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Introduction

1.1 Role of Design of Experiments in Quality Design and Improvement

Designs of Experiments are a set of tools used to identify or screen important factors that
affect a process, and to develop empirical models that characterize process behavior. It is a
systematic, rigorous approach to engineering problem solving that applies principles and techniques
during the data collection stage to assure the generation of valid, defensible, and supportable
engineering conclusions. In addition, all of this is carried out under the constraint of minimal
expenditure of engineering runs, time, and money. Also, as part of Design of Experiments, we have
Response Surface Methodology, or RSM, a collection of mathematical and statistical techniques that
are useful for the modeling and analysis of problems in which a response of interest is influenced by
several variables and the objective is to optimize this response.

There is a need for continuous process and performance monitoring with a view towards the
identification of those areas that present opportunities for product and process improvements. This
makes a strong case for the need to push the quality issue farther upstream into the engineering
design arena where the effects of the factors that are perceived to be important to product or
process performance can be propetly studied by purposefully varying or changing their levels in the
experimental realm.

Specifically for process control, a crucial step is the ability to diagnose or discover the root
cause, the fault that is responsible for the variation in the process/product, in order to fully
understand and appreciate how best to implement process and quality improvements

Oftentimes to get to the root cause of the problem, we will need to experiment with the
process, purposely changing certain factors with the hope of observing corresponding changes in
the responses of the process. On the other hand, the problem could be a system problem in the
sense that the process could be in control, but the variation happens to be too high, resulting in very
large defect rates, and so on. This portends a fundamental problem that is not revealed easily
without a comprehensive study of process performance across a range of conditions and a large
number of factors. Without an organized and systematic approach to experimentation, a costly and
time-consuming "random walk" approach to looking for ‘root cause’ or effects of change can lead to
very little and perhaps nothing in terms of an enhanced knowledge of the process. The methods of
design of experiments present a systematic approach that would result in an efficient and reliable
procedure that would lead to better process understanding. It is important to note that the power of
design of experiments can be greatly enhanced if the environment in which the experiments are
conducted has been changed through variation reduction methods such as statistical process control.
Statistical process control ensures a more stable process. A stable process will allow the effects of
small changes in the process parameters to be more readily observed. In those cases where statistical
control of a process has been established, subsequent experimentation and the associated
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improvement actions are more likely to result in a stable process in the future because the future is
more predictable when the process is under statistical control. While statistical control of the process
is not necessarily a prerequisite to drawing valid conclusions from the results of a designed
experiment, it can greatly enhance the sensitivity of the experiment in the context of its ability to
detect the effects of the variables.

1.2 The Role of Design of Experiments in the Design Process

A serious shortcoming of past approaches to quality has been the inability to deal rationally
with the quality issue early in the product and process development life cycle. During the past
several decades, it has become clear, largely through the work of Taguchi and others, that parameter
selection at the early stages of product and process design can be enhanced by measuring quality by
functional variation during use and by the use of experiments methods. In particular, the concept of
robust design, advocated by Taguchi as part of his model for the design process, shown in Figure 2-
2, has proven to be an effective tool for product and process design and improvement.

There is an important distinction to be made between testing and experimentation. While
both have their rightful place, one should not serve as an alternative for the other. The Japanese
have used design of experiments for parameter selection at the product and process design stage.
Here, the object is to experiment with various combinations of the important design parameters to
identify the particular combination(s) that optimize certain design criteria or performance measures.
In the past, the West had placed a great deal of emphasis on life testing by subjecting many identical
units to field conditions to determine the life expectancy of performance

Missing Values

A common problem that can ruin a good engineering design project in the process of
conducting an experiment is missing values, also called missing observations. When there are
missing observations, it is not possible to obtain valid measurements on some of the experimental
units and so this nullifies the application of some of the techniques developed for the ANOI/A.
Missing observations occur when tools break, the machine breaks down or the operator was
inattentive to collect data. In less developed countries where electricity generation and distribution
are erratic, the issue of missing data may occur when the plant suddenly losses power and the
backup generator malfunctions. This could lead to loss of data, the inability to continue
recording/transctibing, or even the loss of already recorded data.

