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Introduction 
 
1.1 Role of Design of Experiments in Quality Design and Improvement 

Designs of Experiments are a set of tools used to identify or screen important factors that 
affect a process, and to develop empirical models that characterize process behavior. It is a 
systematic, rigorous approach to engineering problem solving that applies principles and techniques 
during the data collection stage to assure the generation of valid, defensible, and supportable 
engineering conclusions. In addition, all of this is carried out under the constraint of minimal 
expenditure of engineering runs, time, and money. Also, as part of Design of Experiments, we have 
Response Surface Methodology, or RSM, a collection of mathematical and statistical techniques that 
are useful for the modeling and analysis of problems in which a response of interest is influenced by 
several variables and the objective is to optimize this response.  

There is a need for continuous process and performance monitoring with a view towards the 
identification of those areas that present opportunities for product and process improvements.  This 
makes a strong case for the need to push the quality issue farther upstream into the engineering 
design arena where the effects of the factors that are perceived to be important to product or 
process performance can be properly studied by purposefully varying or changing their levels in the 
experimental realm.  

Specifically for process control, a crucial step is the ability to diagnose or discover the root 
cause, the fault that is responsible for the variation in the process/product, in order to fully 
understand and appreciate how best to implement process and quality improvements 

Oftentimes to get to the root cause of the problem, we will need to experiment with the 
process, purposely changing certain factors with the hope of observing corresponding changes in 
the responses of the process. On the other hand, the problem could be a system problem in the 
sense that the process could be in control, but the variation happens to be too high, resulting in very 
large defect rates, and so on.  This portends a fundamental problem that is not revealed easily 
without a comprehensive study of process performance across a range of conditions and a large 
number of factors.  Without an organized and systematic approach to experimentation, a costly and 
time-consuming "random walk" approach to looking for ‘root cause’ or effects of change can lead to 
very little and perhaps nothing in terms of an enhanced knowledge of the process. The methods of 
design of experiments present a systematic approach that would result in an efficient and reliable 
procedure that would lead to better process understanding. It is important to note that the power of 
design of experiments can be greatly enhanced if the environment in which the experiments are 
conducted has been changed through variation reduction methods such as statistical process control.  
Statistical process control ensures a more stable process.  A stable process will allow the effects of 
small changes in the process parameters to be more readily observed. In those cases where statistical 
control of a process has been established, subsequent experimentation and the associated 
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improvement actions are more likely to result in a stable process in the future because the future is 
more predictable when the process is under statistical control. While statistical control of the process 
is not necessarily a prerequisite to drawing valid conclusions from the results of a designed 
experiment, it can greatly enhance the sensitivity of the experiment in the context of its ability to 
detect the effects of the variables.   

 
1.2 The Role of Design of Experiments in the Design Process 

A serious shortcoming of past approaches to quality has been the inability to deal rationally 
with the quality issue early in the product and process development life cycle.  During the past 
several decades, it has become clear, largely through the work of Taguchi and others, that parameter 
selection at the early stages of product and process design can be enhanced by measuring quality by 
functional variation during use and by the use of experiments methods. In particular, the concept of 
robust design, advocated by Taguchi as part of his model for the design process, shown in Figure 2-
2, has proven to be an effective tool for product and process design and improvement.  
 There is an important distinction to be made between testing and experimentation.  While 
both have their rightful place, one should not serve as an alternative for the other. The Japanese 
have used design of experiments for parameter selection at the product and process design stage. 
Here, the object is to experiment with various combinations of the important design parameters to 
identify the particular combination(s) that optimize certain design criteria or performance measures.  
In the past, the West had placed a great deal of emphasis on life testing by subjecting many identical 
units to field conditions to determine the life expectancy of performance 
 
Missing Values 

A common problem that can ruin a good engineering design project in the process of 
conducting an experiment is missing values, also called missing observations. When there are 
missing observations, it is not possible to obtain valid measurements on some of the experimental 
units and so this nullifies the application of some of the techniques developed for the ANOVA. 
Missing observations occur when tools break, the machine breaks down or the operator was 
inattentive to collect data.  In less developed countries where electricity generation and distribution 
are erratic, the issue of missing data may occur when the plant suddenly losses power and the 
backup generator malfunctions. This could lead to loss of data, the inability to continue 
recording/transcribing, or even the loss of already recorded data.  
 The otherwise straightforward analysis of randomized experiments is often complicated by 
the presence of missing data.  Some authors suggest an approach to the problem that assumes that 
the data is missing at random and conditional on treatment and can be estimated by using the mean 
of the observations. This has been shown to be inadequate, especially when other fully observed 
covariates or factors are present. 
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2.1  Missing values for Single Factor Randomized Block Design (RBD) 
 An approach to solving the problem of missing values for a randomized block design is to 
develop an error function, which when optimized, ensures that the estimated missing value has 
minimum error. In other words, it should result in the optimum value of the error mean square. The 
optimization process requires taking the differential of the error function denoted by the quantity 
(Q) where Q is the modified error sum-of-squares (SS) due to the missing value and then finding the 
zeros of the resulting differential.  It is important to note that if we had more than one missing value 
(say ‘p’ missing values), then we will take p partials and optimize with respect to the unknown 
parameters of interest.  
 To begin, let us define the model and its parameters assuming we do not have a missing 
value. The model is as given below. The accompanying table is a familiar data table for a treatment 
with several levels (‘a’) and blocks with several levels (‘b’).  In the table, the missing value is 
represented by the unknown variable x (not be confused with the treatment) last row, 3rd column. 
From there, we go on to compute the error SS.  
yijk = µ + τi + βj + εij 
yij = observation in the ith treatment and the jth block 
µ = overall mean 
τi =ith treatment effect, there are a treatment level, i=1, … a, 
βj = jth block effect, there are b levels of block, j=1, …,b, 
εij = random error 

Table 1 layout for RBD with missing value 

   
Blocks 

 
  Row Totals 

Tr
ea

tm
en

ts
 

y11 y12 y13 .. .. y1b y1. 

y21 y22 y23 .. .. y2b .. 
.. .. .. .. .. .. .. 
.. .. .. .. .. .. .. 
ya1 ya2 x .. .. yab ya.' +x 

Column 
Totals 

y.1 y.2 y.3'+x 
    

y.b y..' +x 

 

 ( )













−−










−−−=

∑∑∑ CF
a

y
CF

b
y

CFySS ji
ijerror

22
2 ..  

i = 1, 2, …, a 
j = 1, 2, …, b 

http://www.suncam.com/


 
The Design and Analysis of Engineering Experiments II 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 7 of 53 
 

 ( )

:,..2

2
.

2
.2

hence
ab
yCFbut

CF
a
y

CF
b
y

CFySS ji
ijerror

=











−−










−−−= ∑∑∑  

 
ab
y

a
y

b
y

ySS ji
ijerror

2
..

2
.

2
.2 +










−









−= ∑∑∑  

For the missing value,  

 ( ) ( ) ( )













−+

+
=














−+

+
=−+= •• CFR

a
xy

SSCFR
b

xy
SSCFxRSS j

Block
i

TreatTotal 2

2'

1

2'
2

0 ,,  

 ( )
3

2'

R
ab

xyCF +
+

= ••  

 ( ) ( ) ( )
CFR

a
xy

R
b

xy
xRSS ji

Error +












+

+
−














+

+
−+= ••

2

2'

1

2'
2

0

 

The R’s are constants, so together they form another constant, R, that is 3210 RRRRR +++=  

R
ab

xy
a

xy
b

xy
xSSQ ji

error +
+

+
+

−
+

−== ••••
2'2'2'

.2' )()()(  

Differentiating with respect to x and setting equal to zero, that is: 0=
dx
dQ  

( ) ( ) ( ) 0222
2

'''

=
+

+
+

−
+

− ••••

ab
xy

a
xy

b
xy

x ji  

Multiplying both sides by: ( )
2

ab , we have: 

[ ]
( ) ( )[ ] ( )( )[ ]

( )( ) '''

'''

''

11
1111

)1(

0)()()(

••••

••••

••••

−+=−−

−−=−−−

−+=+−−

=++−−−−

ybyaybax
baxaabx

ybyaybbabx

xybxybaxyaabx

ji

ji

ji

 

( )( )
( )
( )( )2111

'''

−−
−−

=
−−

−+
= ••••

ba
GbBaT

ba
ybyay

x ji   

The y-primes, that is (y′i•, y′•j, y′••), are the partial sums without the missing value for the affected 
row, column and the total and are as defined with their equivalents (T, B, G) above.  
Example: An experiment to determine the amount of warping (mm) of copper plates was 
conducted in 4 different laboratories (Lab 1, Lab2, Lab3, Lab4) using four specimens with different 
percent of copper compositions (A, B, C, D) 
 
  

a=number of levels of the treatment 
b=number of blocks 
T=Total of treatment with the missing value 
B=Total of block with the missing value 
G= Grand total of all the values 
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Table 2 Layout for Randomized Block Design (RBD) with missing value 
 
 
 
 
   
 
 
   

Table 3 Single Factor   2-way ANOVA with One Restriction (block) on Randomization below 
ANOVA: One-Factor With Blocking 

    SUMMARY Count Sum Average Variance 
  Lab1 4 909 227.25 626.25 
  Lab2 4 980 245 368.6667 
  Lab3 4 908 227 430 
  Lab4 4 875 218.75 566.9167 
  A 4 1023 255.75 102.9167 
  B 4 840 210 368.6667 
  C 4 927 231.75 440.9167 
  D 4 882 220.5 28.33333 
  ANOVA 

      Source of Variation SS df MS F P-value F crit 
Rows (Labs-Block) 1468.5 3 489.5 3.253693 0.073833 3.862548 
Columns (specimen) 4621.5 3 1540.5 10.23966 0.002929 3.862548 
Error 1354 9 150.4444       
Total 7444 15         

 
Let us assume that the equipment in laboratory 4 lost power momentarily while processing so the 
new data configuration for specimen B, will look like that found in Tables 4 and 5. 
 
Optimization Procedure for estimating p missing values 

Develop an error function, namely Q and optimize it by taking partials (since there are more 
than one missing values) with respect to each missing value and set the result equal to zero.  This 
results in p equations in p unknowns which we solve simultaneously to obtain the estimates of the 
missing values.   

The total degree of freedom for one missing value is (n-1)-1; for two it is (n-1)-2, for three 
missing values the degree of freedom is (n-1)-3 and so on. 
  

 
SPECIMEN(Treatment) 

 LABORATORY A B C D TOTALS 
Lab1 264 208 220 217 909 
Lab2 260 231 263 226 980 
Lab3 258 216 219 215 908 
Lab4 241 185 225 224 875 
TOTALS 1023 840 927 882 3672 
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Table 4 Data table with missing value 
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Table 5 ANOVA Table for missing data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 A Note about the Adjusted ANOVA Table due to Missing Value. 
 Recall that in the analysis for the missing value we utilized 15 data points rather than 16.  So, 
the degrees of freedom for the experiment = (N-1) = (15-1=14).  After conducting ANOVA with 
the estimated missing value, we find in this particular case that, relative to our decision about 
significance, nothing has changed traumatically.  The block effect was still not significant and even 
less so with the missing value. The treatment effect was significant in the original design and 
remained so with the missing value even though the F-statistic was less than before. 
 Question?  How would the problem change if we had two missing values rather than one? 
We will proceed the same way but rather than differentiation of the function for one parameter, we 
will take partials with respect to two parameters, set it to zero, and solve two equations in two 
unknowns. 

