

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE

Python Programming
for Engineers - Part 2:

Branching and Looping, Functions and
Error Handling

by

Kwabena Ofosu, Ph.D., P.E., PTOE

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE ii

Abstract

Python is a widely used, free, open source, high-level, general purpose computer programming
language. Python drives some of the internet’s most popular websites such as Google, Youtube
and Instagram. Python can be used to perform complex mathematical calculations, handle big
data, build web apps and desktop applications, and manage databases.

This course is the second of a series on Python programming. This course is tailored to
practicing engineers. In this course, the following topics are presented in detail: conditional
statements, looping structures, functions, modules, input and out (I/O) functions, file handling,
and error handling techniques. Practical examples from situations encountered by practicing
engineers and scientists are used to illustrate and demonstrate the concepts and methods learned
in this course.

On completion of this course, participants will be capable of applying the methods and
techniques learned in a desktop application that can be used to manage large data sets and
automate complex, repetitive, and tedious engineering calculations and algorithms. Participants
will be able to identify professional situations in which programming will be of a strategic
advantage to them in their fields of specialty, and to their organizations. Programming continues
to be an increasingly relevant and advantageous skill for engineers competing in a global
marketplace in the computer age.

There are no required pre-requisites for this course. However, it will be helpful to understand the
fundamentals of the Python programming language in general, as presented in the earlier parts of
this course series.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE iii

TABLE OF CONTENTS

Abstract ... ii
List of Tables ... vi
1. INTRODUCTION .. 1

1.1 Computer Programming.. 1

1.2 Relevance of Computer Programming to Engineers .. 1

1.3 Python ... 1

2. CONDITIONAL STATEMENTS .. 3

2.1 Definition .. 3

2.2 The if Statement .. 3

2.3 The if…else Statement .. 12

2.4 The if…elif…else Statement .. 12

2.5 Short Hand Syntax .. 13

2.6 The pass Statement ... 14

2.7 Composite Conditional Expressions ... 14

2.8 Nested Conditional Statements ... 16

3. LOOPING ... 19

3.1 Definition .. 19

3.2 The while Loop ... 19

3.3 Nested Loops .. 24

3.4 Infinite Loops .. 26

3.5 The break Statement ... 27

3.6 The continue Statement... 28

3.7 The else Statement .. 28

3.8 Short Hand Syntax .. 29

3.9 The for Loop ... 29

3.10 The range() Function ... 30

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE iv

4. FUNCTIONS .. 35

4.1 Definition .. 35

4.2 Creating a Function ... 35

4.3 Calling a Function ... 35

4.4 Arguments ... 36

4.5 Default Arguments .. 36

4.6 Keyword Arguments ... 37

4.7 Returning a Value ... 39

4.8 Scope of a Variable ... 40

4.9 Recursion .. 53

4.10 Lambda Functions ... 54

5. INPUT AND OUTPUT (I/O) FUNCTIONS .. 56

5.1 Introduction ... 56

5.2 The input() Function .. 56

5.3 Casting .. 57

5.4 The print() Function ... 57

6. MODULES ... 66

6.1 Introduction ... 66

6.2 Calling a Module... 66

6.3 Naming and Renaming a Module ... 66

6.4 Variables in Modules .. 67

6.5 Built-in in Modules ... 67

6.6 The dir() Function .. 68

6.7 The from Keyword .. 68

7. FILE HANDLING .. 72

7.1 Introduction ... 72

7.2 The open() Function ... 72

7.3 The read() Method ... 73

7.4 The readline() Method ... 74

7.5 The close() Method .. 74

7.6 The write() Method .. 75

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE v

7.7 Deleting Files .. 75

7.8 Renaming Files ... 76

7.9 Deleting a Folder... 76

8. ERROR HANDLING AND EXCEPTIONS .. 87

8.1 Errors... 87

8.2 Types of Errors ... 87

8.3 Handling Exceptions in Python .. 88

8.4 The try … except Clause ... 90

8.5 The try … except Clause for Multiple Exceptions .. 90

8.6 The else Keyword ... 91

8.7 The finally Block... 91

8.8 The raise Keyword ... 92

8.9 Debugging Python Scripts .. 104

8.10 Getting Help .. 104

9. CONCLUSION ... 105

REFERENCES ... 106

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE vi

List of Tables

Table 2. 1: Logical operators .. 4

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 1 of 106

1. INTRODUCTION

1.1 Computer Programming

A programming language is a formal language specifically designed to communicate
instructions to a computer. Programming languages can be used for many purposes, for example,
to create programs that control the behavior of a computer or device, and/or to implement
algorithms accurately and efficiently.

Computer programming (or programming) is a comprehensive process of formulating a
computing problem, developing a methodology to solve the problem, writing code in a specific
programming language to implement the solution methodology, testing, debugging, maintaining
the code, verifying and validating the results, and monitoring the consumption of computer
resources over the entire process. The objective of programming, therefore, is to develop a series
of instructions that can automate the performance of a specific task, or to solve some specific
problem formulation in a timely and efficient manner.

1.2 Relevance of Computer Programming to Engineers

Computer programming has become an increasingly advantageous and necessary skill for
engineers and scientists competing in the global economy. By writing computer programs to
automate tedious and repetitive tasks such as design calculations, or preparing, processing and
analyzing large amounts of data which would otherwise be done by hand, engineers and
scientists can drastically increase their productivity and efficiency. Competence in computer
programming predisposes engineers and scientists to pursue and develop more creative and
innovative solutions than their peers. Knowledge, and some level of experience in computer
programming enables engineers and scientists to communicate more effectively with full-time
programmers and information technology professionals they may work with and collaborate with
on various projects.

1.3 Python

Python is a general-purpose programming language. Python can be used to perform complex
mathematical and engineering calculations, and to handle big data. Python can be used for
building desktop applications and web apps. Python code is executed rapidly which enables
quick prototyping or production-ready software development.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 2 of 106

Python has a simpler syntax compared to some other popular programming languages. The
simpler syntax enables programs to be written with fewer lines of code. Due to its simpler syntax
and ease of use, Python is amenable for use by beginners as well as seasoned programmers.
Python is increasingly popular as a first programming language for beginners.

As a result of its user-friendliness and versatility, Python is the programming language driving
some of the internet’s most popular websites, namely:

• Google
• Youtube
• Quora
• Dropbox
• Yahoo!
• Yahoo Maps
• Reddit
• Bitly
• Instagram
• Spotify
• SurveyMonkey
• Pintrest
• Eventbrite
• Firefox
• and many others

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 3 of 106

2. CONDITIONAL STATEMENTS

2.1 Definition

A conditional statement is a basic feature of a programming language that executes different
instructions (lines of code) based on whether some condition is met. Conditional statements
enable the programmer to control the way an application interacts with the user by controlling
the direction of flow of the code execution. Conditional statements are often referred to as
branching, as they provide a means for a program to branch off in some direction or the other as
some condition(s) is checked for and met, and the program then proceeds in the relevant
direction(s).

