 10.5 14 

13 464 4.7 535 11.3 15 

14 15 0.6 163 2.5 2.5 

15 65 1.2 168 4.7 3.3 

16 98 1.6 151 4.6 2.7 

17 398 4.3 342 5.5 16 

18 161 2.6 196 7.2 6.3 

19 397 3.8 453 10.4 13.9 

20 497 5.3 518 11.5 16.3 
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Y = annual net sales/$1000 
X1 = number sq. ft./1000 
X2 = inventory/$1000 
X3 = amount spent on advertising/$1000 
X4 = size of sales district/1000 families 
To start we will fit the data to the model: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝜖𝑖𝑗   

The XTX matrix is a 5x5 square matrix which by inspection is: 
 

𝑋𝑇𝑋 =

[
 
 
 
 
 

𝑛 𝛴𝑥1 𝛴𝑥2 𝛴𝑥3 𝛴𝑥4

𝛴𝑥1 𝛴𝑥1
2 𝛴𝑥1𝑥2 𝛴𝑥1𝑥3 𝛴𝑥1𝑥4

𝛴𝑥2 𝛴𝑥1𝑥2 𝛴𝑥2
2 𝛴𝑥2𝑥3 𝛴𝑥2𝑥4

𝛴𝑥3 𝛴𝑥1𝑥3 𝛴𝑥2𝑥3 𝛴𝑥3
2 𝛴𝑥3𝑥4

𝛴𝑥4 𝛴𝑥1𝑥4 𝛴𝑥2𝑥4 𝛴𝑥3𝑥4 𝛴𝑥4
2 ]

 
 
 
 
 

            

 

𝑋𝑇𝑋 =

[
 
 
 
 

20 61.5 7477 162.1 187.1
61.5 245.43 28953.9 610.33 734.86
7477 28953.9 355449.7 74092.4 56531.6
162.1 610.33 74092.4 1591.95 1807.47
187.1 734.86 86531.6 1807.47 2272.23]

 
 
 
 

   

 

The 𝑋𝑇𝑌 =

[
 
 
 
 

𝛴𝑌
𝛴𝑌𝑥1

𝛴𝑌𝑥2

𝛴𝑌𝑥3

𝛴𝑌𝑥4]
 
 
 
 

=

[
 
 
 
 

5515
23208.2
2752259
57571.5
67980.1 ]

 
 
 
 

    

 

(𝑋𝑇𝑋)−1 =

[
 
 
 
 

0.33854 0.11239 0.00030 −0.05824 −0.02941
0.112391 0.334974 −0.00023 −0.05772 −0.06279
0.000302 −0.00023 0.000013 −0.00044 −0.0001
−0.05824 −0.05772 −0.00044 0.036053 0.011421
−0.02941 −0.06279 −0.0001 0.011421 0.018048]

 
 
 
 

    

 

β⃗ = (XTX)
−1

(XTY) =

[
 
 
 
 
−97.6747
47.39106
0.130033
9.43482
10.96902]

 
 
 
 

=

[
 
 
 
 
𝛽0

𝛽1

𝛽2

𝛽3

𝛽4]
 
 
 
 

= 𝑇ℎ𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠   

𝑆𝑆𝑅 = (β )
T
(XTY) − 𝐶𝐹 
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(β⃗ )
T
(XTY) = [−97.6747 47.39106 0.130033 9.43482 10.969]

[
 
 
 
 

5515
23208.2
275225.9
57571.5
69780.1 ]

 
 
 
 

= 2227665.38   

𝐶𝐹 =
(𝑌𝑇11𝑇𝑌)

𝑛
=

(𝛴𝑌)2

𝑛
= 1520761.25   ↙  

𝑆𝑆𝑅 = 706904.130  ↙ 

SST = YTY − YT11TY = YTY − CF    

𝑌𝑇𝑌 = 𝛴𝑌2 = 2234123, 𝐶𝐹 = 1520761.25   ↙ 

𝑆𝑆𝑇 = 2234123 − 1520761.25 = 713362.75    ↙ 

Hence: SSE = SST − SSR = 6458.62       

𝑆𝑒
2 =

𝑆𝑆𝐸

(𝑛−𝑝)
=

6458.62

(15)
= 430.575  ↙ 

The Variance-Covariance Matrix for the parameters β (where the diagonal elements are the 
variances of the β and the off-diagonal element are the covariance values) is given by:  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