 SPECIMEN(Treatment) 
 LABORATORY A B C D TOTALS 

Lab1 264 208 220 217 909 
Lab2 260 231 263 226 980 
Lab3 258 216 219 215 908 
Lab4 241 x 225 224 690+x 
TOTALS 1023 665+x 927 882 3487+x 

SUMMARY Count Sum Average Variance 
  Lab1 4 909 227.25 626.25 
  Lab2 4 980 245 368.6667 
  Lab3 4 908 227 430 
  Lab4 4 905 226.25 116.9167   

 A 4 1023 255.75 102.9167 
  B 4 870 217.5 93.66667 
  C 4 927 231.75 440.9167 
  D 4 882 220.5 28.33333 
  ANOVA 

      Source of Variation SS df MS F P-value F crit 
Rows 992.25 3 330.75 2.961204 0.090104 3.862548 
Columns 3620.25 3 1206.75 10.80403 0.002439 3.862548 
Error 1005.25 8 125.6563 

   Total 5617.75 14         

http://www.suncam.com/


 
The Design and Analysis of Engineering Experiments II 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 10 of 53 
 

2.2.2 Missing Value for Latin Square Design 
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2.2.3 Incomplete Latin Square: The Youden Square  
 We have a Youden Square when the conditions of a Latin Square are met but only three 
treatments levels can be applied or are available per block because we have only 3 levels for position. 
Consider a machining situation where we have four machines (M=4), each with 4 positions (P=4) or 
heads and four possible specimens(S=4). If the machines only have three heads each, then the 
arrangement will be a Latin Square with a missing position, thus an incomplete Latin Square. Such 
design is called a Youden Square. 

Table 6 Youden Square data 
 
   
   
   
 
 
 
 
 
b= number of blocks in the experiment (b=4). 
t =number of treatments in the experiment (t=4).  
k= number of treatments per block (k=3). 
r=number of replications of a given treatment throughout the experiment(r=3). 
N= total number of observation =(b)(k) = 12. 
λ= number of times each pair of treatments (say A &B) appear together throughout  
      the experiment. 

 
POSITION (heads)   

 Machine(Blocks) 1 2 3 Ti●●   
I A(2) B(1) C(0) 3 

 II D(-2) A(2) B(2) 2 
 III B(-1) C(-1) D(-3) -5 
 IV C( 0) D(-4) A(2) -2   

T●●k -1 -2 1 -2 T●●● 

 
A B C D 

 T●j● 6 2 -1 -9 
 

a=no of treatments in the experiment, 
same for blocks and columns 
R=total of rows with missing data 
C=total of Columns with missing data 
T=total of treatments with missing data 

••y =Grand total of all observed values 
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Where nij=1 if treatment j appears in block i, and 0 if treatment j does not appear in block i. Note 
that  •∑ i

i
ijTn is merely the sum of all blocks which contain treatment j. 

Q1=3(6)-[-2+2+3]=15, Q2=3(2)-[3 +2-5 ] =6 
Q3=3(-1)-[3-5-2 ] =-3+4=1, Q4=3(-9)-[2-5-2] =-27+5=-22  

( )
( ) ( )( ) 75.117.108.3167.1367.47,08.31
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=−−−==
−+++
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Table 7 ANOVA Table for the Youden Square data 

Source SS df MS F 

Mach(unadjust.) 13.67 3 -   
Treat (Adjust) 31.08 3 10.4 17.86 
Position 1.17 2 0.58 1 

Error(Residual) 1.75 3 0.58   
Total 47.67 11     

  
Based on the ANOVA, the treatment effect was significant (F 0.05,3,3 =9.2766). The position 

effect was not significant. We did not test for the block effect because it was not adjusted.  We only 
test for effects that have been adjusted or those that do not need adjustment. However for 
symmetrical designs where t=b such as we have here, we can also adjust the SS for the block as we 
did for treatment but both cannot be tested at the same time. There was no need to adjust for 
position because every position was present in every block and every treatment.  

( )2216150 −++==∑ jQ  
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Factorial Design 
In factorial experiments, the factors (treatments) are typically quantitative (note that we said 

‘typically’ because there are factors that are qualitative, such as depth, when denominated as low, 
medium or high) and quantitative when the actual numerical measurement of depth is used. For a 
quantitative factor, the difference between any two levels is an interval or ratio and such interval is 
not only measurable and quantifiable but also has meaning.  For example, the difference between the 
two temperature levels of 50°C and 40°C are quantifiable.  However, in the case of position, the 
difference between position 1 and position 2 may be understood but cannot be quantified. This 
becomes especially important when it is desired to establish a functional relationship or predictability 
function between the factor and the response. Restrictions (blocks) are not factors. They are 
considered nuisances that cloud the response.   

In the cases we have encountered so far, we have been concerned only with one factor and 
the effect of such a factor on a measured response variable.  Every other thing we have looked at 
was with respect to restrictions and randomization. The idea was to identify and remove the effect 
of the restriction (block or nuisance) so as not to cloud or confound the response and the error 
mean square. Several different designs of this type were examined. However, each type only focused 
on restrictions on randomization, but still the focus was on a single factor.  

By contrast, a factorial experiment is one that involves more than one factor (treatment). In 
most cases, these factors or treatments may have some functional relationship that defines their 
behavior relative to the response variable.  Also, in a factorial experiment, all levels of a given 
factor are combined with all levels of every other factor in the experiment. Factorial designs are 
most efficient in those situations where there are two or more factors, thus reducing cost. By 
factorial design, we mean that for each complete trial or realization of the experiment all possible 
levels of the factors are run and data obtained. For example, if factor A has ‘a’ levels and factor B 
has ‘b’ levels; we will have a total of ab (a x b) treatment combinations.  Thus, one of the major 
benefits of a factorial design is that it allows the effect of several factors and in some cases, the 
interactions among those factors to be determined with the same number of experimental trials 
needed for the one-factor at a time design, thus reducing the cost of experimentation. With two or 
more factors, the traditional approach has been to hold one or more factors constant, while the 
other factor is varied through its different levels. After taking the readings, another factor is chosen 
and the process repeated until all the factors have been exhausted. This requires a lot of 
experimental trials. However, with factorial experiments, all possible combinations are run at the 
same time, thus reducing the cost of the experiment.  

 
3.1 Notation for Factorial Design 
 If we have A1, A2, A3 as the levels of factor A; B1, B2, B3, B4 as levels of factor B; and C1, 
C2, C3 as the levels of factor C, then we have a 3 x 4 x 3 factorial design with 36 data points.  
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 The special case is where we have 2f ( f factors at 2 levels) or 3f (f factors at 3 levels). These 
are the most common type of factorial designs. Higher levels or higher order designs are more 
complicated and are usually avoided.  In these designs the factors are completely randomized and 
the levels are considered fixed. We will examine cases much later where the levels are random. 
 3.2  The Effect of Replication 

A typical functional relationship in a 2 x 2 = 4 factorial design features two factors at two 
levels. The model representing this design looks as follows: 

ijijjiij ABBAy εµ ++++= )(  (Two-Way without replication) 

The above model shows that for a 2-factor design without replication, the effect due to interaction is 
indistinguishable from the effect due to error. This presents a problem in the analysis, especially 
when it is desired to estimate the interaction effect.  A way to solve this problem is to carry-out 
replication for each data point. That way it would be possible to independently estimate the error 
mean square and the interaction effect.  The model with replication will look like:  

( )ijkijjiijk ABBAy εµ ++++= )(  
Example: (Two-way with replication). The following data for two factors, namely temperature (T-3 
levels) and accelerator --% of calcium chloride (A-3 levels) with 2 replications and their effect on the 
cure time of concrete. The cure time is the measured output.  
The model is as follows: ( )ijkijjiijk CAACy εµ ++++= , 
Where, Ci=0 for all i, Aj=0 for all j,  CAij = for all (ij) combinations 
 

Table 8 -Data Table for Factorial Design with Replication 
 Accelerators(% Cacl2) 

 Temp 40% 50% 60% Ti•• 
40 -1 3 -3 

 
 

       (-5)      (0)      (-1) -7 

 
-4 3 1 

 50 1 2 -1 
 

 
        (-4)      (1)      (-1) -4 

 
-5 -1 0 

 60 0 3 -4 
          (-2)       (-1)      (-6) -9 

 
-2 -4 -2 

 T·j· -11 0 -9 -20 
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Preliminary Calculations 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0.828.218.103)(int
2.8)(int

45.1122.2267.33,1.222.2233.24
,8.2122.2244,8.10322.22126

67.33
6

9011
6

:,33.24
6

947
6

:

44
2

6...114105
2

:

,22.2218/20

1262..1133341

22222222

22222222

2

222222222

=−===
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=−==−=
=−==−=
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==
−+−+−

=

=
−++−+−+−+−++−

=

=−=
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eractionSSSStotalErrorSS
SSAccelSSTempSSCelleractionSS

SSAccelSSTemp
SScellSSTotal

T
Accel

T
Temp

T
Cell

CF

y

ji

ij

ijk

 

  
Table 9 -Data Table for Factorial Design with Replication 

 
 
 
 
 
 
 
 

 
 
Example of a 3-way Factorial Design with Replication.   
The factors are Concentration (40%, 50%, 60%), Temperature (50ºC, 60ºC), and Catalyst (A, B) 

ijkijkjkikkijjiijk CMTMTCTTCMMCy εµ ++++++++=  

As can be seen from the model equation, CMTijk is confounded with ε ijk. 
We can now compute the sum-of-squares of the different components of the ANOVA table.  
Before we do that, it is important that we discuss the method of computing the sum-of-squares 
especially the interaction when we have three or more factors. We develop two-way tables for pairs 
of factors to facilitate the computation of the first order interaction,.  Such tables make it easy to 
compute the sum-of-squares of the individual factors and the sum-of-squares for their interaction, as 
we will demonstrate shortly. 
 