The otherwise straightforward analysis of randomized experiments is often complicated by
the presence of missing data. Some authors suggest an approach to the problem that assumes that
the data is missing at random and conditional on treatment and can be estimated by using the mean
of the observations. This has been shown to be inadequate, especially when other fully observed
covariates or factors are present.
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2.1 Missing values for Single Factor Randomized Block Design (RBD)

An approach to solving the problem of missing values for a randomized block design is to
develop an error function, which when optimized, ensures that the estimated missing value has
minimum error. In other words, it should result in the optimum value of the error mean square. The
optimization process requires taking the differential of the error function denoted by the quantity
(Q) where Q is the modified error sum-of-squares (SS) due to the missing value and then finding the
zeros of the resulting differential. It is important to note that if we had more than one missing value
(say ‘p’ missing values), then we will take p partials and optimize with respect to the unknown
parameters of interest.

To begin, let us define the model and its parameters assuming we do not have a missing
value. The model is as given below. The accompanying table is a familiar data table for a treatment
with several levels (‘a’) and blocks with several levels (b’). In the table, the missing value is
represented by the unknown variable x (not be confused with the treatment) last row, 3" column.

From there, we go on to compute the error SS.

Jp=pt+Ttpte;

_y;=0bservation in the /" treatment and the /" block L
i=1,2,...,a
[ = overall mean j=1,2,..,b
=/" treatment effect, there are a treatment level, i=1, ... a,
B, = /" block effect, there are b levels of block, j=1, ...,b,
€; = random error
Table 1layout for RBD with missing value
Blocks Row Totals
yi1 yi2 V13 e Vib yi.
2 7 7 7 e o 7 b
= RE V22 V23 V2b
)
g LN ] LN ] LN ] LN ) LN ] LN ] LN ]
@©
e
|_
Yat Ya2 X °° e Yab Ya.! +x
COIUmn V.1 V.2 V.34X Vb y..' +X
Totals

(Zy., CF) [zy—CF] (Zy —CFJ
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SSeor = (S vi —CF)—[Zy‘Z' —CFJ—[Z:ay'Zj—CFJ

b

y 2
but CF = ~-——, hence:
ab

Sy = S y? _{Zbyfj_[z Yi }Ly_z

a ab

For the missing value,

. 2 ' 2
SSTotal = (RO + X2 _CF )’ SSTrea’t = [(yl.;X) + Rl _CF} SSBlock = [(y.];X) + R2 _CF}

' 2
CF = —(y"a; I R,

f 2 . 2
SSerer = (Ry + xz)[(yi' ; ) le[(y‘j ; x) + R2]+CF

The R’s are constants, so together they form another constant, R, thatis R=R; + R, + R, + R,

o_ss e W0t 60t (L x?

error b a ab
Differentiating with respect to x and setting equal to zero, that is: aQ _,
dx
o 2y +x) 2y +x) 20y %)
b a ab

Multiplying both sides by:@ , we have:

x(ab) —a(y;,) —ax—b(y.;) =bx+y,, +x=0
. . , a=number of levels of the treatment
x(@b-b-b+1)= [ayi- +by,; —v.. b=number of blocks
x[b(a—-1)-(a-1)]= x[(a —1)b -1)] T=Total of treatment with the missing value
x(@a—1)b—1)=ay. +by. —y. B=Total of block with the missing value
! G= Grand total of all the values