2.2 The if Statement

The simplest conditional statement is the if statement. If a specified condition is met, a block of
code will be executed. A block also called a compound statement, is simply a group of
statements.

In Python, the if statement is of the structure:

if < conditional expression > :
… < block >

The “…” represent an indentation (or an indent). Unlike other programming languages, Python
requires the block(s) to be indented away from the alignment with the if keyword. The indenting
is accomplished by hitting the Tab key on the keyboard. During coding, to exit the block and
hence the if statement, one must hit the Enter key to go to the next line, followed by hitting the
Backspace key to realign the cursor with the if keyword.

The colon (“ : ”) is required after the conditional expression. Unlike other programs, in Python,
the conditional expression does not have to be enclosed in parentheses. Some programming
languages and scripting languages require the block to be enclosed in some brackets such as
parentheses, curly brackets etc. This is not the case with Python.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 4 of 106

The conditional expression is a logical expression where a Python logical operator or
comparison operator is applied to compare, evaluate, or check that the inputs (operands) meet
the specified condition and return the Boolean result of “true”, based upon which the block will
then be executed. If the logical expression returns a value of “false”, the block will not be
executed and the cursor skips to the next line of code. If the next line of code is less indented
than the block, then the cursor has transitioned out of the if statement.

The Python logical operators are summarized in Table 2.1.

Table 2. 1: Logical operators

Operator Name Example Description

== Equals to x==y returns “true” if value of x equals value of y,
otherwise returns “false”

!= Not equal to x!=y
returns “true” if value of x does not equal
value of y,
otherwise returns “false”

< Less than x<y
returns “true” if value of x is less than
value of y,
otherwise returns “false”

<= Less than or equal
to x<=y

returns “true” if value of x is less than or equal
to value of y,
otherwise returns “false”

> Greater than x>y
returns “true” if value of x is greater than
value of y,
otherwise returns “false”

>= Greater than or
equal to x>=y

returns “true” if value of x is greater than or equal
to value of y,
otherwise returns “false”

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 5 of 106

Open a new session of IDLE (Python GUI).
Click on File.
Click on New File, to open the File Editor.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 6 of 106

In the File Editor type the following.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 7 of 106

Save the file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 8 of 106

Navigate to a folder of your choice.

 with a

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 9 of 106

Give your file a name of your choice.
Select the Python suffix for the file type.
Hit Save to save the file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 10 of 106

In the File Editor
Click on Run.
Click on Run Module, to run the file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 11 of 106

Follow the prompts to complete the program execution in IDLE.
Review the results in IDLE.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 12 of 106

2.3 The if…else Statement

The if…else statement is used to specify a block of code to run if the condition is met, and
another block of code to run if the condition is not met. The syntax is as follows.

if < conditional expression > :
… < block >
else :
… < block >

2.4 The if…elif…else Statement

In the if…elif…else statement, the branching execution is based on several alternatives using as
many elif (short for else if) statements as needed. Python evaluates the elif expressions in
succession and executes the block associated with the first elif that evaluates to “true”, only, and
then exits the if…elif…else statement altogether.

If none of the elif expressions evaluates to “true”, then the else block will be executed. However,
as with other programming languages, the else condition is not required, and may be omitted, in
which case no block will be executed if none of the elif conditions evaluates to “true”. The
programmer must determine whether the else condition is necessary, applicable, or relevant to
the specific context of the if statement.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 13 of 106

The syntax for the if…elif…else statement is

if < conditional expression > :
… < block >
elif < conditional expression > :
… < block >
elif < conditional expression > :
… < block >
elif < conditional expression > :
… < block >
elif < conditional expression > :
… < block >
:
:
:
else :
… < block >

2.5 Short Hand Syntax

A short hand or one-line syntax may alternately be used for conditional statements.

For the simple if statement, the one-line syntax is as follows.

if < conditional expression > : < block >

For the simple if…else statement, the one-line syntax is:

< block > if < conditional expression > < block > else

Note that the in the if…else short hand, the colons are omitted.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 14 of 106

The short hand of a three condition statement is

<block> if <conditional> <block> else <block> if <conditional> <block> else

However, it can be seen that for many conditions, a multiple condition statement using the one-
line syntax will be complex and difficult to work with. The one-line syntax is most useful and
beneficial for simpler conditional statements, and should restricted in their application as such.

2.6 The pass Statement

In the Python conditional statements, once an if, elif or else condition has been set up, there must
be a block associated with it. In many programming situations however, there may be the need to
“do nothing” if a condition evaluates to “true”. Since an empty block or omitting the block is not
permissible, the pass keyword is inserted. The pass statement is therefore effectively a
placeholder used to enable the interpreter to continue after the relevant condition, by effectively
doing nothing.

An example of the syntax is of the form

if < conditional expression > :
… pass # don’t do anything

2.7 Composite Conditional Expressions

Conditional expressions may be combined using the logical operators such as “and”, “or” and
combinations thereof, to form a composite conditional expression.

For example, consider a bank account that is overdrawn. If another charge comes in and the bank
pays it, the account goes further into the negative and is charged an overdraft fee for that
transaction. However, if a deposit comes in that reduces the deficit, even though the account is
still in the negative, the account is not charged the overdraft fee for that transaction.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 15 of 106

Using the negative sign for a charge transaction and positive sign for a deposit, the application of
the overdraft fee can be programmed as shown below.

In the File Editor, reproduce the following.

composite condition

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 16 of 106

Run some trials of the program.
Review the results in IDLE.

2.8 Nested Conditional Statements

A nested conditional statement is a conditional statement placed inside another conditional
statement. The bank account example can alternately be implemented using nested conditions as
follows:

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 17 of 106

In the File Editor, reproduce the following.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 18 of 106

Run some trials of the program using the same numbers as with the composite conditional
statement strategy.
Review the results in IDLE.
The results are identical.

There is no limit on the amount of nesting or the extent of the use of composite conditions.
Either method may be nested within the other without limit. The choice, relevance, or advantage
of nesting versus composite conditions, as well as combinations thereof, must be determined by
the programmer based on the specific objectives and requirements of the application.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 19 of 106

3. LOOPING

3.1 Definition

Looping is a procedure in a programming language or scripting language that performs repetitive
(or iterative) tasks. The loop is a sequence of instructions (a block) that is executed repeatedly
while or until some condition is met or satisfied. Each repetition is called an iteration. Looping
is fundamental to all programming and scripting languages. Like other languages, Python has
several looping constructs.

3.2 The while Loop

The while loop executes a block over and over again, indefinitely until some condition is met or
satisfied. The syntax is:

while < expression > :
… < block >

The expression controls the iterations of the loop. The looping expression typically involves a
looping variable(s) and a logical expression. The looping expression establishes the condition(s)
for which the loop will continue to run or shall be terminated. The looping variable is initialized
prior to the start of the loop and is modified at some point in the block. At the end of an iteration,
the looping variable will be updated (increased or decreased). The current value of the looping
variable will now be checked against the looping expression; and if it evaluates to “true”, the
next iteration will be executed, otherwise the loop will terminate.