Source SS df MS F 

Temp(C) 2.1 2 1.05 < 1 
Accel (A) 11.45 2 5.75 < 1 

CAij 8.2 4 (2x2) 2.05 < 1 

εκ(ij ) 82 9 9.11   
Total 47.67 17     
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Table 10 Data table for 3-way (3 factors) with no Replication 
 
  
 
 
 
 
 
 
 
 
 

Table 11 Two-way tables for Computing main effects and interaction 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    CONC( C) 
CATA(M) TEMP(T) 40% 50% 60% 

  50ºC 1 7 -1 
          
A         
  60ºC -2 8 -3 
  50ºC -120 7 88 
          
B         
  60ºC -124 5 92 

      CATA (M)     
      A B 

  T•jk TEMP 
(T) 

50 ºC 7 -25 (M x T)   
  60 ºC 3 -27 

 
  

  
 

T•j• 10 -52 -42   
  

     
  

  
  

CONC ( C)   
      40% 50% 60% T••k 
Ti•k TEMP    

(T) 
50 -119 14 87 -18 

  60 -126 13 89 -24 
 (CxT) 

  
-245 27 176 -42 

  
     

  
  

  
CONC( C)   

      40% 50% 60%   
Tij• CATA 

(M) 
A -1 15 -4 (C x M)  

  B -244 12 180   
  

 
Ti•• -245 27 176 -42 
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We now compute the interactions based on the two-way tables 

( ) ( ) ( ) ( ) ( )
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With these sum-of-squares, we can now establish the ANOVA table and test for significance. Please 
note that because there is no replication, the highest order interaction (C x M x T) is confounded 
with the error sum-of-squares and so we are unable to tell them apart.  This is not a problem 
because in most experiments (especially higher order experiments), the physical significance of the 
highest order interaction is difficult to explain so it is usually confounded or lumped with the error 
term to enhance or improve the test.  It is important to note that when there is a need to add the 
two sums of squares, the degrees of freedom are also added to the degrees of freedom of the error 
term to give both a new SS and df for the error. If we had replication of r = 2, then, 
 df total = (24-1=23), df CMT = (2)(1)(1) = 2 , df CM=2, df CT=2, df MT=1, then, df error=(df 
total)-(df C)-(df M)-(df T)-(df CM)-(df CT) -(df MT)-(df CMT)==23-11=12 
 

Table 12 ANOVA Table for the 3-way (3 Factor) Design with Replication 
 
 
 
 
 
 
 
 
 
 
 
 

Source SS df MS F Sig F(Table) 
Ci 22785.5 2 11393 2042 *** F(2,2,0.01)=99.0 
Mj 320.33 1 320.33 57.41 ns F(1,2,0.01)=4999.5 
Tk 3.00 1 3 0.538 ns F(1,2,0.01)=4999.5 
CMij 22908.17 2 (2x1) 11454 2053 *** F(2,2,0.01)=99.0 
CTik 10.5 2(2x1) 5.25 0.941 ns F(2,2,0.01)=99.0 
MTjk 0.34 1(1x1) 0.34 0.061 ns F(1,2,0.01)=4999.5 
εκ(ij ) 11.16 2 5.58       
Total 46039 11         

http://www.suncam.com/


 
The Design and Analysis of Engineering Experiments II 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 17 of 53 
 

3.3 2f   Factorial Designs 
 The 2f are designs with n factors where each factor has just two levels. The two levels are 
usually at the extremes and so this type of design is used to screen or to carry out investigation about 
the factors and their levels. By screening, we are referring to the process of exploring several factors 
and the levels of such factors with the hope of selecting those important factors and their levels for 
the response under consideration.  
 We will start with the basic case of this type of design, namely 22 or the 2 x 2 factorial with 
complete randomization and no replication.  Since we do not have replication, this means that the 
interaction effect is confounded or confused with the error. For notation purposes for 2f, we will be 
using a mnemonic device that was developed by YATESs and others to make the notation, ordering, 
representation, and analysis of the experiment easy to implement. As we will see later, for a factor 
with two levels, the most we will be able to estimate in terms of the functional relationship is the 
linear component. As we may recall, with two points, we can locate a line. In the same vein, with 
three points we potentially have a curvature.  

3.4 Notation for 2f factorial Design 
 The notation which has been widely used is as follows. Consider, as in our case, two factors 
A and B. Let 0 and 1 denote the two levels of a 2f design. So A0B0 is used to denote that both factors 
are at their low levels. A1B0 denotes that A is at high level and B is at low level, A0B1 denotes A low 
and B high, and A1B1 denotes both at the high levels. Given this notation, we then come up with 
another response notation for the factors at these levels. The response notation is quite intuitive, as 
we will see momentarily.  

• When both are at their low levels (A0B0), we represent the response as: (1), 
•  For data point A1B0, we represent it as the response as ‘a’.  
• Similarly for A0B1:b,  
• and for A1B1:ab.   

This is done in order, starting with all factors at their low levels, then the first factor, then the 
second factor. If a third factor is introduced, we first exhaust the sequence for the first two factors 
before we introduce the third and so on in that order.  
 
 
 

 
 
 
 
 
 

3-Factors at 2 levels 
000 (1) 
100 a 
010 b 
110 ab 
001 c 
101 ac 
011 bc 
111 abc 

2 Factors at 2 levels 
00 (1) 
10 a 
01 b 
11 ab 
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Effects of a factor.  
To determine the effects of a factor, say A, we examine what happens to A when B is low and also 
when B is high.  The average of these two will give us the average effect of A, similarly for B.  
 
 
 
 
 
  
 
 
 
From figure 1, the effect of A At the low B is [(a-(1)]. The effect at high B,  is [ ab-b]. 
Therefore, the average effect of A is: 

= ( ) ( )[ ]baba −+− )1(
2
1

= ( )[ ]abba +−+− 1
2
1

 

An intuitive way to look at this is the following. Where A exists, you have a positive sign (+), where 
it does not we have a negative sign (-).  Using this rule of thumb, we can develop the effect of B as 
follows: 

B= ( )[ ]abba ++−− 1
2
1

.  Similarly, for AB: [ ]abba +−−+ )1(
2
1

 

Another thing to notice at this stage is that the signs are equal. To summarize: 

( )[ ] ( )[ ]

( )[ ] ( )[ ]

( )[ ] ( )[ ]abbaABabbaAB

abbaBabbaB

abbaAabbaA

+−−+=⇒+−−+=

++−−=⇒++−−=

+−+−=⇒+−+−=

121
2
1

121
2
1

121
2
1

 

In addition to the effect, we also have contrasts as follows: 
( )[ ]
( )[ ]
( )[ ] 0111112

0111112
0111112

=+−−+⇒+−−+=
=++−−⇒++−−=
=+−+−⇒+−+−=

abbaAB
abbaB
abbaA

 

 Each of 2A, 2B, 2AB is a contrast and together they form a set of orthogonal contrasts. To 
demonstrate that for two of the contrasts A, AB; [-1-1+1+1] = 0. Additionally, because there are 
two levels for a 2f design, we can also represent the levels with +1 and -1, depending on whether the 
effect is present or not present.  The low level always assumes the negative sign for each effect.  
Once this is done, we can also determine the coefficient of the interaction (in this case AB) by 
multiplying the proper corresponding signs of the effects.  We can also use the table of signs (table 
13) to determine the Main effect and the interaction effects 23.  We will show proof of concept by 

Fa
ct

or
 A

 
Factor B 

ab 

b 

a 

(1) 

 

Figure 1 Two Factor (A, B) Factorial Design at 2 levels 
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looking at the table of signs for 23 (8 total points). For each interaction, we get the sign of the effect 
by multiplying by the signs of the factors that make up the interaction. 

Table 13 Table of Signs for 2f Factorial Design 
Treatment 
Combinations 

Effects 
Response A B AB C AC BC ABC 

(1) + - - + - + + - 
a + + - - - - + + 
b + - + - - + - + 
ab + + + + - - - - 
c + - - + + - - + 
ac + + - - + + - - 
bc + - + - + - + - 
abc + + + + + + + + 

 
Consider the following 2x2 design: 

Table 14 New Notation and data Representation for 2 2 Design 
 Factor A  
Factor B A1 A2 TOTAL 
B1 30      (1) 40      a 70 
B2 0         b 20      ab 20 
TOTAL 30 40  

 
A0B0=30 =(1), A1B0=a=40, A0B1=b=0, A1B1=ab=20 
From the normal ANOVA, approach, with replication r=1 in this example. 

( )

25625225875,225
2
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2
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8752900,29002004030,20254/90
2222

22222
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Using the new Approach, the effects are: Define the following: 
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3.4  The YATES Scheme 
 Using the table of signs, we will introduce yet another way of computing the sum-of-squares 
and that is the YATES scheme or YATES method.  In the Yates methods, the treatments are added 
in pairs all the way through.  That forms half of the elements in a given iteration. Then the same set 
of numbers is again manipulated by subtracting the first elements from the second and continuing to 
till the list is exhausted.  This second operation then fills the remainder of the elements of the 
iteration.  This continues for the next iteration and so on until the number of iterations equals the 
number of factors. In our example, there are two factors, so the number of iterations is two or two 
columns. At the end, the third last column is used to indicate the sum-of-squares.  The sum-of-
squares is obtained by diving the results of the fth column (or second column in this example) by the 
divisor defined as: r x 2f=N which essentially is the number of data points in the experiment. 

                      Table 15 YATES Scheme Solution for 2 2 Design    
 
 
 
 
 
 
 

The following will help explain how the YATES Scheme works. Starting with the response column: 
1. First Iteration for Column I 
 Starting with the Response Column 

• Add 30 to 40 =70 
• Add 0 to 20   =20 

 Done with the addition.   
 Next is subtraction 

• Subtract 30 from 40=10 
• Subtract 0 from 20=20 

2. Second Iteration for Column II 
 Starting with Column I 

• Add 70 to 20=90 
•  Add 10 t0 20 =30 
Done with addition 
• Subtract 70 from 20=-50 
• Subtract 10 from 20=10 

3. End after f iterations. In our case f =2 the number of factors 

4. Now divide elements in the last column by the divisor (r x2f) to give the sum-of-squares    

Treat Com. Resp. I II SS= (Col II)2/(r x2f  ) 
(1) 30 70 90 2025=CF 
a 40 20 30 225 =SSA 
b 0 10 -50 625=SSB 
ab 20 20 10 25=SSAB 
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3.5 23 Factorial Design 
Consider a chemical process where the yield is of concern.  Three factors, Temperature (A), 
Humidity (B), and % Catalyst (C) are of concern. The experiment was run with 3 replications (r = 3). 
The coded data is as shown.  The model is: 

( )lijkijkjkikkijjiijk ABCBCACCABBAy εµ ++++++++=  

 Table 16 Data Table for 2 3 factorial Design with replication  
 
 
 
 
 
 
 
 
 
 
 
 

 
  

 
  
 
 
 
 
 
 
 
 
 
 
 

  A1 A2   
  B1 B2 B1 B2 Ti•  
     -2 

 
  3 

 
-3 

 
-1     

C1   -3 -1 3 5 -1 -3 2 4 5 
    4 (1) -1 b 1 a 3 ab   
    -1 

 
2 

 
2 

 
0     

C2   0 6 -2 1 -3 3 2 3 13 
    7 c 1 bc 4 ac 1 abc   
 T•j 

 
5 

 
6   0 

 
7 T••=18 

  
    

  
   

  
  B1 B2 

 
A1 A2 

 
C2 C2   

  5 13   11 7   5 13   

Table 17  The three 2-way tables for the 2 3 Design 
    B1 B2   
T•jk c1 -4 9 5 
  c2 9 4 13 
  T•j• 5 13 18 
  

 
  

    A1 A2 T••κ 
Ti•k C1 4 1 5 
  C2 7 6 13 
  

 
11 7 18 

  
 

  
    A1 A2   
Tij• B1 5 0 5 
  B2 6 7 13 
  Ti•• 11 7 18 
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As a check, we will use the traditional method to compute the SS for the main effects and the 

interactions to confirm that, indeed, the YATES Scheme in this case of 23 indeed works. 
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We can also set up the 2-way tables (3 in all) to see if we can compute the interactions the usual way 
and compare with the YATES Scheme 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
66.067.267.267.05.1317.05.184.21 =−−−−−−

−−−−−−= CSSBSSASSBCSSACSSABSSCellSSAxBxCSS  

It is clear from the computations that the conventional method agrees with the YATES scheme.  