[
 
 
 
 
𝛽0

𝛽1

𝛽2

𝛽3

𝛽4]
 
 
 
 

= (𝑋𝑇𝑋)−1𝑆𝑒
2     

The Variance only matrix is given by the diagonal elements of the Variance-Covariance matrix 
expressed as   

    𝑉

[
 
 
 
 
β0

β1

β2

β3

β4]
 
 
 
 

= (XTX)
−1

[I]Se
2  , where I is the identity matrix, same size as the XTX matrix    

 

(𝑋𝑇𝑋)−1 =

[
 
 
 
 

0.33854 0.11239 0.00030 −0.05824 −0.02941
0.112391 0.334974 −0.00023 −0.05772 −0.06279
0.000302 −0.00023 0.000013 −0.00044 −0.0001
−0.05824 −0.05772 −0.00044 0.036053 0.011421
−0.02941 −0.06279 −0.0001 0.011421 0.018048]

 
 
 
 

     

 

[𝐼]𝑆𝑒
2 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

Se
2 =

[
 
 
 
 
430.575 0 0 0 0

0 430.575 0 0 0
0 0 430.575 0 0
0 0 0 430.575 0
0 0 0 0 430.575]
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V

[
 
 
 
 
β0

β1

β2

β3

β4]
 
 
 
 

= (𝑋𝑇𝑋)−1[𝐼]𝑆𝑒
2 =

[
 
 
 
 
145.426 0 0 0 0

0 144.2088 0 0 0
0 0 0.005676 0 0
0 0 0 15.52095 0
0 0 0 0 7.769734]

 
 
 
 

      

 

→

[
 
 
 
 
 
Sβ0

Sβ0

Sβ0

Sβ0

Sβ0]
 
 
 
 
 

=

[
 
 
 
 
 √145.426

√144.2088

√0.005676

√15.52095

√7.769734]
 
 
 
 
 

=

[
 
 
 
 
12.073
12.008
0.0753
3.9397
2.7874]

 
 
 
 

 

 

V − COV

[
 
 
 
 
β0

β1

β2

β3

β4]
 
 
 
 

=

[
 
 
 
 
145.426 0.11239 0.00030 −0.05824 −0.02941

0 144.2088 −0.00023 −0.05772 −0.06279
0 0 0.005676 −0.00044 −0.0001
0 0 0 15.52095 0.011421
0 0 0 0 7.769734]

 
 
 
 

      

Note: In the Variance-Covariance matrix, the diagonal elements are the variance while the off-

diagonal elements are the covariance. Note that because this is a symmetric matrix, only one-side of 

the diagonal is shown since the elements on both sides are identical. Now the only thing left to do is 

to compute the R-Square and the adjusted R for the problem. 

 

R2 =
βT(XTY)−(YT11TY)/n

YTY−(YT11TY)/n
=

SSR

SST
=

6457.62

713361.75
= 0.9909476     

𝑟 = 𝑅 = (𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑙𝑒𝑑 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑅 𝑓𝑜𝑟 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 = √𝑅2 = √0.9909476 = 0.995463    

R2
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −

(1−R2)(n−1)

n−p−1
 , where: R2 = Sample R-Square 

p  =  Number of predictors (or number of parameters in the model less the constant β0 ) 

n  = Total sample size 

  R2
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 −

(1−R2)(n−1)

n−p−1
= 1 −

0.0090542(19)

15
= 1 − 0.01147 = 0.98853 

The ANOVA table is as shown in table 17. 
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Table 17.    ANOVA for the Green Franchise Data on Table 16 

Regression Statistics        

Multiple R (R ) 0.99546        

R2  0.99094        

Adjusted R2  0.98853        

Standard Error 20.748        

Observations 20        

           

  df SS MS F Significance F 

Constant 1 1520761.25 N/A N/A N/A 
Regression 4 706904.1324 176726.0331 410.505959 3.99627E-15 
Residual 15 6457.617572 430.5078381     
Total 19 713361.75       