In the File Editor, reproduce the following code.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 20 of 106

Let us go over the first few calculations manually.

1st Iteration:
We are asked to enter a number, let’s say we enter 28.
So now y = 28
Next the looping variable is set to i = 1
In the looping expression calculate i*2 – 4 = 1*2 - 4 = -2 which is less than 28
So we shall run the loop.
x = i*2 – 4 = 1*2 - 4 = -2

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 21 of 106

print (i, x) which will display (1, -2)
And now we increment the looping variable i = i + 1 = 1+1 = 2
This completes the 1st iteration.

2nd Iteration:
y = 28
looping variable i = 2
looping expression i*2 – 4 = 2*2 - 4 = 0 which is less than 28
OK. We shall run the loop.
x = i*2 – 4 = 2*2 - 4 = 0
print (i, x) which will display (2, 0)
increment the looping variable i = i + 1 = 1+1 = 2

3rd Iteration:
y = 28
looping variable i = 3
looping expression i*2 – 4 = 3*2 - 4 = 2 which is less than 28
OK. We shall run the loop.
x = i*2 – 4 = 3*2 - 4 = 3
print (i, x) which will display (3, 2)

and so on and so forth, until,

16th Iteration:
y = 28
looping variable i = 16
looping expression i*2 – 4 = 16*2 - 4 = 28 which is NOT less than 28
The loop will now terminate immediately.
The last successful loop to run was for i = 15

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 22 of 106

The results in IDLE, are as follows.

It is pertinent to note that the increment/decrement of the looping variable does not have to be in
steps of unity (1). If necessary, any integer value increment/decrement may be implemented by
modifying the increment/decrement operation accordingly (e.g. k++2 will give an increment of
2, etc.). Also, if applicable, the loop may be run “backwards”, i.e., a higher initial value is
assigned, and the continuation expression decrements the looping variable down towards the
limit set in the looping expression.

For example: Consider your online banking account that gives you 3 attempts to correctly enter
your password. As incorrect passwords are entered, the loop counts down to close the account.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 23 of 106

In the File Editor, reproduce the following code.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 24 of 106

In this example, the following lexical features of Python are introduced:

‘\n’ : This is the newline character. It enables multiline output from the print command.

‘\’ : This is the line break (or line continuation) character. It is used to break a long line of code
into manageable multiple lines for the visual benefit of the programmer only. The Python
interpreter executes lines broken with the ‘\’ character as one line of code. The requirement is
that once used on a line there shall be nothing, not even white space, to the right of the ‘\’
character.

n = n + 1 : The continuation statement. This is where the looping variable is updated –
incremented by a value of one (1), for the loop to move on to the next iteration. As with other
programming languages, Python supports the popular shorthand version n = n++. Therefore
 n = n- - will decrement the looping variable by a value of unity. n = n++2 increments the
looping variable by a value of two (2), whereas n = n- -3 will decrement the looping variable by
a value of three (3), and so on and so forth. For simplicity, in this course series the long hand
version shall be used.

3.3 Nested Loops

The online banking password program uses nested loops and nested if statements. Loops of all
types may be nested within each other as needed to achieve the desired functionality. All types of
loops may be nested within all types of conditional statements and vice versa, without limit. The
same applies for composite conditional statements. They may be incorporated into complex and
intricate conditional statements and loops, and with nesting, as needed and without limit. It is the
responsibility of the programmer to design and test the appropriate branching and looping
structures that meet the needs and objectives of the project.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 25 of 106

Test the online banking password code.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 26 of 106

3.4 Infinite Loops

When using the while loop, there is always the danger of falling into an infinite loop. An infinite
loop is a loop that lacks a functioning exit routine. As a result, the loop cannot stop, and repeats
continuously until the operating system of your computer senses the issue and terminates the
script, or until some event occurs, for instance having the script terminate automatically after a
certain duration or number of iterations.

Recall our original while loop example.

y = input('Enter a number less than 100 : ')

i = 1 # initialize looping variable

while (i*2 - 4) < y:
 x = i*2 - 4
 print(i, x)

 i = i + 1 # or can enter as i = i++
 # this is the continuation expression

print('------Complete------')

Without actually doing it, to prevent potentially damaging your computer, consider what will
happen if the looping expression is changed from

while (i*2 - 4) < y:

to

while (i*2 - 4) > -10:

363.pdf

http://www.suncam.com/
http://search400.techtarget.com/definition/exit-program

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 27 of 106

Since the program starts at i = 1, the lowest value of the left-hand side of the expression is -2. So
even though the expression is mathematically correct, it is mathematically impossible for the
left-hand side to NOT be greater than -10. Thus, there will be no effective termination condition
for this loop and the loop will run forever.

A related problem, though not technically an infinite loop, will also occur if you forget to
implement the continuation expression, the increment (or decrement) of the looping variable. In
that case, the first iteration will not be able to end, and the loop cannot move to the next iteration.
The loop or the program is now stuck in the first iteration, forever.

Typically, an infinite loop will cause your interpreter, web browser, web page(s), and potentially
your operating system, to crash, and may result in severe data loss. Therefore, while loops must
be used with caution. The termination condition must be chosen carefully and studied closely. It
is highly recommended that manual calculations be conducted for numerous scenarios to validate
the math and the logic in order to ensure that an infinite loop will not occur. However, it must be
mentioned that in spite of all these checks, even seasoned programmers fall into infinite loops
every once in a while.

3.5 The break Statement

The break statement overrides the looping expression, the continuation expression and any
applicable logic, and abruptly terminates the execution of the loop. The cursor jumps to the first
line of code after (below) the body of the loop. The break statement can be depicted as follows.

while < expression > :
 < statement >
 < statement >

:
 break

:
 < statement >

< block >

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 28 of 106

3.6 The continue Statement

The continue statement abruptly stops the current iteration, cycles back to the looping expression
for re-evaluation and if still valid continues with the execution of the next iteration. If the re-
evaluation results in the looping expression being out of compliance, the entire loop terminates,
and code execution continues at the first line of code after (below) the body of the loop. The
continue statement can be depicted as follows.

while < expression > :
 < statement >
 < statement >

:
 coninue

:
 < statement >

< block >

3.7 The else Statement

The else statement in a while loop is of the form

while < expression > :
 < block >
else :
 < block >

The block under the else clause executes once the loop terminates. This is a unique feature of
Python not found in other programming languages.

compliance?