_ay,+by,;-y.. (aT-bB-G)
- (a-1)b-1)  (a-1)(b-2)
The y-primes, that is (y'ie, y'sj, y'ee), are the partial sums without the missing value for the affected
row, column and the total and are as defined with their equivalents (T, B, G) above.
Example: An experiment to determine the amount of warping (mm) of copper plates was

conducted in 4 different laboratories (Lab 1, Lab2, L.ab3, L.ab4) using four specimens with different
percent of copper compositions (A, B, C, D)
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Table 2 Layout for Randomized Block Design (RBD) with missing value

SPECIMEN (Treatment)
LABORATORY A B C D  TOTALS
Labl 264 208 220 217 909
Lab2 260 231 263 226 980
Lab3 258 216 219 215 908
Lab4 241 185 225 224 875
TOTALS 1023 840 927 882 3672

Table 3 Single Factor 2-way ANOVA with One Restriction (block) on Randomization below
ANOVA: One-Factor With Blocking

SUMMARY Count Sum Average \Variance

Labl 4 909 227.25 626.25
Lab2 4 980 245 368.6667
Lab3 4 908 227 430
Lab4 4 875 218.75 566.9167
A 4 1023 255.75 102.9167
B 4 840 210 368.6667
C 4 927 231.75 440.9167
D 4 882 220.5 28.33333
ANOVA

Source of Variation SS df MS F P-value F crit
Rows (Labs-Block) 1468.5 3 489.5 3.253693 0.073833 3.862548
Columns (specimen) 4621.5 3 1540.5 10.23966 0.002929 3.862548
Error 1354 9 150.4444
Total 7444 15

Let us assume that the equipment in laboratory 4 lost power momentarily while processing so the
new data configuration for specimen B, will look like that found in Tables 4 and 5.

Optimization Procedure for estimating p missing values

Develop an error function, namely Q) and optimize it by taking partials (since there are more
than one missing values) with respect to each missing value and set the result equal to zero. This
results in p equations in p unknowns which we solve simultaneously to obtain the estimates of the
missing values.

The total degree of freedom for one missing value is (n-1)-1; for two it is (n-1)-2, for three
missing values the degree of freedom is (n-1)-3 and so on.
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Table 4 Data table with missing value

SPECIMEN((Treatment)
LABORATORY A B C D  TOTALS
Lab1 264 208 220 217 909
Lab2 260 231 263 226 980
Lab3 258 216 219 215 908
Lab4 241 X 225 224 690+x
TOTALS 1023 665+x 927 882 | 3487+x

_ay, +by.,; —y.. 4(690) + 4(665) — 3487
~ (a-1b-1 (3)3)

Table 5 ANOVA Table for missing data

=215 (originall y =185)

SUMMARY Count Sum Average Variance
Labl 4 909 227.25 626.25
Lab2 4 980 245 368.6667
Lab3 4 908 227 430
Lab4 4 905 226.25 116.9167
A 4 1023 255.75 102.9167
B 4 870 217.5 93.66667
C 4 927 231.75 440.9167
D 4 882 220.5 28.33333
ANOVA
Source of Variation SS df MS F P-value F crit
Rows 992.25 3 330.75 2.961204 0.090104 3.862548
Columns 3620.25 3 1206.75 10.80403 0.002439 3.862548
Error 1005.25 8 125.6563
Total 5617.75 14

2.2 A Note about the Adjusted ANOVA Table due to Missing Value.

Recall that in the analysis for the missing value we utilized 15 data points rather than 16. So,
the degrees of freedom for the experiment = (N-1) = (15-1=14). After conducting ANOVA with
the estimated missing value, we find in this particular case that, relative to our decision about
significance, nothing has changed traumatically. The block effect was still not significant and even
less so with the missing value. The treatment effect was significant in the original design and
remained so with the missing value even though the F-statistic was less than before.