Table 18   Computation of Sum-of-squares using YATES Scheme 

Treat Resp I II III SS   

(1) -1 -4 5 18 13.50 CF 
a -3 9 13 -4 0.67 SS(A) 
B 5 9 -3 8 2.67 SS(B) 
ab 4 4 -1 6 1.50 SS(AB) 
C 6 -2 13 8 2.67 SS(C ) 
ac 3 -1 -5 2 0.17 SS(AC) 
bc 1 -3 1 -18 13.50 SS(BC) 
abc 3 2 5 4 0.67 SS(ABC) 
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3.6 3f Designs 
 3f designs are very powerful and yet complicated designs. The motivation for a 32 design is 
the need to dig deeper to understand the functional relationships between the factors and the 

response.  However, we will limit our work to the 32design, namely 2 factors at 3 levels. From basic 
engineering principles, it is known that if you desire a linear function or linear relationship, you will 
need at least two data points.  Similarly, if there is a need for a quadratic or curvilinear relationship 
one would need at least three data points.  However, for most basic engineering designs, the 
quadratic and the cubic are mostly used because they are more easily explained.  This does not 
obviate the fact that when there is need for higher order representation based on theoretical 
considerations (such as in space systems) that a cubic and higher order design may not be used. 
Most engineers will confess that when a relationship is beyond the cubic, quartic or quintic, it is not 
only very difficult to visualize but also to explain to clients and colleagues what such relationship 
looks like in practical terms. Again, it is much easier to explain to a client that there exists a quadratic 
relationship or even a cubic than it is to explain a quartic or quintic representation or relationship.  

 As we indicated earlier, 2f designs are called screening designs because we employ them to 

understand the limits of the response.  Typically, the two levels for a 2f factorial represent the lower 
and upper limits of the response. Once we have that information, we have a good idea about the 

behavior of the process. In 3f design, we add another level to have a more comprehensive idea of 

the relationship. One of the benefits of a 3f design is that even if the linear relationship is what is of 
interest, we know that from basic design principles, a quadratic function also includes a linear 
function so going up one more level would enable us understand the relationship surface more 
comprehensively and still cater to the need of what is really of interest.  The only drawback to this 
approach is of course the problem of over fitting.   
 The over fitting issue comes about because each parameter (or term) that is introduced into 
the model uses up one degree of freedom. As an example, suppose we have 4 data points and we 
introduce 3 parameters. Because of the constant term in the model, there will only be three degrees 
of freedom left to be shared among the parameters including the error term. In this scenario, there 
will be no degree of freedom left to use for the error term.  A good way to make sure that we avoid 
this problem is to use replication.  With replication there is always going to be enough degrees of 
freedom to estimate of pure error.  

 Going back to the 3f design, the 3 levels are represented by 0, 1 and 2.  To apply the method 
of the YATES Scheme, we will use the third order polynomial (k = 3) to compute the column values 
on the YATES table and then the sum-of-squares. Before we do that let’s look at a conventional 

way to compute the sum-of-squares (SS) and the ANOVA table for 3f design. 
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Example: We are to consider the effect of two factors (Temperature and Humidity) on the yield of 
a process.  The data is as follows: 

Table 19 Data Table for 3 2 Factorial Design with replication 
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Table 20 ANOVA for the 3 2 Design 
 
 
 
  
  
  
  
 Based on the results from the ANOVA table, none of the factors appear statistically 
significant at α equals at 1% level 

   
TEMPERATURE   

  COLD AMBIENT HOT Ti●● 

H
U

M
ID

IT
Y 

 
0.8 

 
1.5 

 
2.5 

 
  

50%   3.6   4.7   6.7 15.0 
  2.8   3.2   4.2     

 
1.0 

 
1.6 

 
1.8 

 
  

70%   2.6   3.4   2.8 8.8 
  1.6   1.8   1.0     

 
2.0 

 
1.5 

 
2.5 

 
  

90%   4.2   2.3   6.5 13 

  
  2.2   0.8   4.0     
T●j● 10.4 10.4 16 36.8 T●● 

Source SS Df MS F(computed) F (table) Sig 
Hi 3.33 2 1.67 2.20 F(0.01, 2,9)=3.01 n.s. 
Tj 3.48 2 1.79 2.29 F(0.01, 2,9)=3.01 n.s. 
HTij 3.59 4 0.90 1.19 F(0.01, 4,9)=2.69 n.s. 
εk(ij) 6.80 9 0.76    
Total 17.20 17     
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3.6.1  YATES Scheme for 3f Design 
 For a 3f design, the minimum number of data points is 9, which represents a 32 design. If 

you recall in the case of the 2f design, the operations performed to get the sum-of-squares (SS) on 

the YATES table was carried out in pairs.  So, in the case of the 3f, the operations will be carried out 

in triples or in threes. The following procedure will be used to obtain the SS on the YATES for 3f.  

 Before we go further, we want to re-write the model to reflect the fact that in a 3f design we 
have constant, linear and quadratic components.  Note that, in general, we can do this for any factor.  
However, in practical terms, it makes sense only for quantitative factors since for qualitative factors, 
the differences in the levels are not ratios or intervals.  

( )ijkijk HTHTHHTHTHTTy εµ +++++++++= 222121211121  

3.6.2 YATES Scheme Procedure for 32 Design 
1. Obtain the orthogonal polynomial for k=3 (that is, the number of levels for a 3f design). As we 
noted previously, the maximum number of orthogonal polynomial for k levels is k-1, so in the case 
of 3 levels, we have 2 orthogonal polynomials as follows: 









−

−
121
101  

These represent the linear and quadratic components, so we add the constant component to give us 
the complete polynomial structure. The result will look as follows: 

















−
−

121
101
111  

With this we can then compute the YATES scheme table entries to yield the SS. As we indicated, 
this will be accomplished in triplets following the 3 x 3 orthogonal matrix. 
2.  Compute the table elements as follows 
a).   First Iteration: 
Add the values as triplets, namely, first three values, the second three, and then the last three in the 

case of 3f. This is represented by (1 1 1). In the case of 32, there will be only three sets of this type of 
addition because there are only 9 values 
b). Second Iteration: 
 Subtract the 1st value from the 3rd for the first three values, the same for the second set of three 
values and same for the third set of 3 values all the way through.  This is represented by (-1 0 1). 
c).  Third iteration: 
Add the 1st and 3rd values and subtract from the result 2x the middle value for the first set of three 
values, same for the second, and same for the third set of three values.  This represented by (1 -2 1). 
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Similar to 2f design, repeat the procedure f-times (2 times in this case), where f represents the 

number of factors. Note that we performed each operation 3 times because we have a 32 design or 

nine data points.  If we had a 33 design, then we will have 27 data points so we have to perform each 
set of operations nine times.  
3. Compute the Divisor: The divisor is given by: rDivisor pfm −= 32 , Where, 
M = number of letter involved in the interaction (m=0, 1 or 2), for T1H1, m=2 (due to T, H) 
P = number of linear terms in the model (for T1H1, p=1) 
F = number of factors (for this example, f=2) 
R = number of replications (for this example r=2 

For example based on this 32 design 

T2H1; p=1, m=2, 2423232 12 ==− rpfm ,  T2 ;    p=0, m=1, 3623232 21 ==− rpfm  
T2H2; p=0, m=2,  7223232 22 ==− rpfm  

 
Table 21 YATES Scheme for 32 Design Using data from Previous Example 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
We can now re-do the ANOVA table with the linear and quadratic components and show their 
significance. Please note: SS(T)= SS(T1)+SS(T2)=2.61+0.87=3.48 

SS(TxH)=SS(T1H1)+SS(T2H1)+SS(T1H2)+SS(T2H2)=0.08+1.12+1.04+1.33=3.57 
SS(H)=SS(H1)+SS(H2)= 0.33+3.00=3.33 

Interaction 
 When several factors are involved in an experiment, the effect of one of the independent 
variables on the response may depend on the level of the other factors in the experiment. When the 
difference in the response between the levels of one factor is not the same at all levels of the other 
factors, we have interaction. Thus, if the effect of a given factor on the response variable is 

Treatment  
Comb 

Resp. I II Effect Divisor = 
rpfm −32  

SS=Col (II)^2 
/Divisor 

(1)       00 3.6 15.0 36.6 CF 18232 20 =  75.24 
t1         10 4.7 8.8 5.6 T1 (linear) 12232 11 =  2.61 
t2         20 6.7 13.0 5.6 T2(quadratic) 36232 21 =  0.87 
h1           01 2.6 3.1 -2.0 H1 12232 11 =  0.33 
t1h1      11 3.4 0.2 -0.8 T1H1 8232 02 =  0.08 
t2h1      21 2.8 2.3 5.2 T2H1 24232 12 =  1.12 
h2        02 4.2 0.9 10.4 H2 36232 21 =  3.00 
t1h2       12 2.3 -1.4 5.0 T1H2 24232 12 =  1.04 
t2h2      22 6.5 6.1 9.8 T2H2 72232 22 =  1.33 
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dependent at the level of the other factors then we have interaction.  If a change in a factor (A) 
produces a different change in the response variable (Y) at one level of another factor (B) than at 
other levels of factor (B), we have interaction. 
Example: Consider three factors Concentration (C: 50%, 60%), Temperature (T: 60C, 50C), and 
Catalyst (M: 1, 2).    
 
Figure 2: At Low Temp (T); C=87-14=73, At High Temp (T); C= 120-50=70.  
Interaction CT is the average difference of change in effect of C= (70-73)/2=-1.5 (quite small) 
Figure 3: At Low Catalyst (M); C=-4-55=-59At High Catalyst (M); C= 180-12= 168.  
Interaction CM is the average difference of change in effect of C=(168-(-59))/2=163.55 (This is 
quite large) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   
Figure 2  No Visible Interaction Effect 
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Figure 3 Visible  Interaction Effect 
 

Confounding 
In factorial experiments, there are practical cases in which randomization is restricted. As an 

example, restriction can happen in factorial experiment when all data points cannot all be run in one 
shift or one day. This is more than a question of economics.  For example, in a situation where an 
environmental chamber is to be used to test the reliability of an electronic component, one chamber 
may not be enough to run the entire test. In such a case a decision must be made about what 
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information will be sacrificed.  As we indicated earlier, usually the highest level interaction effects or 
any interaction whose effect is considered not significant is usually confounded for the sake of 
obtaining the true functional relationship among the factors and the response. Under no 
circumstances are main effects confounded with blocks. 

Thus, confounding is the process by which unimportant comparisons or interactions are 
deliberately confused for the purpose of assessing the more important comparisons with greater 
precision. Confounding is required in factorial experiments in which the number of observations 
capable of being carried out under strictly comparable conditions is less than the number required 
for the design. Confounding is carried in blocks so that the block effect is confounded with the 
effect of the interaction chosen for the confounding scheme.  In this case, the sum-of-squares for 
the effect or interaction confounded is exactly equal to the sum-of-squares of all the blocks among 
which the confounding took place. 