Yes

No

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 29 of 106

3.8 Short Hand Syntax

The while loop may alternately be implemented using a short hand or one-line syntax. However,
as with the one-line if statements, it is recommended that they be restricted to the simpler
applications. A one-line while loop will be of the form

< initialize loop variable >
while < looping expression > : < continuation statement >; < block >

3.9 The for Loop

The Python for loop iteratively executes statements on the items of a string, list, tuple, dictionary
and set, hence forth collectively referred to as iterables. Unlike the while loop, the for loop does
not require a looping variable to be set prior to execution.

The structure of the Python for loop is as follows.

for < var > in < iterable > :
… < statement >
… < statement >
…

where < var > denotes the loop variable which takes on the value of the next element of the
iterable < iterable > each time through the loop. Indentation is required to separate the body of
the loop from the for statement.

For professionals who have experience with other programming languages, it is pertinent to note
that the Python for loop is significantly different from that of other programming languages.

As with the while loop, the for loop can incorporate the break statement, the continue statement
and the else clause. Also, for loops can be nested in other branching and looping structures and
vice versa as needed, with no restrictions as for as the programming is concerned.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 30 of 106

The for loop structure on its own is not prone to infinite loops due to the fact that the looping is
controlled by the number of items in the iterable. However, manipulating the variable in certain
ways within the body of the loop, often done inadvertently, can indeed result in an infinite loop.
As always, it is recommended to check, vet and recheck the code before running any kind of
loop.

3.10 The range() Function

The range() function is used to loop through a block of code a specified number of times. The
range() function returns a sequence of numbers starting at zero (0) by default and ending at a
specified number in increments of one (1) by default.

The syntax for the range() function is of the form

for < variable > in range(< number >) :
… < block >

whereby the loop will run from a value of the variable equal to 0 through a value equal to the
number specified minus one. For example:

for x in range(8) :
… < block >

This loop will run from x = 0 through x = 7 in increments of 1.

The starting value of the range() function can be changed from the default value of 0 as follows.

for x in range(2, 8) :
… < block >

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 31 of 106

In this case the loop will run from x = 2 through x = 7 in increments of 1.

The size of the increment of the range() function can be changed from the default value of 1 as
follows:

for x in range(5, 12, 2) :
… < block >

In this case the loop will run from x = 5 through x = 11 in increments of 2.

Professionals with some experience or familiarity with programming for loops in other
programming languages will notice that incorporating the range() function in the for loop
enables the Python for loop to be applied in a similar manner as the for loop constructs in most
other programming languages.

Open a new session of IDLE (Python GUI).
Open the File Editor.
Replicate the following.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 32 of 106

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 33 of 106

Continue as follows.

Save the file.
Run the file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 34 of 106

Review the results in IDLE.

Run 1

Run 2

Run 3

Run 4

Run 5
program terminates

Run 6
program skips

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 35 of 106

4. FUNCTIONS

4.1 Definition

In computing, functions and procedures are groups of instructions that perform a specific task.
Generally, a function is a named group of instructions that conducts a specific task and can
return a value. On the other hand, a procedure, also called a routine, performs a specific task
but does not return a value. Functions and procedures, and variations thereof, are fundamental to
all programming languages. Functions are therefore useful for conducting a specific task
multiple times or repeatedly throughout a program by reusing a designated block of code.

A function runs only when it is called. A function may be set up such that some data is passed
into it for it to execute. The data or parameters passed into a function are called arguments.

4.2 Creating a Function

In Python, a function is created by using the keyword def, as follows.

def < function name > () :
… < block >

4.3 Calling a Function

To call a function, the name of the function is called followed by “empty” parentheses. For
example:

def Calculate_Salaries() :
… < block >
:
< block >
Calcutate_Salaries()
< block >
:

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 36 of 106

4.4 Arguments

Data may be passed into a function using arguments listed within the parentheses of the def line.
Any number of arguments are permitted. Multiple arguments must be separated by commas.
For example:

def my_address(housenum, streetname, city, state) :

… print(housenum + ‘’ + streetname + ‘’ + city +‘’ + state)

To call this function, the correct number of parameter values must be supplied in the correct
positional order. This is referred to as positional or required arguments. For example:

 my_address(‘1186’, ‘Reading Drive’, ‘Hainesville’, ‘GA’)

which produces the result

1186 Reading Drive Hainesville GA

An argument may be of any data type, such as a number, string, list, tuple, dictionary, etc. The
argument will be treated in the same way as the data type is treated in the body of the function.

In Python arguments are passed by reference, which means what the argument is referring to
can be changed within the body of the function. The opposite case, which is available in other
programming languages, is to pass by value.

4.5 Default Arguments

A default argument is one that take on a default value if a value is not supplied when the function
is called. For example:

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 37 of 106

 def new_job(position = ‘Engineer’) :

… print(‘Opening for ‘ + position)

Calling the function,

 new_job(‘Programmer’)

yields

Opening for Programmer

whereas calling

new_job()

yields

Opening for Engineer

4.6 Keyword Arguments

With keyword (or named) arguments, the caller identifies the arguments by their specific name.
This provides flexibility in that when the function is called, the arguments do not have to be
passed in the specific positional order as in the function definition. The Python interpreter uses
the keywords to match the values to the parameters. For example:

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 38 of 106

def bridge(built, material, facility) :

… print ‘Year Built :’ , built
… print ‘Bridge Type :’ , material
… print ‘Road Facility :’ , facility

The function may be called, with the parameters in any order

 bridge(material = ‘Steel’, facility = ‘I-95’, built = 1989)

which yields

Year Built : 1989
Bridge Type : Steel
Road Facility : I-95

If keyword arguments are used in conjunction with default arguments, some arguments may be
omitted when the function is called. For example:

def bridge(built, material, facility, county=’Miami-Dade’) :

… print ‘Year Built :’ , built
… print ‘Bridge Type :’ , material
… print ‘Road Facility :’ , facility
… print ‘Maintaining Agency :’ , county

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 39 of 106

Calling the function,

bridge(material = ‘Concrete’, facility = ‘I-10’, built = 2005)

yields

Year Built : 1989
Bridge Type : Steel
Road Facility : I-95
Maintaining Agency : Miami-Dade

4.7 Returning a Value

The keyword return is used to enable a function to return a value. The return statement passes an
expression back to the caller and then exits the function. For example:

def my_address_2(housenum, streetname, city, state) :

… x = housenum + ‘’ + streetname + ‘, ’ + city +‘, ’ + state
… return x

Now, call the function, and pass the result (x) to some other variable.

y = my_address_2(‘1287’, ‘Napier Blvd’, ‘Gainsburg’ , ‘MN’)

So, the function shall run and spit out (return) the result (x) which is assigned to the variable y.
We can now print y.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 40 of 106

print ‘My address is ,’ , y

which yields

My address is 1287 Napier Blvd, Gainsburg, MN

In fact, we could have printed the returned variable x directly as follows.

print(‘My address is ,’ , my_address_2(‘1287’, ‘Napier Blvd’, ‘Gainsburg’ , ‘MN’))

If a return statement has no arguments, then the function shall return None. If a return statement
is not part of the function body, then the function does not return anything and it is effectively a
routine. Applying a return statement is not required and depends on the specific needs and goals
of the program.