Question? How would the problem change if we had two missing values rather than one?
We will proceed the same way but rather than differentiation of the function for one parameter, we
will take partials with respect to two parameters, set it to zero, and solve two equations in two

unknowns.
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2.2.2 Missing Value for Latin Square Design

(2 2 (y" + X)2
SSrar = (07 +x%)- a’ a=no of treatments in the experiment,
2 ? ? same for blocks and columns
SSROW:R + (R +x) _(y,,tx) —(a2=N) n . um
a a R=total of rows with missing data
ss. G+ (C+x) (y..+x) C=total of Columns with missing data
e a a’ T=total of treatments with missing data
L UL ) .3 y.. =Grand total of all observed values
a a
2 2 2 2 2 2 2
Q=ss,.,. - (q2 +XZ)_[R + (R + x) J_(C +(C + x) J_(T + (T + x) ]+2[(y" J;X) J
a a a a
dQ 2
e -o0=a x—a(R+x)—a(C +x)—a(T +x)—2(y.. + x)
X

x(a2 —3a+ 2): a(R+C+T)—-2y,.,, x= a(R(;C;XL)_S Y.

2.2.3 Incomplete Latin Square: The Youden Square
We have a Youden Square when the conditions of a Latin Square are met but only three

treatments levels can be applied or are available per block because we have only 3 levels for position.
Consider a machining situation where we have four machines (M=4), each with 4 positions (P=4) or
heads and four possible specimens(S=4). If the machines only have three heads each, then the
arrangement will be a Latin Square with a missing position, thus an incomplete Latin Square. Such
design is called a Youden Square.

Table 6 Youden Square data

POSITION (heads)

Machine(Blocks) 1 2 3 Tiee
I A(2) B®) C(0) 3

II D(-2) A2 B(2) 2

I B(-1) C(-1) D(3) -5

v C(0) D+ AQ -2

Teek -1 -2 1 2 | Teee
B C D
Teje 6 2 -1 -9

b= number of blocks in the experiment (b=4).

t =number of treatments in the experiment (t=4).

k= number of treatments per block (k=3).

r=number of replications of a given treatment throughout the experiment(r=3).

N= total number of observation =(b)(k) = 12.

A= number of times each pair of treatments (say A &B) appear together throughout
the experiment.
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a-fk=) _32) _,
t-1 3

We calculate the sum-of-squares (SS):
: T. _2? 2
Note: CF zﬁzﬁz%’ zzzyijk — 48

Unadjusted Block: SS, = flkfo —CF = (3)2 + (2)2 +:(3— 53)+ (_ 2)2 _% _ 4%_}/ -4 3= 13.17
i=1

Unadjusted Position: g5, = bfi%_cp - (-1 +(_42)2 +(1 )2 _% - %_ 4 =117
i=1

IS

Qf
SS Treatment (adjust for Block): SS. = lei/lt , where Q, =kT., _Z n,Ti.
t=4
| 2.Qj
SS Treatment (adjust for Block) SSpn = J:Ii/”tt , where Q, =KkT,, _Zi: n,T.

Where ny=1 if treatment j appears in block i, and 0 if treatment j does not appear in block i. Note

that Z n;T. IS merely the sum of all blocks which contain treatment j.
i

Qi=3(6)-[-2+2+3]=15, Q:=3(2)-[3 +2-5] =6
Q3=3(-1)-[3-5-2 ] =-3+4=1, Qu=3(-9)-[2-5-2] =-27+5=-22
15% +62 +1% + (- 22)?

b (3)2(4))

Table 7ANOVA Table for the Youden Square data
Source SS df  MS F

Mach(unadjust.) 13.67 3 -
Treat (Adjust) 31.08 3 104 17.86

> Q,=0=(15+6+1-22)

=47.67-13.67-31.08-1.17 =1.75

SS =31.08, SS

Error

Position 1.17 2 0.58 1
Error(Residual) 1.75 3 0.58
Total 47.67 11

Based on the ANOIA, the treatment effect was significant (F 00553 =9.27606). The position
effect was not significant. We did not test for the block effect because it was not adjusted. We only
test for effects that have been adjusted or those that do not need adjustment. However for
symmetrical designs where t=b such as we have here, we can also adjust the SS for the block as we
did for treatment but both cannot be tested at the same time. There was no need to adjust for

position because every position was present in every block and every treatment.
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Factorial Design