To implement a confounding scheme, a defining contrast is first set up.  The defining 
contrast is an expression that indicates which effects (usually interactions) are to be confounded or 
confused with block.  Main effects are never used to confound with blocks.  
5.1 Confounding, Interaction and the ANOVA Table 
 When we have confounding, not all treatments can appear in one block because of the 
restriction imposed on complete randomization. Therefore, some interactions are usually 
confounded with blocks. When the same interaction is used for all the blocks, similar to what we 
have so far, then we have complete confounding.  In some cases, we may have replication of the 
experiment, and rather than use the same interaction, we use a different interaction for each 
replication.  When this happens, we have partial confounding.  
 In many situations, the engineer cannot afford several replications of an experiment.  
Additionally, there is the restriction on randomization which means not all the treatments can be run 
at one time. This means that confounding will be used, which results in the experiment being run in 
blocks. As was discussed earlier, the best way to obtain an independent estimate of error is through 
replication.  When there is no replication, some of the higher order interaction terms (order than the 
ones used for confounding) must be pooled and used as experimental error. The rule of thumb is 
that when a second order interaction (e.g. ABC) is used as the defining contrast, then all second 
order interaction and higher are pooled to form the error sum-of-squares. This does not work when 
a specific interaction is of interest in which it is not used. 

There is often some confusion about how interactions are named or labeled.  First order 
interaction involves two factors.  A second order interaction involves three factors, while third order 
interaction involves four factors and so on. 
5.2 Methods for Confounding 

1. Table of Signs (This is good for 2n designs) 
2. ABD System (This is good for 2n designs) 
3. The Kempthorne method (This is good for 2n and 3n designs) 
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5.2.1  Table of Signs 
Consider three factor A, B, C, assuming no replication, and we are to confound the highest 

order interaction ABC.  In such a case, the defining contrast is: (I, ABC). For the defining contrast, 
those treatment combinations with the same sign (negative or positive relative to the defining 
contrast) are assigned to the same block. Whichever block contains ‘(1)’ is the principal block.  For 
the table of signs, write down each treatment combination in the usual order and then write down 
applicable main effects in the columns (see table 22) as column headings.  Also, write down the 
term or interaction to be confounded as a column heading.  To begin, if a main effect appears in the 
treatment combinations then we assign a positive (+ sign), if not we assign a negative (-sign). Note 
that for all main effects, the sign with respect to ‘(1)’ is negative. Finally, to obtain the sign for the 
contrast or the interaction being confounded, multiply the signs of the main effect that make up the 
interaction or contrast.  

Note that this is a simple case of confounding in which the treatment combination is split 
into two blocks in which one interaction (usually the highest) order is confounded. Higher degrees 
of confounding involve larger number of blocks. For two blocks only one interaction is needed.  For 

4 blocks (the blocks in a 2n must be in multiples of 2) any two interactions appropriately determined 

will do.  Usually the number of block is given by 2j where j is the number of defining contrast 

specified. So, if j=1, then we have 21 which is 2 blocks, if j=2, then we have four blocks and so on.  
Table 22 table of Signs 

Treat. Comb A B C ABC 
(1) - - - - 
a + - - + 
b - + - + 
ab + + - - 
c - - + + 
ac + - + - 
bc - + + - 
abc + + + + 

The Two Block are as follows: 
Principal Block  # I Block # II 
(1) a 
ab b 
ac c 
bc abc 
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5.2.2 ABD Method (Good for 2f) 
Consider the treatment combinations that we examined earlier. Let the defining contrast be 

given by {I, ABC}.  The procedure to determine what goes into each block is as follows. Those 
treatment combinations with even number or zero numbers in common with the contrast go in one 
block.  Those with odd number go in another block. 
For {I=ABC}: 

(1) Has 0 letters in common with ABC. 
a: has one letter in common with ABC. 
b: has one letters in common with ABC. 
c: has one letter in common with ABC. 
ab: has 2 letters or 0 letters in common ABC (2 modulo 2 =0). 
ac: has 2 letters or 0 letters in common with ABC. 
bc: has 2 letters or 0 letters in common with ABC. 
abc: has 3 letters or 1 letter in common with ABC (3 Mod 2 =1) 
Block I (principal block):  [ (1), ab, ac,  bc  ];     Block II:    [ a,  b,  c,   abc ] 

Suppose the defining contrast {I, AB} 
For { I=AB} 
   ‘(1)’ has 0 letters, 'c' has 0 letters, 'ab' has 2 or 0 letters, 'abc' has 2 or 0 letters 
    ' a' has 1 letter; 'b' has 1 letter; 'ac' has 1; 'bc' has 1. 
Block I (principal block): [ (1),    c,    ab,   abc];  Block II:  [ a,     b,     ac,      bc] 
 

5.2.3 Kempthorne (Good for 2f and 3f Designs) 
 For the Kempthorne method, we use the defining contrast to specify the defining equation. 
Each defining contrast in the system of confounding scheme results in a defining equation. The 
defining equation in general is given as: 

nn XAXAXAL +++= ...2211  

Where: Ai = the exponent on the ith factor for each defining contrast 
 Xi = level of ith factor in the treatment combination 

Example: Let the defining contrasts for a design be given as {I, ABC, AB2C} 

L1=X1+X2 +X3 

L2=X1+2X2+X3 

Example: We have a 23 design with confounding where the defining contrast for the confounding 
scheme is given as {I, ABC). Find the elements of the blocks using the Kempthorne scheme. Note 
that for 2f design, the processes are modulo 2. 
Solution: L= X1 +X2 +X3 
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Table 23  Kempthorne Table with Principal Block 
Treat. Comb. Kempthorne Equation values: (L) 
(1) L=0 
a L=1 (L=1+0+0=1) 
b L=1  (L=0+1+0=1) 
ab L=0  (,L=1+1+0=2=0 mod 2) 
c L=1  (L=0+0+1=1) 
ac L=0  (L=1+0+1=2 mod 2 =0) 
bc L=0 (L=0+1+1=2mod 2=0) 
abc L=1  L=1+1+1=3 mod 2 =1) 
Note: those elements with L=0 go in one block and the ones with L=1 go in the other. 

Principal Block Other Block 
(1) a 
ab b 
ac c 
bc abc 

 
5.3 Confounding and the Elements of Blocks 

The principal block is a unique block in the confounding scheme. The following properties 
of the principal block are useful in determining elements of the principal block. Note that the 
Principal block is the block that contains the element '(1)'. Note that in this system 2 mod 2=0 
Property 1. The elements of the Principal form a group closed to multiplication. Thus, when any 
two or more of the elements or treatment combinations of the principal block are multiplied 
and the indices appropriately reduced, the resulting product is also an element of the principal block  
Property 2. Multiplying the elements of the principal block by any element or treatment 
combination not in the principal block, generates another block in the system. 
Example:  From the last example, the principal block (PB) and the other block were as the follows: 

Table 24 Continuation of Table 23 
PB(I) Other Block (II) 
(1) a 
ab b 
ac c 
bc abc 

 
Property 1. (ab)* (1) = ab     
  (ab)*(ab)=a2b2=a0b0=1 = (1) 
  (ab)*(ac)=a2bc= a0bc =bc 
  (ab)*(bc)=ab2c 
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Property 2.   (a)*(a)= a2=1=(1) 
  (a)*(b)=ab 
  (a)*(c)=ac 
  (a)*(abc)=a2bc=bc 
5.3.1 Generating the Blocks and the elements of the Block 

Suppose we have 24 and we want to confound in 4 blocks.  Since there are 16 total elements, 

each block will have four elements. We know the number of blocks = 2j.  In this case j=2. This 
means that we have two defining contrasts or two defining equations. The third defining contrast we 
get by multiplication mod 2.  With the two defining equations, we can generate the elements of the 
four blocks. Note that the number of iterations needed to get the block is also j=2.  
Generate the blocks (or the block headers).  
Assume that the defining contrast is given by: {I, ACD, BCD}.  "I" typically represents the principal 
block.  We get the 4th block by multiplying the two contrasts mod 2, so that 

(ACD)*(BCD)=ABC2D2=AB 
The full set of defining contrast then is: {I, ACD, BCD, AB} 

Note that in a 2f design, the levels are 0,1. 
 
      0      1 
         
             0    1    0  1 
 00    01    10  11 
 
With these we generate the labels: 00, 01, 10, 11 

Using I=ACD, BCD 
L1= X1     +X3 +X4,      L2= X2 +X3+X4 

1.  Write down all the elements including their combinations in this 24 design: 
[(1), a, b, ab,c,ac,bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd] 

 Substitute (1) in both equations, we get 00  ⇒ (1) belongs in the first (Principal block). 
 Substitute 'a', we get 10 ⇒ 'a' belongs in the second block. 
 Substitute 'b', we get 01 ⇒ 'b' belongs in the third block.  
 Substitute ' c', we get 11 ⇒ 'c' belongs in the fourth block. 
2. By inspection, we can quickly get the elements of the principal block.  Once we have that we 
 can use the elements that we already determined for the remaining blocks to multiply the 
 elements of the principal block to fill up the remaining blocks.  
 The remaining elements of the principal blocks are 
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'cd" will give L1=0, L2=0  ⇒00 
'abc' will give L1=0, L2=0  ⇒00 
'abd' will give L1=0, L2=0  ⇒00 

We know 'a' is in second block, so multiply 'a' with the elements of the principal block one after the 
other to get the elements of the block containing 'a'., that is block 2  
⇒ (a)* (1) = a;  (a)*(cd)=acd;  (a)*(abc)=a2bc=bc; (a)*(abd)=a2bd=bd 
Similarly for b and so on 
⇒ (b)* (1) = b;  (b)*(cd)=bcd;  (b)*(abc)=ab2c=ac;  (b)*(abd)=ab2d=ad 
 

00 01 10 11 
(1) a b c 
cd acd bcd d 
abc bc ac ad 
abd bd ad abcd 

Example. The following data from a 23 design with defining contrast {I, AC} was run in two 
blocks. Use the Kempthorne approach to determine the elements of the blocks. Use the Yates 
scheme to compute the SS for the effects and their interaction and show that, indeed, the effect AC 
was confounded with blocks. 
The model is ijkijkjkikkijjiijk ABCBCACCABBAy εµ ++++++++=  
 
 
 
 
 
 
I=AC, L=X1+X3. Since this is a 2f design, the blocks are labeled L=0, and L=1 
 
 
 
 
 
 
 

 A1 A2 
B1 B2 B1 B2 

C1 5             (1) 4                b 0                   a 2            ab 
C2 -3              c -1               bc 0                 ac -2         abc 

L=0 L=1 
(1)=5 a=0 
ac =0 c=-3 
b   =4 ab=2 
abc=-2 bc=-1 

+7 -2 
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Since we used AC for confounding, all other first order interaction or higher are added to the error 
sum-of-squares, that is, (AB, BC, ABC). 
 