4.8 Scope of a Variable

In the address example in the previous section, it would be tempting to print the variable x
directly after the function has executed. For example:

def my_address_2(housenum, streetname, city, state) :

… x = housenum + ‘’ + streetname + ‘, ’ + city +‘, ’ + state
… return x

call the function to calculate x
my_address_2(‘1287’, ‘Napier Blvd’, ‘Gainsburg’ , ‘MN’)

print out x
print x

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 41 of 106

Unfortunately, this will result in the error message

NameError: name 'x' is not defined

Why is this the case?
This is because variables are only accessible at certain locations within a program depending on
where they were declared (or created). The scope of a variable governs where in a program a
variable will be accessible and accessible to what. The scope is analogous to where the variable
exists.

The Python interpreter recognizes local variables and global variables. A local variable is one
declared within the body of a function and therefore its scope is within that function only.
Outside of its local scope a local variable does not exist. So, once the function completes
execution, the local variable “vanishes from the universe”. In our example, the variable x was
declared inside of the my_address_2 function, therefore the interpreter cannot “recognize” it
anywhere outside of the my_address_2 function, and thus throws an error message to that effect.

A global variable on the other hand, is declared outside of a function. It has a global scope and
therefore can be accessed inside or outside of a function.

However, a variable assigned within a function will be local to that function. In order to use a
global variable in a function and maintain its global character, the variable must be explicitly
declared as such before being inserted into the function.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 42 of 106

Open a new session of IDLE (Python GUI).
Open the File Editor.
In the File Editor reproduce the following code.

note the use of line breaks

some default arguments
function call with
keyword arguments

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 43 of 106

Save your file.
Run your file.
Review the results in IDLE.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 44 of 106

Add the following line of code.
Save your file.
Re-run your file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 45 of 106

Review the results.

the x variable is local to the function only,
this call was made outside of the function,
where no such variable exists, hence the
error message

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 46 of 106

Update the code as follows.
Save your file.
Re-run your file.

creates global variable, we now have two separate variables
called x, one local to the function, the other of global scope.

local variable

call global variable

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 47 of 106

Review the results.

returned from the function

returned from the global variable

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 48 of 106

Update the code as follows.
Save your file.
Re-run your file.

“turn off” the local variable,
let’s see what happens

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 49 of 106

Review the results.

could not find a local variable x, so pulled global
variable x and ran it through the function

global variable via the print call

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 50 of 106

Update the code as follows.
Save your file.
Re-run your file.

assign string
manipulations to a
variable y

full declaration of global variable

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 51 of 106

Review the results.

again, could not find x in the local scope so then looked
“outside” and found the global variable x and returned
it by the function

global variable via the print

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 52 of 106

Finally, update the code as follows.
Save your file.
Re-run your file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 53 of 106

Review the results.

4.9 Recursion

Python allows a function to be called within itself. This is called function recursion. Function
recursion enables innovative and efficient means of looping through data to reach some result.
However, function recursion is prone to the issues similar to infinite loops, and as always, the
code must be meticulously checked and used with caution.

prints the “nearest’ variable called x,
in this case the global variable

returns local function variable y

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 54 of 106

4.10 Lambda Functions

A Python lambda function is a small, anonymous function written over one line. They are
anonymous in the sense that they do not have to be declared with the def statement as is required
for conventional functions. A lambda function can have any number of arguments, but only one
expression. The expression returns a result that is typically assigned to a variable which is used
for other purposes.

The general form of the lambda function is

< var > = lambda < list of arguments > : < expression >

Open a new session of IDLE (Python GUI).
Open the File Editor.
In the File Editor reproduce the following code.

call the lambda function

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 55 of 106

This yields the following result.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 56 of 106

5. INPUT AND OUTPUT (I/O) FUNCTIONS

5.1 Introduction

The built-in input and output (I/O) functions enable an executing program to communicate with
the user. Input functions enable the user to supply data to the program, whereas output functions
enable the program to display results back to the user.

Input may be from the user entering data via their keyboard, but it may also be from a file, a
database or some other external source. Output may be displayed to the console, or to the screen
via a graphical user interface (GUI), or it may be sent to a file, a database or some other external
repository.

5.2 The input() Function

The simplest way to send data to an executing program is through the input() function. The
input() function reads one line of data from the keyboard. The input() function causes the
program execution to pause while the user types in the data via the keyboard and hits the Enter
key on the keyboard which then causes the program to resume execution.

The input() function reads and returns all characters typed in as a string.

The general application of the input() is as follows.

< var > = input(< prompt >)

where < prompt > is an optional prompt, and the data entered via the keyboard is assigned to the
variable < var > as a string.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 57 of 106

5.3 Casting

The following built-in functions can be used to convert the string returned by the input()
function to the appropriate data type.

Constructor Description

int()

constructs an integer type from a float literal (by rounding down to the next
whole number) or a string literal representation of a whole number

float()

constructs a floating number type from an integer or float literal or a string
literal representation of a floating number or integer

str() constructs a string type from another data type

complex()

constructs a complex number from a string literal representation of complex
number, or it returns a complex number when the real and imaginary parts are
supplied

Specifying the data type is called casting.

5.4 The print() Function

The print() function displays or presents data back to the user.

The syntax is of the form

print (< object1 > , < object2 > , …)

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 58 of 106

An < object > may be of any data type. The print() function returns a string representation of
the string concatenation of the objects. The former syntax is a legacy from previous builds of
Python. The latter syntax is more recent and more versatile as it allows for the incorporation of
keyword arguments that control the format of the output.

It is pertinent to note that when reviewing the Python literature, it is common to see the print
command used in the form

print < object1 >, < object2 >, …

This was the standard in previous versions of Python up to Python 2. As of Python 3, the use of
the parentheses is incorporated.

The syntax for the print() with keyword arguments is of the form

print (< object > , … , < object >, < keyword > = < value >)

Examples of keywords in the print function include:

Keyword
Argument

Description Example

sep=

causes each object in the output string to
be separated by a specified string
instead of the default single space

print(<obj>, … <obj>, sep=<str>

end=

causes output of multiple print calls to
be displayed on one line and separated
by <str> rather than the default separate
line for each print call

print(<obj>, … <obj>, end=<str>

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 59 of 106

Example:

Set up a simple calculator that enables a Fire Protection Engineer to compute the portion of the
needed fire flow (NFF) (in gallons per minute) attributed to the area and the construction
classification of the building.