In factorial experiments, the factors (treatments) are typically quantitative (note that we said
‘typically’ because there are factors that are qualitative, such as depth, when denominated as low,
medium or high) and quantitative when the actual numerical measurement of depth is used. For a
quantitative factor, the difference between any two levels is an interval or ratio and such interval is
not only measurable and quantifiable but also has meaning. For example, the difference between the

two temperature levels of 50°C and 40°C are quantifiable. However, in the case of position, the
difference between position 1 and position 2 may be understood but cannot be quantified. This
becomes especially important when it is desired to establish a functional relationship or predictability
function between the factor and the response. Restrictions (blocks) are not factors. They are
considered nuisances that cloud the response.

In the cases we have encountered so far, we have been concerned only with one factor and
the effect of such a factor on a measured response variable. Every other thing we have looked at
was with respect to restrictions and randomization. The idea was to identify and remove the effect
of the restriction (block or nuisance) so as not to cloud or confound the response and the error
mean square. Several different designs of this type were examined. However, each type only focused
on restrictions on randomization, but still the focus was on a single factor.

By contrast, a factorial experiment is one that involves more than one factor (treatment). In
most cases, these factors or treatments may have some functional relationship that defines their
behavior relative to the response variable. Also, in a factorial experiment, all levels of a given
factor are combined with all levels of every other factor in the experiment. Factorial designs are
most efficient in those situations where there are two or more factors, thus reducing cost. By
factorial design, we mean that for each complete trial or realization of the experiment all possible
levels of the factors are run and data obtained. For example, if factor A has ‘a’ levels and factor B
has ‘b’ levels; we will have a total of ab (a x b) treatment combinations. Thus, one of the major
benefits of a factorial design is that it allows the effect of several factors and in some cases, the
interactions among those factors to be determined with the same number of experimental trials
needed for the one-factor at a time design, thus reducing the cost of experimentation. With two or
more factors, the traditional approach has been to hold one or more factors constant, while the
other factor is varied through its different levels. After taking the readings, another factor is chosen
and the process repeated until all the factors have been exhausted. This requires a lot of
experimental trials. However, with factorial experiments, all possible combinations are run at the
same time, thus reducing the cost of the experiment.

3.1 Notation for Factorial Design

If we have A1, A2, A3 as the levels of factor A; B1, B2, B3, B4 as levels of factor B; and C1,
C2, C3 as the levels of factor C, then we have a 3 x 4 x 3 factorial design with 36 data points.
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The special case is where we have 2 ( f factors at 2 levels) or 3 (f factors at 3 levels). These
are the most common type of factorial designs. Higher levels or higher order designs are more
complicated and are usually avoided. In these designs the factors are completely randomized and
the levels are considered fixed. We will examine cases much later where the levels are random.

3.2 The Effect of Replication

A typical functional relationship in a 2 x 2 = 4 factorial design features two factors at two

levels. The model representing this design looks as follows:

Vi =u+A +B; +(AB); +¢&; (Two-Way without replication)
The above model shows that for a 2-factor design without replication, the effect due to interaction is
indistinguishable from the effect due to error. This presents a problem in the analysis, especially
when it is desired to estimate the interaction effect. A way to solve this problem is to carry-out

replication for each data point. That way it would be possible to independently estimate the error
mean square and the interaction effect. The model with replication will look like:

Yik =4+ A +B; +(AB); + &)
Example: (Two-way with replication). The following data for two factors, namely temperature (T-3

levels) and accelerator --% of calcium chloride (A-3 levels) with 2 replications and their effect on the
cure time of concrete. The cure time is the measured output.