  Coefficients Std. Error t- Stat P-value   

Intercept -97.6746 12.07238 -8.09074 7.492E-07   
X1 47.3910 12.00861 3.94639 0.00129298   
X2 0.13003 0.07534 1.72589 0.10489933   
X3 9.43482 3.93966 2.39482 0.03012781   
X4 10.9690 2.78742 3.93514 0.00132286   

 

6.3  The Stepwise Regression Procedure 
We will proceed to implement the forward stepwise procedure with the data on Table 16. We 

will need to develop a set of criteria to use to decide on which Regressor Variables get into the model 

based on those criteria. In our case we can use entry criteria and the removal criteria.    

Stage 1. To start we will regress each Regressor on the response Y and then decide on which 

is the first to enter the model based on R2, t-statistic, F-statistic and p-values   

 

Table 18:  Stage 1. ANOVA Based on Data on Table 16 

SOURCE  df SS MS F Sig. F 

Regression 1 693517.7806 693517.8 629.0737 1.87349E-15 

Residual 18 19843.9693 1102.443    

Total 19 713361.75       

 

  Coefficients Std. Error t Stat P-value   

Intercept -65.4839 15.499 -4.22502 0.00050116   

X1 110.9703 4.4244 25.0813 1.87349E-15   
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Table 19: Stage 1. ANOVA Based on Data on Table 16 

Source df SS MS F Sig. F 

Regression 1 627956.464 627956.5 132.348 9.9227E-10 

Residual 18 85405.286 4744.738     

Total 19 713361.75       

  Coefficients Std. Error t- Stat P-value   

Intercept -64.24942 33.3270 -1.92785 0.069803   

X2 0.909454 0.07905 11.50425 9.92E-10   

 
 

  
 
 
 
 
 
 
 
 
 
    
 
  

Table 20:  Stage 1. ANOVA Based on Data on Table 16 

  df SS MS F Sig. F 

Regression 1 595763.2267 595763.2 91.18939 1.80728E-08 

Residual 18 117598.5233 6533.251     

Total 19 713361.75      

  Coefficients Std. Error t Stat P-value   

Intercept -99.3666 43.2405 -2.298 0.033765   

X3 46.2822 4.84664 9.549314 1.81E-08   

Table 21: Step 1.ANOVA Based on Data on Table 16 

  df SS MS F Sig. F 

Regression 1 633782.2424 633782.242 143.3545 5.23231E-10 

Residual 18 79579.50757 4421.08375     

Total 19 713361.75       

  Coefficients Std. Error t Stat P-value   

Intercept -50.248968 31.02258 -1.6197546 0.122672   

X4 34.8475648 2.910494 11.9730739 5.23E-10   
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Based on the number of criteria including F-Statistic, the t-Statistic, p-value, the First variable to 

selected is variable X1. Just a few comments about the criteria. The larger the values of the t-Statistics and the  

F-Statistics, the higher the probability that the effect in question is significant. The p-values is another statistic 

to is used to assess the fidelity of an effect. If the p-value of an effect is small or extremely small, it means that 

the probability of such an effect or event occurred by chance is very small. In order words low p-values suggest 

that the effect or event in question has a significant effect on the response. A quick perusal will show that 

variable X1 is the most eligible to enter the model since its R2 value is the highest of the variables.  

We have also included tables that summarize the statistics and criteria for each variable and how those affect 

the model.  

 STAGE 2. In stage 2, we wish to determine the next set of variables to get into the model based on 

the same set criteria. The next set to be examined are X1X2, X1X3, X1X4 as shown on the following tables.  