According the Insurance Services Office (ISO), the portion of the NFF attributed to the area and
the construction classification of the building (C), in gallons per minute, is given by the
empirical formula

where

 𝐴𝐴 = effective area in square feet
 𝐹𝐹 = the construction coefficient
 = 1.5 for Construction Class 1 – Wood Frame
 = 1.0 for Construction Class 2 – Joisted masonry
 = 0.8 for Construction Class 3 – Non-Combustible
 = 0.8 for Construction Class 4 – Masonry Non-Combustible
 = 0.6 for Construction Class 5 – Modified Fire Resistive
 = 0.6 for Construction Class 6 – Fire Resistive

(Note: In this demonstration we shall keep it simple. However, please add your own innovations
and be creative.)

𝐶𝐶 = 18𝐹𝐹√𝐴𝐴

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 60 of 106

Open a new session of IDLE (Python GUI).
Open the File Editor.
In the File Editor reproduce the following code.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 61 of 106

Continue as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 62 of 106

Continue as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 63 of 106

Run the program.
Pick some random entry values at the prompts to test run the program to completion.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 64 of 106

Implement the following updates.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 65 of 106

Run the program.
Review the changes to the output report.

On your own, think of other ways to modify the output report to a preferred style. How about
using an f-string, or the string.format() method?

elements now separated by
the designated separators

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 66 of 106

6. MODULES

6.1 Introduction

A module is a Python file (suffix .py) that contains functions that a user can call and use in
another application. A module is therefore essentially a code library.

6.2 Calling a Module

A function in a module is called by an import statement followed by a call to the function, with
the module name prefixed to the function name. The function call must supply any relevant
arguments to the function. The syntax is of the set up

import < filename >

 < filename > . < functioname >(arguments)

Typically, the result returned by the function will be assigned to some variable in the current
application. Therefore, the common set up will be of the form

import < filename >

 < var > = < filename > . < functioname >(arguments)

6.3 Naming and Renaming a Module

Any admissible file name with the Python .py suffix can be used as module file. A module file
may be given an alias at the time of import using the as keyword. For example:

import < filename > as alias

 < var > = < alias > . < functioname >(arguments)

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 67 of 106

6.4 Variables in Modules

In addition to functions, variables of all types – lists, tuples, dictionaries, etc., can be called and
used via a module file.

6.5 Built-in in Modules

Python has several built-in modules. The following is a very limited selection of built-in
modules. Please consult the Python literature or a simple google search to review the extensive
Python built-in modules.

Module Description

calender functions for working with calendars and dates

cmath mathematical functions for working with complex numbers

email package for parsing, manipulating, and generating email messages.

fraction

functions for working with rational numbers

html package for and web pages

linecache provides random access to individual lines of code from text files

math mathematical functions such as in trigonometry, geometry etc., etc.

os for accessing operating system interfaces

random for generating random numbers from various distributions

statistics statistical functions

string string functions

tkinter package for developing graphical user interfaces

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 68 of 106

6.6 The dir() Function

The dir() function is a built-in function that returns a list of all function names and variables in a
module. The dir() function may be used on user-made modules as well as built-in modules.

The general form of the use of the dir() function is as follows.

import < filename >

 < var > = dir(< filename >)

print(< var >)

6.7 The from Keyword

The import in conjunction with the from keyword provide another means of importing parts –
variables, functions, etc., from a module. In this method, the module file name is not prefixed to
the function (or variable) name when it is called. The general form of the syntax is as follows.

from < filename > import < functionname >

< var > = < functioname >(arguments)

Open a new session of IDLE (Python GUI).
Open the File Editor.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 69 of 106

In the File Editor reproduce the following code.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 70 of 106

Save your file.
This is your module file.
Close your module file.
Copy and paste your module file to your Downloads folder.
Locate your file named FireFlow2 that was supplied with the course materials from Suncam.
Copy and Paste your FireFlow2 file to your Downloads folder.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 71 of 106

Run the module file to run the module(s).

output from dir()

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 72 of 106

7. FILE HANDLING

7.1 Introduction

The built-in file handling functions are used for creating, reading, writing to, and deleting files.

7.2 The open() Function

The main function for file handling is the open() function which takes two arguments, namely
filename and mode. The syntax is of the form

open(< filename > , < mode >)

The modes for opening a file are:

Mode Name Description

“r” Read Opens a file for reading. If the file does not exist,
throws an error message.

“a” Append Opens a file to be appended. If the file does not
exist, it creates it

“w” Write Opens a file for writing. Overwrites any existing
content. If the file does not exist, it creates it

“x” Create Creates the file. If the file already exists, it throws
an error message

In addition to the file opening modes, there are two text/ binary modes that specify whether the
data should be handled as binary or text mode.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 73 of 106

Binary/text

Mode Name Description

“t” Text text mode.

“b” Binary binary mode, e.g. images etc.

The file opening modes and the text/binary modes may be used in combination. For example,
unless otherwise specified, the “r” and the “t” are the respective defaults.

The syntax to open a file is of the form

< var > = open(“< path to file >” , “< mode(s) >”)

If the file and Python are in the same folder then just the name of the file will suffice, otherwise
the full path to the file shall inserted. In either case, the name of the file shall include the relevant
suffix, e.g. “.txt”. Also note that the arguments are entered within double quotation marks.

7.3 The read() Method

The read() method may now be called to read the contents of the file from the assigned < var >.
For example:

print < var > . read()

The read method will return the entire text in the file.

The following syntax may be used to limit the output returned.

print < var > . read(n)

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 74 of 106

where the text from the 1st line through the nth byte only, will be returned.

7.4 The readline() Method

The readline() method is used to read the contents line by line. Thus

print < var > . readline()

will return the first line, whereas

print < var > . read()
print < var > . read()

will return the first two lines, and so on and so forth.

7.5 The close() Method

The close() method will close the file. For example:

< var > = open(“< path to file >” , “rt”)
print < var > . readline()
print < var > . readline()
:
:
:
print < var > . readline()
< var > . close()

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 75 of 106

7.6 The write() Method

The syntax to open a file and append content is as of the form

< var > = open(“< path to file >” , “a”)
< var > . write(“Additional Content”)
< var > . close()

whereas the syntax to open a file and overwrite the content is of the form

< var > = open(“< path to file >” , “w”)
< var > . write(“New content to replace existing”)
< var > . close()

Note that both

< var > = open(“< path to file >” , “a”)

and

< var > = open(“< path to file >” , “w”)

will create a new file, if the file specified does not exist.

7.7 Deleting Files

The built-in os module has a function os.remove() that is used to delete files.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 76 of 106

The syntax is of the form

import os
os.remove(“< path to file >”)

If the file does not exist an error message will be thrown. To check that the file exists before
deleting it, the following code can be used.

import os
if os.path.exists(“< path to file >”):
 os.remove(“< path to file >”)
else:
 print("Cannot delete. This file does not exist")

7.8 Renaming Files

The syntax is of the form

import os
os.rename(“< current file name >” , “< new file name >”)

If the current file does not exist an error message will be thrown.