The model is as follows: Yy = £ +C; + A; +CA; + &),
Where, C;=0 for all i, Aj=0 for all j, CA; = for all (ij) combinations

Table 8 -Data Table for Factorial Design with Replication
Accelerators(% Cacl2)

Temp 40% 50% 60% | Tiee

40 -1 3 -3
(-5) (0) (-1) | -7

-4 3 1

50 1 2 -1
(-4) (1) (-1) | -4

-5 -1 0

60 0 3 -4
(-2) (-1) (-6) | -9

-2 -4 -2
T, -11 0 -9 -20
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Preliminary Calculations
S yi =1 + (-4 +B) +(B) +(-3) +(1)° +(1)° +..+ (- 2)* =126

CF =(-20)* /18 =22.22,
Cell ZZZ:TU?. I G i ) i e i 4)22+ 1 + (1) 4+ (6) _,,
Temp: 2o (TP (4 49 24.33, Accel : 2T (1) 0F +(9F _ag¢

6 6 6 6
SSTotal =126 — 22.22 =103.8, SScell =44-22.22 =218,

SSTemp = 24.33-22.22 =2.1, SSAccel =33.67-22.22 =11.45
SS(interaction ) =SSCell — SSTemp — SSAccel =8.2
SS Error = SStotal = SS(interaction )=103.8-21.8=82.0

Table 9 -Data Table for Factotial Design with Replication

Source SS df MS F
Temp(C) 2.1 2 1.05 <1
Accel (A) 11.45 2 5.75 <1
CAj; 8.2 4 (2x2) 2.05 <1
Ex(ij) 82 9 9.11

Total 47.67 17

Example of a 3-way Factorial Design with Replication.
The factors are Concentration (40%, 50%, 60%), Temperature (50°C, 60°C), and Catalyst (A, B)

Yii =u+C,+M i +CMij +T, +CT, + MTjk +CMTijk + ik

As can be seen from the model equation, CMTjy is confounded with & j.

We can now compute the sum-of-squares of the different components of the ANOVA table.
Before we do that, it is important that we discuss the method of computing the sum-of-squares
especially the interaction when we have three or more factors. We develop two-way tables for pairs
of factors to facilitate the computation of the first order interaction,. Such tables make it easy to
compute the sum-of-squares of the individual factors and the sum-of-squares for their interaction, as
we will demonstrate shortly.
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Table 10 Data table for 3-way (3 factors) with no Replication

CONC( C)
CATA(M) | TEMP(T) 40% | 50% | 60%

50°C 1 7 -1
A

60°C -2 8 -3

50°C -120 7 88
B

60°C -124 5 92

Table 11 Two-way tables for Computing main effects and interaction

CATA (M)
A B
Tejk TEMP 50 °C 7 251 MxT)
(M) | 60°C 3 27
Teje 10 52 42
CONC (C)
40% 50% 60% Teek
Tiek TEMP 50 -119 14 87 -18
(T) 60 -126 13 89 -24
(CxT) 245 27 176 42
CONC( C)
40% 50% 60%
M) B -244 12 180
Tiee -245 27 176 -42
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CF =(-42)% /112 =147
SS(Total) => > > yi =1 +77 +(-1)* + (- 2)* +8° +(—3)* +..+92° —CF = 46186 —147 = 46039

2 2
SS(M)= T2, = 10 +(=52)" _ r _ 467.333_147 — 320.333 (from the T, table )
6 J
2 2
SS(M)=> T2 = (-18) J(;(_ 24) —CF =150-147 =3 (from the T, table )
2 2 2
SS(C)=3TZ = (=245) *%7) +(70)" _ Cr _ 52032.5-147 — 22785.5 (fromt the T, table )

We now compute the interactions based on the two-way tables

2 2 2 2
sS(MxT)= 3 3T, = D28 G v (227)
=470.67 —-147 —320.33—-3.0=0.34

ss(CxT)= S S T2, — (-119)* +(14)* +(87) ;(—126)2 +(@3)° +(89)° SS(C)_ SS(T)