Table 26  ANOVA for Table 25 
Source df SS MS F Sig 
A 1 3.125 3.125   
B 1 0.125 0.125   
C 1 36.125 36.135   
AC or Block 1 10.125 10.125   
Error (AB, BC, ABC) 3 6.375 2.125   
Total 8 55.875    

 
Example: Consider a 25 design with confounding in four (4) blocks of 8 treatments each. Since we 
are not given the defining contrast, we can set up our own.  Note that the number of blocks is given 

by 2j, where j is the number of defining equations. With 2 blocks, j=2, so we need two defining 
equations.  Let the defining equations be {I, ADE, ABCD}.  Since we have four (4) blocks, there are 
3 degrees of freedom to account for.  We can get the remaining contrast since we need 4 blocks, that 
is, the principal blocks (I in the defining contrast) plus three more.  We can get the remaining 
contrast by the multiplication of the set of contrasts we have on hand modulo 2, that is : 
(ADE) * (ABCD) = BCE.  So, the full set of defining contrast is given by: {I, BCE, ADE, ABCD}. 
We choose BCE and ADE for the Kempthorne equation:  

ADEXXXL
BCEXXXL

⇒+++=
⇒++=

5412

5321  

 
Table  25  YATES  Scheme for 2f Design with Confounding {I,AC} 
Treat 
Comb 

Resp. I II III Divisor 
r 2f=8 

SS=(Col III)2 
/Divisor 

(1) 5 5 11 5 8 3.125 
a 0 6 -6 -5 8 3.125 
b 4 -3 -7 1 8 0.125 
ab 2 -3 2 -1 8 0.125 
c -3 -5 1 -17 8 36.125 
ac 0 -2 0 9 8 10.125 Same as block 
bc -1 3 3 -1 8 0.125 
abc -2 -1 -4 -7 8 6.125 
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Table 27  Layout of Block Confounding {ADE,ABCD} 
(0.0) (1,0) (0,1) (1,1) 
(1) b a e 
ad abd d ade 
bc c abc bce 
abe ae be ab 
abcd acd bcd abcde 
bde de abde bd 
ace abce ce ac 
cde bcde acde cd 

5.4 Confounding in 3f 
 Consider a 33experiment in which the experiment cannot be completely randomized. 
Suppose nine can be randomized and run in one shift, nine on another shift and the last nine on the 

third shift.  We have 33 design in 3 blocks of 9 each.  The number of blocks is given by 3j. In this 

case, j=1 since 31=3. If we choose to confound the interaction, ABC, then the defining contrast is:   
{I, ABC}. This requires only two degrees of freedom to be confounded with blocks (3 block 
requires 2 df) Why does the ABC interaction have eight (8) degrees of freedom? Well, since each 
factor has three levels, the degree of freedom for each factor is 2. Thus, for ABC interaction, we 
have (2)(2)(2)=8. So, since ABC interaction has 8 degrees of freedom, we can partition ABC into its 
four component parts each with 2 degrees of freedom. We can then use one of the four to confound 
with the blocks. [ ])2(),2(),2(),2()8( 2222 ===== dfCABdfABCdfCABdfABCdfABC  
Using Kempthorne Equation, we have:  

L=X1+X2+X3. The block labels a 0, 1, 2 
Table 28  Results of Kempthorne for {I,ABC} 
0 1 2 

000                  (1) 001            CL 002           CQ 
111            ALBLCL 112       ALBLCQ 110          ALBL 
201               AQCL 202         AQBQ 200           AQ 
210               AQBL 211        AQBLCL 212       AQBLCQ 
102               ALBQ 100            AL 101          ALCL 
120               ALBQ 121        ALBQCL 122       ALBQCQ 
021               BQCL 022            BQCQ 020           BQ 
012               BLCQ 010            BL 011          BLCL 
222           AQBQCQ 220         AQBQ 221       AQBQCL 
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Fractional Factorial Design  
 The idea of a confounding scheme is because there is no opportunity for complete 
randomization. For example, the shift is too short to accommodate all the runs required to complete 
the experiment.  When that happens, the experiment is run partially and completed at a later time. 
The total number of treatment combinations to be run in one shift depends on the type of design.  

 For 2f design, the treatments per block are in tuples as are the blocks.  For example, we can 
have 2 treatments per block, 8 treatments per block, 16, or 32 treatments per block and so on. Also, 

in the case of 2f, we can have 2 blocks, 4 blocks, 6 blocks and so on all in multiples of 2. 

 For 3f designs, the treatments per block are in triples as are the number of blocks in the 
system. Consequently, we have 3 treatments per block, 9 treatments per block, 27 treatments per 
block all in multiples of 3.  The blocks are also in triples, namely, 3 blocks, 9 blocks, 27 blocks, etc. 
 In fractional factorial designs, while we still use confounding to determine which treatment 
combinations (interactions) are confused with the block, only a fraction of the experiment can be 
run.  In fractional design, it is not possible to completely randomize or to run the total experimental 
replications due to size and, hence, leading to the high cost of running the experiment. Thus, in the 

case of 2f, we talk about running one-half replicate, one-quarter replicate or one-eighth replicate of 
the experiment using a defining contrast that would ensure that the important treatment 

combinations in the design are run. The same with 3f design. A third-replicate or one-ninth replicate 
and so on are run. That is why it is important in fractional factorial designs that the confounding 
scheme and the resulting defining contrast are well thought out so that interactions that are really 
important are not confounded. Regardless, main effects are never confounded with blocks. 
 

Table 29 Effects and Degrees of Freedom for Table 28 
Source df 

A 2 
B 2 

AB 4 
C 2 

AC 4 
BC 4 

Block or ABC 2 
Error: or 

AB2C, ABC2, AB2B2 

6 
(no replication) 

TOTAL 26 
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6.1 Aliases 
 In fractional designs, we have the issue of aliases. Aliases happen when two or more effects 
have the same numerical values when confounding is used. Aliases are indistinguishable in terms of 
their numerical values. Thus, in fractional design, it is important to ensure that they are not both 
present in the fraction of the experiments that is to be run if the design is to be of any value. What 
we want to avoid especially is for a main effect to be aliased with another main effect because we 
cannot extract the significance of the effects. We determine an alias as follows. 
Determination of Aliases for 2f 
 For each treatment effect and interaction that is not part of the defining contrast, multiply 
the treatment or interaction with the defining contrast (modulo 2 or modulo 3 depending on the 
design.  The result after the multiplication is the alias.  For the sake of an example, suppose the 

defining contrast was (I=BCE, ADE, ABCD) for a 25 and a one-quarter replicate was run.  This 
means that these interactions are confounded with the four blocks. The aliases for the main effect 
and some interaction are as follows: 

 A(BCE)= ABCE, A(ADE) =A2DE=DE, A(ABCD)=A2BCD=BCD 

 B(BCE)=B2CE=CE, B(ADE)=ABDE, B(ABCD)=AB2CD=ACD 

 C(BCE)=BC2E=BE, C(ADE)=ACDE, C(ABCD)=ABC2D=ABD 

 D(BCE)=BCDE, D(ADE)=AD2E=AE, D(ABCD)=ABCD2=ABC 

 E(BCE)=BCE2=BC, E(ADE)=ADE2, E(ABCD)=ABCDE 

 AB(BCE)=AB2CE=ACE, AB(ADE)=A2BDE=BDE, AB(ABCD)=A2B2CD=CD 
It is obvious that this is not a bad design because the main effects are not aliased with any main 
effects or the fourth-order interaction, that is, the highest order interaction in this case. The highest 
order interaction in any design with no replication, is pooled to form the SS error .  
Determination of Aliases for 3f 

The Alias for 3f is computed a little differently. The exponent on the first effect in a 3f is never 
greater than unity so when it is greater than one, the combination is squared to reduce the exponent 

modulo 3. For 3f, multiply the effect by the contrast modulo 3 and again multiply the square of the 

contrast modulo 3 resulting in two separate alias value per effect. For example for a 33design with 

I=AB2C. The aliases will be as follows: For A: A(AB2C )=A2B2C=(A2B2C)2 =ABC2 (exponent on 

first effect can't be greater than 1). Again for A:A(AB2C )2=A(A2B4C2)=A3B4C2=B4C2=BC2;  

B: B(AB2C )=AC, B(AB2C )2 =A2B5C2=A4B10C4=ABC, etc. 
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6.2 Fractional Factorial for a 2f 
 There are two different scenarios in any fractional factorial design. In one scenario, the 
defining contrast is given and the issue is to determine the treatment combination that will result 
from the defining contrast.  In this case, we can employ the Kempthorne approach or the table of 
sign to determine the resulting treatment that would apply.   
 A more difficult situation is where the engineers know the treatment combinations that are 
required in the experiment and so the question is what is the defining contrast that would yield the 
given treatment combinations.  This is a more difficult problem and would require more detailed 
effort than we can devote at this time.  However, it is an important consideration and much more 
practical than the other case where the defining contrast is given.  

Example: Suppose we have a 25design where, due to the physical limitation of the system and the 
cost of experiment, all we can afford is a one-quarter replicate.  The defining contrast is not known 

but we have determined that it is : {I, ACD).  The eight data points (1/4 of 24 )  are as follows 
Table 30 Data for the one-quarter replicate of 25 Fractional Design 

Treat. Comb a ab c bc d bd acd abcd 
Response 96.6 125.7 14.1 9.5 43.5 22.4 28.2 52.5 

 
 
 
 
 
 
 
 
 
 If we use the table of sign, we can setup the sign for the treatment and the interaction in the 
usual way. Namely, if the treatment exists in the effect shown then we indicate that existence by a 
positive sign, if not we indicate by a negative sign. The reason is that if the defining contrast did 
indeed result in those treatment combinations, the sign of each element with respect to the defining 
contrast will be positive. Note that in a fractional factorial design, the block to be used is chosen at 
random. For example, the treatment 'a' will have + sign under the effect A negative for all other 
effects. However, if you multiply the signs for 'a' for the effects that make up the defining contrast 
(ACD), the sign is positive. This is the same for all the treatments. The aliases with the main effects 
are: 
Main Effect Aliases: A(ACD)=CD, B(ACD)=ABCD,  
C(ACD)=AD, D(ACD)=AC 

Table 31 Table of Sign to confirm the defining contrast for 25 fractional Design 

 A1 A2 
B1 B2 B1 B2 

D1 C1   96.6 125.7 
     
C2 14.1 9.5   

D2 C1 43.5 22.4   
     
C2   28.2 52.5 
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Treat 
Comb. 

A B C D ACD 

a + - - - + 
ab + + - - + 
c - - + - + 
bc - + + - + 
d - - - + + 
bd - + - + + 
acd + - + + + 
abcd + + + + + 

  
We will use the YATES scheme to compute the SS. We will indicate the full compliments of a 25 in 
the YATES table but with holes because some values were not actually run. We will proceed the 
usual way on the YATES table, only now where the values are nonexistent, we will assume they are 
zeros. 

Table 32  YATES Scheme for 25 Fractional Factorial Design 
Treat 
Comb 

Response I II III IV SS= 
(Col IV)^2/8 

(1)  96.6 222.3 245.9 392.5 - 
a 96.6 125.7 23.6 146.6 213.5 5671.125 
b  14.1 65.9 198.7 27.7 95.91 
ab 125.7 9.5 80.7 14.8 79.1 781.10 
c 14.1 43.5 222.3 24.5 -183.9 4227.40 
ac  22.4 -23.6 3.2 -99.3 1232.56 
bc 9.5 28.2 -65.9 33.7 11.7 17.11 
abc  52.5 80.7 45.4 -21.3 56.71 
d 43.5 96.6 29.1 -198.7 -99.3 Same as AC 
ad  125.7 -4.6 14.8 -183.3 Same as C 
bd 22.4 -14.1 -21.1 -245.9 -21.3 Same as ABC 
abd  -9.5 24.3 146.6 11.7 Same as BC 
cd  -43.5 29.1 -33.7 213.5 Same as A 
acd 28.2 -22.4 4.6 45.4 392.5 SS Block 
bcd  28.2 21.1 -24.5 79.1 Same as AB 
abcd 52.5 52.5 24.3 3.2 27.7 Same as B 
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Table 33 ANOVA for 25 Fractional Factorial Design 
 
 
  
 
 
 
 
 
 
 
 
 
Please note that we cannot test for the significance of a block because there are no degrees of 
freedom left since there is only one block.  At any rate, the block (ACD) is aliased with the 
correction factor CF so there is no need to explore this further.  You will also notice that B is aliased 
with the highest order interaction. This is quite unfortunate because the highest order interaction is 
usually pooled with other non-relevant interaction to form the error sum-of-squares. 
6.3 Fractional Factorial for a 3f 
We will demonstrate this design with an example.  
The torque (lb) after pre-heat was to be measured on some rubber material with factor A (Temp) at 
(145ºC, 155ºC, 165ºC), factor B (Mix) at (I, II, III), and factor C (Lab; 1,2,3). The 33 27 experiments 

seemed too costly, so a 1/3 (one-third) replicate was run with AB2C used as the defining contrast. 