7.9 Deleting a Folder

The syntax is of the form

import os
os.remove(“< path to folder >”)

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 77 of 106

Open a new session of IDLE (Python GUI).
In your files supplied with this course from Suncam, locate the file called input_output.txt.
Make a copy of your file inpu_output.txt and save it your Downloads folder.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 78 of 106

From IDLE (Python GUI), Open the File Editor.
In the File Editor reproduce the following code.
(Remember to type the path to your file on your computer).

Save your file.
Run your file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 79 of 106

Review the results in IDLE.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 80 of 106

In the File Editor, Click on File.
Click on New File to open a new File Editor session.
Reproduce the following code.

Save your file.
Run your file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 81 of 106

The new files are created in the directory.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 82 of 106

Double click on input_output.txt to review the contents.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 83 of 106

In the File Editor, Click on File.
Click on New File to open a new File Editor session.
Reproduce the following code.

Save your file.
Run your file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 84 of 106

Review the results in IDLE.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 85 of 106

In the File Editor, Click on File.
Click on New File to open a new File Editor session.
Reproduce the following code.

Save your file.
Run your file.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 86 of 106

The file is deleted.
The file is renamed.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 87 of 106

8. ERROR HANDLING AND EXCEPTIONS

8.1 Errors

It is common, even among seasoned programmers, that due to some error(s) in the code, the
script may not work as expected, or it may run partially and prematurely or abruptly terminate or
“crash,” or not run at all. Identifying errors and addressing them is called debugging. In
programming, error handling refers to techniques and practices used to test scripts and isolate
errors. In Python, when an error occurs during execution, the interpreter will stop executing the
code and return a built-in error message or exception. In error/exception handling, this is
generally termed as, to throw an exception. In Python programming the preferred parlance is to
raise an exception.

8.2 Types of Errors

Errors have several causes. Syntax errors are the result of any violation of the rules or syntax
for coding the instructions in the programming language. For example, misspelled or omitted
keywords, typos, incomplete branching or looping structures, inconsistent indenting,
inadmissible use of mathematical operators, incorrect use of functions or function arguments,
and many others.

A run-time error occurs during program execution when some value is processed, or some
resource is accessed in a manner that is inadmissible to the programming language. This will
cause the program execution to abruptly terminate or “crash.” For example, dividing some value
or variable by zero will cause an error as the value is mathematically indeterminate, or calling a
variable or function that does not exist or does not exist yet.

Logic errors, commonly called bugs, occur when the program runs “normally,” but produces
unexpected or untenable results. In other words, upon review, the programmer knows that the
results are incorrect, but from the point of view of the interpreter executing the program, the
program is “fine.” Logic errors may also exist if the script behaves erratically; for example, the
results of a calculation are assigned to a different variable than intended. Due to the fact that the
program will run “normally,” there will be no exceptions thrown at the user. This makes logic
errors particularly difficult to identify. The programmer must have some domain expertise of the
underlying theories or mathematical models being implemented in the program. The program
must be tested repeatedly, and the results thoroughly scrutinized, verified, and validated.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 88 of 106

Some common causes of logic errors include:

• omission of relevant code
• incorrect sequence of instructions
• calling the wrong variables or functions
• incorrect choice of branching and looping structures
• incorrect variables and/ or logic in conditional statements
• incorrect use of (loop) variables in loops
• incorrect referencing to collections’ indices

8.3 Handling Exceptions in Python

During program execution, if an error occurs, the interpreter will return the applicable built-in
error message (exception). Ordinarily, a non-expert end-user will not know what the exception
means or what steps should be taken to address it. This will make the program appear
confounding and quite unprofessional from the end-user’s point of view, but more seriously, for
a web application, it will open up and expose the program, the web page(s), and the server to
security threats. It is therefore the programmer’s responsibility to anticipate potential errors and
add code that will address them in such a manner that the exceptions will not be raised to the
end-user. This is the basis of error/ exception handling. Errors that are anticipated and addressed
such that the relevant exception does not appear to the end-user, are referred to as handled
errors, otherwise they are referred to as unhandled errors.

Examples of Python exceptions include:

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 89 of 106

Exception Raised when

ImportError an import module is not found.

IndexError an index of a sequence is out of range

KeyError when a referenced key does not exist in a dictionary
type.

KeyboardInterrupt when the user hits interrupt on the keyboard
i.e. Ctrl + c or Ctrl + Del

MemoryError an operation runs out of memory.

NameError a variable does not exist in either a local or global
scope

OverflowError an arithmetic operation returns a result too large to
be represented

RuntimeError an error does not fall under any other category

SyntaxError the parser finds a syntax error

IndentationError the indentation is incorrect

TabError tabs and spaces used to implement indentation are
inconsistent

TypeError an operation or function is applied to an incorrect
data type

ValueError a function gets argument of correct data type but
improper value

ZeroDivisionError the divisor in division or modulo is zero

Please review the Python literature for a comprehensive list and description of the Python built-
in exceptions.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 90 of 106

8.4 The try … except Clause

The simplest form of error handling in Python is the try…except structure. The syntax is of the
form

try:
… < try block >
except:
… < except block >

If an exception will be thrown due to the <try block>, it will be handled by the <except block>.
In other words, if an error occurs in the <try block>, the end user will not see the exception
raised by Python but will experience whatever is done under the <except block>. Or to put it in
yet another way, if an error occurs in the <try block>, code execution is immediately transferred
to the <except block>.

8.5 The try … except Clause for Multiple Exceptions

If specific exceptions are anticipated, as many except blocks as desired may be added to handle
those specific exceptions. The syntax is of the form

try:
… < try block >
except <Name of exception 1 > :
… < except block 1>
except <Name of exception 2 > :
… < except block 2 >
except <Name of exception 3 > :
… < except block 3 >
:
:
:
except <Name of exception x > :
… < except block x >

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 91 of 106

except:
… < except block > # if any other exception is raised in the try block
 # apart from any of the above,
 # use this except block

8.6 The else Keyword

The else keyword can be incorporated in the try …except handler to designate a block of code to
execute if no exceptions are raised in the try block. The syntax is of the form

try:
… < try block >
except <Name of exception > :
… < except block >
:
:
except <Name of exception > :
… < except block >
else:
… < else block > # if no exceptions raised in the try block
 # apply use this else block

8.7 The finally Block

A finally block incorporated in the try … except handler will execute that block of code
regardless of whether an exception is raised in the try block or not. The syntax is of the form

try:
… < try block >
except :
… < except block >
:

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 92 of 106

:
:
finally :
… < finally block > # this block runs regardless of whether
 # exceptions raised in the try block or not

8.8 The raise Keyword

The raise clause in conjunction with an if statement can be used to generate a custom exception.
The syntax is of the form

if (< conditional statement >) :
… raise Exception (< custom statement >)

If the conditional statement returns the Boolean value of “true”, then a customized exception that
includes a concatenated string of the keyword Exception and the < custom statement > will be
thrown at the user. The < custom statement > may incorporate variables, and other data types as
needed (by using string functions or methods).