 

 
 
 
 
 
 
 

 
 
                                                                                           
  

Table 22:  Stage 2. ANOVA Based on Data on Table 16 

  df SS MS F Significance F 

Regression 2 700021.7659 350011 446.041 2.04497E-15 

Residual 17 13339.984 784.705    

Total 19 713361.75       

  Coefficients Std. Error t Stat P-value   

Intercept -76.3727 13.6121 -5.6106 3.1E-05   

X1 87.1094 9.0898 9.5832 2.9E-08   

X2 0.22539 0.0782 2.87897 0.01042   

Table 23: Stage 2. ANOVA Based on Data on Table 16 

  df SS MS F Sig. F 

Regression 2 697268.5 348634.3 368.278 1.01E-14 

Residual 17 16093.23 946.6605     

Total 19 713361.8       

  Coefficients Std. Error t Stat P-value   

Intercept -81.8391 16.54656 -4.94599 0.000123   

X1 94.69858 9.145265 10.35493 9.26E-09   

X3 8.191356 4.115233 1.990496 0.062863   

Table 24 Stage 2. ANOVA Based on Data on Table 16 

  df SS MS F Sig. F 

Regression 2 696869.2838 348434.642 359.15726 1.24106E-14 

Residual 17 16492.4662 970.145072     

Total 19 713361.75       

  Coefficients Std. Error t- Stat P-value   

Intercept -69.94354 14.73601 -4.746436 0.0001869   

X1 91.37353 11.33101 8.064022 3.274E-07   

X4 6.91822 3.72214 1.858667 0.080476   
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Again, based on the criteria, at stage 2, we have X1X2 as the set of predictors in the model. The F-statistic for 

X1X2 is the highest among the set. So also, the t-statistics and p-values.  In the same way, we will look at the 

remaining combinations, namely X1X2X3, X1X2X4 in stage 3, X1X2X3 and X1X2X4    

 In Stage 3, we examine combinations X1X2X3, and X1X2X4 as shown 25 and 26. 

 

Table 25: Stage 3. ANOVA Based on Data on Table 16 

Source  df SS MS F Sig. F 

Regression 3 700237.4388 233412.5 284.55586 4.34611E-14 

Residual 16 13124.3112 820.2695     

Total 19 713361.75      

  Coefficients Std. Error t Stat P-value   

Intercept -79.80069 15.43964 -5.16856 9.33037E-05   

X1 85.55372 9.77623 8.75119 1.69854E-07   

X2 0.193297 0.101603 1.90248 0.07526   

X3 2.493348 4.86254 0.512766 0.61512   

 
 

 

 

 

 

 

 
 
 
 
Using the same principles, X1X2X4 is selected based on superior values of the criteria. Based on this 

the model is given as 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽4𝑋4 + 𝜖𝑖𝑗 

In Stage 4, X3 is reintroduced into the model which results in all 4 regressors now in the 

model. The following table shows model performance based on all the regressors now in the model. 

  

Table 26: Stage 3.ANOVA Based on Data on Table 16 

Source  df SS MS F Sig. F 

Regression 3 704435.0812 234811.7 420.87224 1.99598E-15 

Residual 16 8926.6687 557.9168     

Total 19 713361.75       

Source  Coefficients Std. Error t Stat P-value   

Intercept -82.43318 11.6783147 -7.05865 2.70372E-06   

X1 62.49642 11.633093 5.37229 6.22696E-05   

X2 0.244355 0.0663558 3.682499 0.002015   

X4 7.98016 2.837356 2.812534 0.012513   
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Table 27: ANOVA Based on Data on Table 16 

  df SS MS F Sig. F 

Regression 4 706904.1324 176726 410.506 3.99627E-15 

Residual 15 6457.617572 430.5078     

Total 19 713361.75       

  Coefficients Std. Error t Stat P-value   

Intercept -97.674666 12.07238826 -8.09075 7.49E-07   

X1 47.391064 12.00869751 3.946395 0.001293   

X2 0.13003274 0.075342128 1.725897 0.104899   

X3 9.43482162 3.939663951 2.394829 0.030128   

X4 10.9690191 2.787424264 3.935181 0.001323   

 
Looking at the model performance, we still come away with the fact that X1X2X4 are the best model 

repressors’. Why? To answer that question, let us examine the performance of the different stages on 

the following tables 

Table 28:  REGRESSION STATISTICS--STEPWISE REGRESSION 

  STEP 1 STEP 2 

  X1 X2 X3 X4 X1X2 X1X3 X1X4 

Multiple R (or r)  0.98599 0.93823 0.91386 0.9426 0.99061 0.98865 0.98837 

R Square (R2) 0.97218 0.88028 0.83515 0.8884 0.98130 0.97744 0.97688 

Adjusted R2 0.97063 0.87363 0.82599 0.8823 0.97910 0.97478 0.97416 

Standard Error 33.203 68.882 80.828 66.491 28.013 30.768 31.147 

Observations 20 20 20 20 20 20 20 

 