Using Kempthorne: L= X1+2X2+X3. The three blocks from the confounding scheme are:     

Table 34 Blocks for 34 Fractional Design with AB2C 
L=0 L=1 L=2 
000 100 200 
110 210 010 
011 111 211 
121 221 021 
212 012 112 
022 122 222 
220 020 120 
201 001 101 
102 202 002 

Source df SS MS F F(0.05,1,3) 
=10.1 

A(or CD) 1 5671.125 5671.125 19.9 Sig 
B(or ABCD) 1 95.91 95.91 < 1 n.s 
C(or AD) 1 4227.40 4227.40 14.83 Sig 
D(or AC) 1 1232.56 1232.56 4.33 ns 
AB(or BCD) 1 781.1    
BC(ABD) 1 17.11    
BD(or ABC) 1 56.71    
Error 
(AB+BC+BD) 

3 854.92 854.92/3=
284.97 

  

Total 7     
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With this design which consists of 33 factorial in 3 blocks of nine treatments per block, the effects 

can be broken down into 13, 2 df effects, namely: A, B, C, AB, AB2, AC, AC2, BC, BC2, ABC, 

AB2C, ABC2, AB2C2
.  Now, if only one of these blocks are run (1/3 replicate), say block L=1, the 

numerical results are shown but now only 8 degrees of freedom since we have only nine data points. 
 

Table 35 Data for 1/3 Replicate of a  34 Fractional Design with AB2C as Defining Contrast 
 A1(Temp) A2(Temp) A3(Temp) 

145ºC 155ºC 165ºC 
B1(Mix) B2(Mix) B3(Mix) 

I II III I II III I II III 
C1(Lab) 1   16.8 11.2    9.9  
C2(Lab) 2 15.8    14.4    17.8 
C3(Lab) 3  17.1    20.5 15.7   

 
The aliases are: 
For A: A(AB2C) = A2B2C= (A2B2C)2=ABC2, again for A: A(AB2C)2=A(A2B4C2)=A3B4C2=BC2 

For B: B(AB2C) = AB3C=AC, again for B; B(AB2C)2=A2B5C2=A4B10C4=ABC 

For C: C(AB2C) = AB2C2 , again for C: C(AB2C)2=A2B4C3=A2B4=A4B8=AB2 

For AB: AB(AB2C) =A2B3C=A4B6C2=AC2, again for AB: AB(AB2C)2=A3B5C2=B2C2=B10C4=BC 
So, we have the following: 

A (ABC2, BC2) 
B (AC, ABC) 

C (AB2C2, AB2) 

AB(AC2, BC) 
We can compute the SS using the traditional method: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

12.0
72.8596.215268.2238

9
2.1398.179.97.155.204.142.118.161.178.15
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3
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9

2.139
3

1.554.417.42,66.6
9

2.139
3
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222222222

2222
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Table 36  ANOVA for 1/3 Replicate of a  34 Fractional Design with AB2C as Contrast 
 

 
      
 
 
 
 

Random, Fixed Effect Model and Expected Mean Square. 
 In the planning stages of an experiment, the engineer must decide whether the levels of the 
factors to be run are to be set at fixed levels or chosen at random from many possible levels. A 
major consideration affecting this choice may be stated as follows. Are the results from such an 
experiment going to be judged for these levels only or are they to be extended to more levels of 
which those in the experiment are but a random sample?  
 As an example, in the case of temperatures, time or pressure, it is usually desirable to pick 
fixed levels since not all possible levels are practical in a given experiment.   
 However, in the case of operators, days, batches, or shifts, it is desirable to pick random 
levels, since the performance of any operator, or a day's production is not as important as whether 
the operator, batches, or days, in general, increase or decrease the variability of the process in 
question. It is, of course, ridiculous that one would want to decide whether levels should be fixed or 
random after the experiment has been performed. When all levels are fixed, we have a fixed model. 
When all levels are random, we have a random model. However, when some are fixed and some are 
random, then we have a mixed effects model.    
 Realistically, most models are mixed because even when all the factors have fixed levels, the 
error term is always considered random, independent and identically distributed. The question then 
is how to determine the mean square for the terms in the ANOVA table to properly test for their 
significance.  So far, we have assumed that all the levels are random and so we directly divide the 
mean square of each term by the mean square error to determine their significance.  However, by 
using the correct mean square or what we now call the expected mean square (EMS) for each term 
in the model, we can now properly test for their significance. 
 

7.1 Single Factor Model 
 ijjijyLet ετµ ++=   

μ=fixed constant, εij∼Normal Independent and Identically Distributed with mean zero, and variance 
equal to σ2

e ,  εij∼NIID  (0, σ2
e  ). 

Source df SS MS F F(0.05,1,3)=10.1 

A(ABC2, BC2) 2 6.66 3.33 55.5 Sig 
B(AC, ABC) 2 38.13 19.07 317.83 Sig 
C(AB2C2, AB2) 2 40.81 20.41 10.21 Sig 

AB(AC2, BC) 2 0.12 0.06   

Total 8 85.72    
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1.  If the treatment levels τj are fixed, then the ANOVA will look as follows.   
  

( )><+
−

+− ∑ 22
2

2

1
1 τσσ

τ
στ n

k
n

k

EMSdfSource

e
i

ei

 

With respect to the hypothesis test, we will test the hypothesis that the mean effect is zero versus the 
alternative that some pairs of means are not equal zero.  The variance component for the treatment 
mean is called pseudo-variance because it does not meet the ordinary definition of variance. Note 
that, in general, the mean square of any term in the model reflects the notion that the variance of 
any term consists of the variance due to error plus a component due to the term itself.  

In this case, our hypothesis is formulated as:  H0: τi=0, H1: τi ≠0 for some j 

2. If the treatment levels τj are random, then the ANOVA will look as follows: 

2
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σστ τ

−
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The hypothesis in this case is as follows: H0: σ2
τ=0, H1: σ2

τ > 0 

7.2 Two-Factor Model 
We will demonstrate how we determine the expected means square (EMS) for a given model using a 
two-factor mixed model. ( )ijkijjiijk ABBAyLet εµ ++++=  
where:   i=1,2,....a (a levels of factor A), A is fixed 
  j=1,2,....b(b levels of factor B), B is random,  k=1,2,...n (replication) 
  if A is fixed and B is random, then AB is random 
The hypotheses to be tested are as follows: 
H0:   Ai=0,  σ2

B=0,  σ2
AB=0. The EMS table will look as follows 

( )( )
( ) ( ) 2

22

22

222

1
11

1
1

eijk

ABeij

Bej

AABei

nab
nbaAB
nabB

nbnaA
EMSdfSource

σε
σσ
σσ

σσσ

−
+−−
+−

><++−  

We will now develop a general procedure for populating an EMS column to determine how the 
significance test will be run for a given model. 
7.3 EMS Rules for Establishing an EMS column for ANOVA 
Example of a two-factor mixed model: ( )ijkijjiijk ABBAy εµ ++++=  

1. Write the factors as row headers in a row/column table 
 
  
  
 
2. Write down the subscripts for each factor as 

        
Ai 

   Bj 
   ABij 
   ek(ij)       
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column heading.  Above each subscript indicate whether the factor for each subscript is fixed or 
random by writing F or R above each.  For the error term, always write R. Above the second row, 
write the number of levels or replications corresponding to the factors or terms. 
 
  
 
 
 
 
 
 
 
3. For each row (each factor or term in the model) write down the level or observation on top of 
each subscript, so long as the subscript does not appear in the row.  For example, for A, copy down 
'b' under subscript j and n under subscript k, but another under i because i appears in the A row . 
 
   
  
      
 
 
 
 
4.  For any bracketed subscript in the model, place a one  under those subscripts  which are inside 
the bracket. 
 
  
 
 
 
 
 
5. Fill the remaining cells with 0 if the subscript is for fixed effect (F) and 1 if it is for random (R) 
effect. 
 
 
 
 
 
 
 
6. To find the EMS, for any term in the model, do the following: 

 
a b n 

 
F R R 

  i j k 
Ai 

   Bj 
   ABij 
   ek(ij)       

 
a b n 

 
F R R 

  i j k 
Ai 

 
b n 

Bj a 
 

n 
ABij 

  
n 

ek(ij)       

 
a b n 

 
F R R 

  i j k 
Ai 

 
b n 

Bj a 
 

n 
ABij 

  
n 

ek(ij) 1 1 1 

 
a b n 

 
F R R 

  i j k 
Ai 0 b n 
Bj a 1 n 
Abij 0 1 n 
ek(ij) 1 1 1 
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 i) Cover in the column or columns which contain un-bracketed subscript  letters in this term.  
For A cover i, for B, cover j for AB cover ij, for ε cover k only. 
 ii). Multiply the remaining number in each row . Each of these products is the coefficient of  
its corresponding variance term in the model so long as the subscript on the term is also a subscript 
of the term is being sought. The sum of the coefficients multiplied by their corresponding variances 
is the  EMS of the term under consideration.  For example, for A, cover column i. The products of 
the remaining elements are: bxn for first row,  1xn, for second row, 1xn for third row, and 1x1 for 
the last row. The product n from the second row is not used because it does not contain i, which is 
part of the subscript for  A that is being considered. So, the resultant EMS for  A is:  
bnσ2

A+nσ2
AB+σ2

e 

 
 
 
 
 
 
 

7.3.1 Testing for Significance:  A vs  AB,    B vs  e k(ij) , AB vs  ek(ij) 
7.4 Rule for Determining the  Degrees of Freedom for EMS 
 
 
 
 
 
 
Nested or Hierarchical Designs 
 In the design of experiments, it is not always the case that all the factors are crossed with 
each other the result of which captures our traditional definition of a factorial experiment. From 
practical considerations, it is not always possible to cross levels of one factor with the levels of 
another factor. We bring up this design because it is perhaps use of the most common designs that 
engineers face and the one most commonly misused or misunderstood. Thus, it is important to 
provide the tool necessary to handle it. Consider a situation where we want to take the readings of a 
compression test on a particular specimen.  There are four machining centers available for this test 
and each machining center has four different heads.  At first thought, we might consider this as 
factorial design with two factors machines (M) and heads (H) where each machine is randomly  
crossed with each head and then a typical factorial analysis is carried out with test of significance for 
the factors and their interaction. The model that describes this usual factorial design model is: 

  

a b n 

EMS 
F R R 
i j k 

Ai 0 b n  σe2+nσAB2+nb<σA2 > 
Bj a 1 n  σe2+naσB2 
ABij 0 1 n  σe2+nσAB2 
ek(ij) 1 1 1  σe2 