Open a new session of IDLE (Python GUI).
Open the File Editor.
In the File Editor, reproduce or copy over the code for the Pass/Fail Grade Calculator app that
was developed in Chapter 4 of this course.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 93 of 106

The code is as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 94 of 106

Run the file.
When prompted, enter the intentionally erroneous grade of “9*”.

Hit Enter to continue code execution.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 95 of 106

An exception is raised.

The “non-numeric” inadmissible value entered cannot be converted to a float. Thus the program
crashes.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 96 of 106

Granted the programmer can anticipate that an end-user may make this type of data entry error, a
try … except handler can be used to “catch” such an error as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 97 of 106

Run the file using a valid test score.
Run the file using a “data entry error.”

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 98 of 106

If the programmer anticipates multiple specific errors, they may be incorporated into the error
handler as follows.

will raise a NameError, as
no variable y exists

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 99 of 106

Run the file as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 100 of 106

Fix the NameError issue.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 101 of 106

Run the file as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 102 of 106

Revert to your original PassFail app (with no error handlers).
Create a custom exception as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 103 of 106

Run the file as follows.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 104 of 106

Domain knowledge and experience must be used to design and implement appropriate error
handlers. The programmer should test multiple scenarios that a non-expert end-user may
encounter and design the error handlers to guide and assist the end-user accordingly while
precluding to the maximum extent possible, built-in exceptions being raised to the end-user.

8.9 Debugging Python Scripts

It cannot be overemphasized that all Python scripts should be meticulously reviewed, thoroughly
scrutinized, and frequently tested as they are being developed. It is the programmer’s
responsibility to frequently test the code and address problems as they arise, and to verify or
otherwise that the scripts execute as intended (validation). Test your codes and scripts frequently,
block by block, line by line, using the IDLE (Python GUI) or the File Editor or any other
preferred Python tool. A piecemeal approach to writing and testing code is strongly preferred
rather than writing the entire script before testing it. In the latter scenario, it will be significantly
more difficult to identify and isolate the relevant problems.

8.10 Getting Help

There is currently an abundance of help information on Python programming, particularly on the
World Wide Web. These include official (peer-reviewed) and unofficial sources, websites,
academic reports, professional presentations, tutorial videos (YouTube, etc.), user groups, online
forums, downloadable code snippets, etc., etc. Typing a Python topic in a search engine will
typically yield hundreds if not thousands of results. It is still strongly recommended, regardless
of the source of any contributory or relevant help information, that all codes being developed be
tested and validated thoroughly before deployment.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 105 of 106

9. CONCLUSION

This course has presented a broad overview of fundamental concepts, principles, and
programming structures of the Python programming language. Python is an interpreted, high-
level, general purpose programming language. Python is a free and open source and can be used
to build a wide range of desktop and web-based applications.

In this course the topics the following topics were presented in detail: conditional statements,
looping, functions, input and output (I/O) functions, modules, file handling and error handling
techniques. Practical examples from situations encountered by a practicing engineer or scientist
were used to illustrate and demonstrate the concepts and methods learned in this class.

This course has prepared participants to now develop their own applications driven by Python.
This course has enabled participants to identify situations where computer programming is
relevant and will be of advantage to the practicing professional competing in the global
marketplace.

Practitioners are strongly encouraged to look for situations in their domains of expertise where
computer programming solutions are applicable and will be of benefit to their work and their
organizations.

All programming requires a careful and meticulous approach and can only be mastered and
retained by practice and repetition.

Good Luck and Happy Programming.

363.pdf

http://www.suncam.com/

Computer Programming in Python – Part 2

A SunCam online continuing education course

www.SunCam.com Copyright 2019 Kwabena Ofosu, Ph.D., P.E., PTOE Page 106 of 106

REFERENCES

Programiz. (2019). Python Errors and Built-in Exceptions. Retrieved July 2019, from Programiz:

https://www.programiz.com/python-programming/exceptions

Python Software Foundation. (2019). Python Software Foundation. Retrieved July 2019, from

Python Software Foundation: http://www.python.org/psf/

Real Python. (2019). Python Tutorials - Real Python. Retrieved August 2019, from Real Python:

http://realpython.com/

tutorialspoint. (2019). Python - Tutorial. Retrieved June 2019, from tutorialspoint.com:

https://www.tutorialspoint.com/python/

w3schools.com. (2019). Python Tutorial. Retrieved July 2019, from w3schools.com:

http://www.w3schools.com/python/default.asp

Images were all drawn/prepared by Kwabena. Ofosu

363.pdf

http://www.suncam.com/

	Abstract
	List of Tables
	1. INTRODUCTION
	1.1 Computer Programming
	1.2 Relevance of Computer Programming to Engineers
	1.3 Python

	2. CONDITIONAL STATEMENTS
	2.1 Definition
	2.2 The if Statement
	2.3 The if…else Statement
	2.4 The if…elif…else Statement
	2.5 Short Hand Syntax
	2.6 The pass Statement
	2.7 Composite Conditional Expressions
	2.8 Nested Conditional Statements

	3. LOOPING
	3.1 Definition
	3.2 The while Loop
	3.3 Nested Loops
	3.4 Infinite Loops
	3.5 The break Statement
	3.6 The continue Statement
	3.7 The else Statement
	3.8 Short Hand Syntax
	3.9 The for Loop
	3.10 The range() Function

	4. FUNCTIONS
	4.1 Definition
	4.2 Creating a Function
	4.3 Calling a Function
	4.4 Arguments
	4.5 Default Arguments
	4.6 Keyword Arguments
	4.7 Returning a Value
	4.8 Scope of a Variable
	4.9 Recursion
	4.10 Lambda Functions

	5. INPUT AND OUTPUT (I/O) FUNCTIONS
	5.1 Introduction
	5.2 The input() Function
	5.3 Casting
	5.4 The print() Function

	6. MODULES
	6.1 Introduction
	6.2 Calling a Module
	6.3 Naming and Renaming a Module
	6.4 Variables in Modules
	6.5 Built-in in Modules
	6.6 The dir() Function
	6.7 The from Keyword

	7. FILE HANDLING
	7.1 Introduction
	7.2 The open() Function
	7.3 The read() Method
	7.4 The readline() Method
	7.5 The close() Method
	7.6 The write() Method
	7.7 Deleting Files
	7.8 Renaming Files
	7.9 Deleting a Folder

	8. ERROR HANDLING AND EXCEPTIONS
	8.1 Errors
	8.2 Types of Errors
	8.3 Handling Exceptions in Python
	8.4 The try … except Clause
	8.5 The try … except Clause for Multiple Exceptions
	8.6 The else Keyword
	8.7 The finally Block
	8.8 The raise Keyword
	8.9 Debugging Python Scripts
	8.10 Getting Help

	9. CONCLUSION
	REFERENCES