Table 29:  REGRESSION STATISTICS--STEPWISE REGRESSION 

  STEP 3 STEP 4 

  X1X2X3 X1X2X4 X1X2X3X4 

Multiple R (or r) 0.99076 0.99372 0.99546 

R Square(R2) 0.98160 0.98749 0.99095 

Adjusted R2 0.97815 0.98514 0.98853 

Standard Error 28.64 23.620 20.74868 

Observations 20 20 20 

 

For F: F(X1X2X4) =420.87, F(X1X2X3X4)=410.506 

For p-value, the worst value for (X1X2X4=0.0125), For (X1X2X3X4=0.10) 

For R2, we find that (X1X2X3X4, R2=0.99095) Whereas for (X1X2X4, R2=0.98749) 

Although the R-Square for (X1X2X3X4) is slightly better, the difference (0.4%) is not enough to 
warrant a change from the set (X1X2X4). 
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It is important to explore the issue of R2 and its influence in the predicting model performance 

or model adequacy. The influence of R2 is often overrated except when the experiment is replicated. 

Recall that earlier, we explained that R2 can literarily be forced to be 100% due to overfitting. This 

means that by introducing more and more variables in the model, the residual sum of squares will get 

smaller and smaller while the regression sum of squares will get larger to the point where the degrees 

of freedom is reduced to zero.  Moreover, the larger the sum of squares regression (SSR), the larger 

the value of R2, increasing the regression sum of squares.  

Another good reason why we want to settle with the combination (X1X2X4) is due to the 

principle of parsimony. The general principle of parsimonious data modeling states that if two models 

in some way adequately model a given set of data, the one that is described by a fewer number of 

parameters will have better predictive ability given new data. This concept is of interest in Multivariate 

Regression Analysis such we have now. For all these reasons, we will retain the (X1X2X4) 

combination as our model formulation.  

Multicollinearity 

7.1      Assessment of Multicollinearity & Variance Inflation Factor 
In a multivariable situation, one of the major considerations for any design engineer or scientist 

is for the predictor (independent) variables chosen in a design to be truly independent so that the 

response arising from the predictor variables is not compromised due to the dependence of some of 

the variables on each other. Multicollinearity occurs when there are high correlations between two or 

more predictor variables in a regression model.  This tends to create redundant information because 

the variable work together moving the response jointly in one direction or in the opposite direction, 

thus skewing the results in the model. In other words, one predictor variable can be used to predict 

the other. Examples of correlated predictor variables include a person’s height and weight, and the 

years of education and annual income.  

This multicollinearity is a problem because independent variables should really be 

independent. If the degree of correlation between variables is high enough, it can cause problems 

when interpreting the results of a model. 

The basic principle of design of experiment is that the value of one regressor variable can be 

changed while the others are held constant.  However, when independent predictor variables are 

correlated, it indicates that changes in one variable are associated with shifts in another variable. The 

stronger the correlation, the more difficult it is to change one variable without changing the others. It 

becomes difficult for the model to estimate the relationship between each predictor variable and the 

dependent variable independently because the regressor variables tend to change in unison. 

Multicollinearity makes it hard to interpret the estimates of the coefficients and their significance, and 

it reduces the power of the model to identify regressors that are statistically significant.  
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Multicollinearity can be assessed by several approaches including calculating the correlation 

coefficient among the variables. A more popular approach is using a metric known as the Variance 

Inflation Factor (VIF). VIF measures the correlation and strength of the correlation between the 

explanatory (regressor) variables in a regression model. VIFs start at 1 and have no upper limit. A 

value of 1 indicates that there is no correlation between this independent variable and any others. VIFs 

between 1 and 5 suggest that there is a moderate correlation, but it is not severe enough to warrant 

corrective measures. VIFs greater than 5 represent critical levels of multicollinearity where the 

estimates of the coefficients are questionable, and the p-values may not represent the true state of 

nature because they may have been poorly estimated. 
 