Factor Subscript Rule df 
Ai i i-1 a-1 
Bj j j-1 b-1 

ABij ij (i-1)(j-1) (a-1)(b-1) 
ABj(i) j(i) (j-1)i a(b-1) 
ek(ij) k(ij) (k-1)ij (n-1)ab 
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Yijk=μ+ Mi+Hj+MHij+εk(ij), assuming k replications. 
 The question that persists in this type of thinking is the following. Was every machine really 
crossed with all heads? The answer of course is no because that would require removing the heads 
from each machine and refitting them to all other machines, which may be possible but not 
probable.  Since a set of heads are tied only to set machines and only those, then the model has to 
reflect this relationship because the heads are nested within each machine and not crossed with all 
the machines.  The recognition of this fact leads us to a new modeling scheme where we reflect the 
fact that the heads are nested within the machine as opposed to being stand alone and crossed 
among all machines. The revised model will now look as follows: 

 Yijk=μ+ Mi+Hj(i) +εk(ij),  and we will analyze this model with the EMS approach.  The 
EMS table determines how the test of significance is carried out. This is unlike the regular ANOVA 
table where the test was based on the ratio of the mean square of each term error means square.  
Example:  Assume that in the scenario described we have Compression tests on tungsten 
specimens were run on three machines each with three heads. The data is as follows: 

Table 37 Data Layout for Nested/Hierarchical Design 
Mach M1 M2 M3 
Head H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 

 
 

1.5 1.5 2.7 3 1.9 2.3 1.8 1.9 2.5 3.2 1.4 7.8 
 

 
1.7 1.6 1.9 2.4 1.5 2.4 2.9 3.5 2.9 5.5 1.5 5.2 

   1.6 1.7 2 2.6 2.1 2.4 4.7 2.8 3.3 7.1 3.4 5 
 Head 

Total 
4.8 4.8 6.6 8 5.5 7.1 9.4 8.2 8.7 15.8 6.3 18 

                         
 Mach 

Total 
                          
  24.2       30.2       48.8     103.2 

 
We assume for this design that we have a random sample of heads that can be used on a given 
machine., then we have a hierarchical or nested design in which the machines are fixed and the 

heads random.  Yijk=μ+ Mi+Hj(i) +εk(ij), i=1..3, j=1,..4, k=1,...3 
 
 
 
 
 
 
 
 

 

3 4 3 

EMS 
F R R 
i j k 

Mi 0 4 3  σe2+3σH2+12<σM2 > 
Hj(i) 1 1 3  σe2+3σH2 
ek(ij) 1 1 1  σe2   
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Table 38   ANOVA for the Machine Heads EMS Example 

 
Source SS df MS EMS F 

Mi 27.42 i-1=2 13.71  σe
2+3σH

2+12<σM
2 > 13.71/4.04 

Hj(i) 38.38 (j-1)i=9 4.04  σe
2+3σH

2 4.04/0.91 

ek(ij) 21.8 (k-1)ij=24 0.91  σe
2   

Total 85.6 35       
 
8.1 Testing for significance on an EMS  Table 

• M vs H, F=3.93 (F 0.01, 2,9=8.06); therefore not significant 
• H versus Error, F=4.42 (F 0.01, 9, 24=2.3); heads effect is significant from machine to 

machine. 
Note that not all the terms or factors/interactions are tested for significance with the error mean 
square as has heretofore been the case. 
 

Regression Analysis 
 The purpose of Regression Analysis is not to explain what type of data should or should not be 
collected for any given purpose. The purpose is to explain some of the techniques used in extracting 
information, such as the main features of the relationship between the variables in the data, and to make 
a strong case for the importance of properly designing the experiment to collect needed data. 
 In any system where quantities change, it is of interest to look at the effects, if any, of some 
variables or others.  Indeed, there may be a functional relationship which may be approximated by a 
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simple mathematical relationship.  In other instances, the functional relationship may be complicated.  
Still, there are situations where no meaningful relationship seems to exist, but we might wish to express 
or relate them by some sort of mathematical equations. 
 There are two main types of variables, namely predictor or independent variables (X), and the 
response or dependent variables (Y). 
 A regression equation is a prediction equation fitted to a set of experimental data values to 
describe a possible relationship between a single dependent variable Y and one or more independent 
variables X. In the case of a single Y and a single X, the situation becomes a regression of Y on Xx.  
For n independent variables, it becomes the regression of Y on X1, X2,...Xn. 
 One particular method commonly used in expressing the relationship between the variables is 
the method of least squares.  In this method, the unknown parameters are estimated under certain 
assumptions and a fitted equation is obtained. The value of the equation can be examined by 
substituting known values to see its predictability.  
 The method of least squares in regression analysis will be used to examine the data and to draw 
conclusions about any functional relationship between the response and the independent variables.  
The simplest kind of regression is the bi-variate linear regression.  

Model: Y = f(x),  i.e.,  Y = α + β x  
which can better be expressed as: ),0(~, 2

10 eiiii NIIDwhereXY σεεββ ++=  
This equation can be expanded from the bi-variate to a polynomial regression. Under the least squares 
method, we can also solve the multivariate  or the multivariable linear regression which is expressed as:  

Y = f (X1, X2, ..., Xn)= A0 + A1X1 + A2X2 + ... + AnXn 
We can also have a  Multivariate polynomial regression.  For a polynomial of 2nd degree, we will have 
the following Model: Y= A0 + A1X1 + A2X2 + A11X1

2 + A22X2
2 + A12X1X2 

Nonlinear Regression can be handled with the least squares method if linear transformation is possible.   
9.1 Model Solution.    
Let a model be represented by: Y = β0 + β1xi + εi , 
where ε1  = error ( sometimes called the residual) and has zero mean and a given distribution.   
Let f(x) = b0 + b1 Xi   be the predicted ith y value(when X = Xi) and  
    b0 = estimate of β0,    b1 = estimate of β1  
Then the deviation of the observed value of y from the line y is: εi = yi - f(xi) 
The aim of the curve fitting effort is to minimize this deviation.  Specifically, the aim is to minimize 
the SS of the error (deviation). The procedure used to accomplish this is the method of least 
squares. Define Q as:  

( ) ( )[ ]2
110

22 )( ∑∑∑ +−=−== XbbYxfYeQ ii  

A way to solve the model is to develop normal equations arising from the model. A way to do that is 
to set up an expression for the least squares estimate and then optimize by taking partial derivatives 
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with respect to the parameters of the model. Since only two parameters (β0, β1) are involved, we take 
partials of Q with respect to those two parameters and optimize. 

))((2

)(2

10
1

10
1

ii

n

i
i

i

n

i
i

xxbby
b
Q

xbby
a
Q

−−−=
∂
∂

−−−=
∂
∂

∑

∑

=

=  

∑ ∑∑
∑∑

=+
=+

)2......(
)1.........(

2
10

10

iiii

ii

yxxbxb
yxbnb  

( )∑ ∑
∑∑∑

∑∑∑∑

−

−
==

−==⇒−=⇒−=

2211

1001010

ˆ

ˆ

ii

iiii

ii
ii

xxn

yxyxn
b

xbyb
n

x
b

n
y

bxbyb

β

β
 

( )
XX

XY
XXXY S

SbxxnSyxxynSLet ==−=−= ∑∑∑∑ ∑ 11
22 ˆ,,: β

 

 Equations one and two are called normal equations. The dimensions of the set of equations  
(no of these normal equation is equal to the number of parameters) are such that the system of 
equations is solvable so long as the data is not ill due to very significant differences in the magnitude 
of the data. In other words, in a matrix form the matrix always has an inverse so long as the 
determinant is not zero.  
 As the model becomes larger, due to the increase in the number of parameters in the model, 
solving for the estimates becomes more tedious and time consuming. In such a case, we will resort 
to matrix algebra. One of the advantages of a matrix approach is that once the problem has been 
formulated in matrix form, the solution can be applied to any size problem. 
9.2 Matrix Approach 
Let:  Y= β0+ β1Xi+ εi, ⇒  Y=Xβ+ε 
Define: Y = Vector of observations from the experiment-- (n x1 vector) 
 X= Matrix of  independent variables-- (nx2) Matrix 
 XT=A transpose of the X matrix 
 β =  Vector of parameters to be estimated-- (2x1) vector 
 ε=  Vector of errors or deviations (nx1) vector 
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The normal equations can be rewritten in matrix form as:  
( ) YXXX TT =β̂  

( ) ( )YXXX TT 1ˆ −
=⇒ β , 

where �̂�𝛽=is the vector of the estimates of the parameters. 
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Example: Given the data of table 39,   use the method of least squares to determine the parameters 
of the model.  Y=b0+b1X 
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Table  39  Data for the Regression Model 
i 1 2 3 4 5 6 7 8 9 
Xi 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 

Yi 4.8 5.7 7.0 8.3 10.9 12.4 13.1 13.6 15.3 
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9.3 Coefficient of Determination (R2) 
The coefficient of determination R2 is a measure of the fit of the regression line.  It represents the 
amount or proportion of variation in the data that is explained by the fitted model or regression line.  
It measures how well the model fits the data. The higher this value the better the model. In our 
example the fit of the model or model accuracy is about over 98% which is very good. 

( ) 9823.0
52.114

39.389303.2Re 12 ====
yy

xy

S
Sb

squaresofSumCorrectedTotal
gressionSSR  

 
9.4  A Note about the Least Squares Method 
 The XTX (called the X transpose X) matrix is a symmetric square matrix. Because it is a 
square matrix, we can always find an inverse of the matrix except when the determinant is zero or 
close to zero.  This happens when the magnitude of the differences in the data is very high.  A way 
to overcome this problem is to use transformation, such as the log or square root transformation or 
appropriate scaling. We did not discuss hypothesis testing for the estimates, but those can be 
accomplished by properly extracting the variance estimates for the parameters. 

Table 40    ANOVA Table for the Regression Model 
Source df df SS SS (Matrix Form) SS MS F F 
b0 1 1 ( )[ ] CFny =∑ /2

 CFYY TT =11 = 
922.134 

- - -  

b1lb0 1 1 
XYSb1  CFYX TT −β  112.485 112.5 26.00  

error n-2 7 Subtraction ( )YXYY TTT β−  2.04 0.291   

Total n-1 8 CFyi −∑ 2  CFYY T −  114.52    
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Summary 
 This second course in the series covers some practical aspects of the design and analysis of 
engineering experiments. There are no theoretical developments and most of the computations use 
basic arithmetic. Several important and practical issues are addressed including factorial designs.   
 The issue of missing values due to a tool break or momentary loss of power, for example, 
has been addressed with numerical examples and calculations.  Missing values is a different issue 
from incomplete designs. Incomplete designs happen when, in the intended design, only certain 
number of days or shifts for example are available to run the experiment.  
 The issue of system physical limitations in handling the entire design was addressed using 
confounding schemes where certain (unwanted or unimportant) interactions are confounded with 
blocks in order to assess more important effects and/or interactions.  Fractional designs have been 
addressed as a way to handle limited resources where it is not practical or cost effective to run 
complete experiments.   
 Nesting or hierarchical designs were introduced to address the practical situation where 
complete randomization or crossing of factors is not possible.  Regression using the method of least 
squares was introduced as way to estimate the parameters of the proposed model. The matrix 
approach was advanced as part of the least squares approach when higher order models are required. 
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