7.2       Estimation of Variance Inflation Factor (VIF) 
 We can calculate the VIF for each regressor or explanatory variable by performing individual 

regressions using one explanatory variable as the response variable and the others as the explanatory 

or regressor variables. Thus, for three regressor variable, would be have three VIF values and for four 

regressor variables, there would be four VIF values, and so on. The expression for VIF is given as: 

VIF(xi) =
1

(1−Rxi
2 )

, where xi is the ith Regressor variable, and 𝑅𝑥𝑖
2  is the corresponding R2,  

Where R2 is the value obtained by regressing the ith regressor on the other regressors. Using the Data 

on Table 30, we will compute the values of VIF as follows. 

 

VIF = 1 ⇒ no correlation, 1≤ VIF ≤ 5 ⇒ moderate correlation, VIF > 5 ⇒ Critical  

Based on the values of VIF shown for these variables, the VIF values seem to suggest a case of 
critical multicollinearity. However, other metrics from this problem seem to suggest that the 
regressors reasonably explain away the variability in the model. 
 

Conclusion 
Big data is increasingly playing a vital role on how we harness and analyze information. Because 

of improvements in computing technologies, we can analyze extremely large data sets computationally 

to reveal patterns, trends, associations and interactions. Data Mining is focused on discovering the 

 Table 30: Computation of VIF based on Data from Table 16 

Term Coeff. Std. Error t Stat P-value Variables R2 VIF 

Intercept -97.6746 12.07238 -8.09075 7.49E-07    VIF=1/(1-R2) 

X1 47.39106 12.0086 3.946395 0.001293 
X1 v 

X2X3X4 
0.94699 18.86 

X2 0.130032 0.075342 1.72589 0.104899 
X2 v 

X1X3X4 
0.90106 10.11 

X3 9.43482 3.939664 2.394829 0.030128 
X3 v 

X1X2X4 
0.90027 10.03 

X4 10.969 2.78742 3.935181 0.001323 
X4 v 

X1X2X3 
0.89384 9.42 
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different patterns in the data set. In data mining, various mathematical and computational algorithms 

are applied to the data and new data generated. More specifically, Regression Analysis is the data 

mining method of identifying and analyzing the relationships between variables and among system 

variable, specifically the predictors and the response variables.  

 Prediction, as part of regression analysis has a diverse disciplinary focus that covers areas 

such predicting the failure of components or machinery, to identifying fraud in a monetary system, 

prediction weather patterns, etc. Used in combination with other data mining techniques, prediction 

may be involve analyzing trends, classification, pattern matching, and their relationship.  

 The solution to large scale Least Squares Regression (LSR) problem has been simplified by 

the use of matrix algebra. Once the problem has been formulated in matrix form, then the solution is 

easily obtained by manipulating the matrix using common computing platforms. Additionally, if care 

is taken during the experimental design stage to scale and transform the variables appropriately it is 

possible to have XTX matrices that are diagonal and whose inverse can be obtained by inspection. 

Equally important, all the LSR procedures can be cast in matrix form which is computationally easy 

to handle.  The only caveat is that care must be taken so that the data values are reasonably consistent, 

absent which would result in the data being practically ‘ill’. The data is considered ‘ill’ when the range 

of the data sets for each variable (including the response and the regressors) is extremely large. An 

example is when some data sets are in the tens while others are in the tens of millions.  This makes 

the difference in magnitude extremely exceedingly high. The effect of this is that the determinant of 

the XTX matrix is zero or close to zero which means that the inverse of the XTX matrix does not exit 

hence there is no solution to the regression problem.  

 Multicollinearity not a benign or trivial problem and has the potential to mask the real 

relationship that we seek. Experience has shown that unless we have reason to dismiss the effect off-

hand then it is incumbent on the engineer and/or scientist to check the effect to make sure the effect 

is nonexistent or minimal.   

 Numerous software packages are currently available to ease the work of Regression 

Analyses. These include Microsoft EXCEL, SAS, SPSS, MATLAB. While these are meant to ease the 

arithmetic of Regression Analysis, they do not and cannot supplant the knowledge of the basic 

principles that undergird Regression Analysis. 
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