—CF —SS(M)—SS(T)

=22946 —-147 —22785.5—-3=10.5

ss(CxM)=S ST 21 _ (—1)? +142 +(—4)? +2(7 244)% +122 +1762 _CF _SS(C)_SS(M)

=46161—-147 —22785.5—-320.33 = 22908.17

With these sum-of-squares, we can now establish the ANOVA table and test for significance. Please

note that because there is no replication, the highest order interaction (C x M x T) is confounded

with the error sum-of-squares and so we are unable to tell them apart. This is not a problem

because in most experiments (especially higher order experiments), the physical significance of the

highest order interaction is difficult to explain so it is usually confounded or lumped with the error

term to enhance or improve the test. It is important to note that when there is a need to add the

two sums of squares, the degrees of freedom are also added to the degrees of freedom of the error

term to give both a new SS and df for the error. If we had replication of r = 2, then,

df total = (24-1=23), df CMT = (2)(1)(1) = 2, df CM=2, df CT=2, df MT=1, then, df error=(df

total)-(df C)-(df M)-(df T)-(df CM)-(df CT) -(df MT)-(df CMT)==23-11=12

Table 12 ANOVA Table for the 3-way (3 Factor) Design with Replication

Source SS df MS F Sig F(Table)

Gi 22785.5 2 11393 | 2042 | *** | F(2,2,0.01)=99.0
M; 320.33 1 320.33 | 57.41 | ns F(1,2,0.01)=4999.5
Tk 3.00 1 3 0.538 | ns F(1,2,0.01)=4999.5
CMj 22908.17 | 2 (2x1) | 11454 | 2053 | *** | F(2,2,0.01)=99.0
CTi 10.5 2(2x1) 5.25 | 0.941 | ns F(2,2,0.01)=99.0
MTj« 0.34 1(1x1) 0.34 | 0.061 | ns F(1,2,0.01)=4999.5
Exij) 11.16 2 5.58

Total 46039 11
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3.3 2f Factorial Designs

The 2 are designs with n factors where each factor has just two levels. The two levels are
usually at the extremes and so this type of design is used to screen or to carry out investigation about
the factors and their levels. By screening, we are referring to the process of exploring several factors
and the levels of such factors with the hope of selecting those important factors and their levels for
the response under consideration.

We will start with the basic case of this type of design, namely 2° or the 2 x 2 factorial with
complete randomization and no replication. Since we do not have replication, this means that the
interaction effect is confounded or confused with the error. For notation purposes for 2, we will be
using a mnemonic device that was developed by YATESs and others to make the notation, ordering,
representation, and analysis of the experiment easy to implement. As we will see later, for a factor
with two levels, the most we will be able to estimate in terms of the functional relationship is the
linear component. As we may recall, with two points, we can locate a line. In the same vein, with
three points we potentially have a curvature.

3.4 Notation for 2f factorial Design
The notation which has been widely used is as follows. Consider, as in our case, two factors

A and B. Let 0 and 1 denote the two levels of a 2" design. So A¢By is used to denote that both factors
are at their low levels. AiBy denotes that A is at high level and B is at low level, A¢B; denotes A low
and B high, and AiB; denotes both at the high levels. Given this notation, we then come up with
another response notation for the factors at these levels. The response notation is quite intuitive, as
we will see momentarily.

e When both are at their low levels (AoBg), we represent the response as: (1),

e For data point AiBy, we represent it as the response as ‘a’.

e Similarly for A¢Bi:b,

e and for A;Bp:ab.
This is done in order, starting with all factors at their low levels, then the first factor, then the
second factor. If a third factor is introduced, we first exhaust the sequence for the first two factors

before we introduce the third and so on in that ordetr.

www.SunCam.com
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3-Factors at 2 levels
000 (1)
2 Factors at 2 levels 100 a
00 (1) 010 b
10 a 110 ab
01 b 001 c
11 ab 101 ac
011 bc
111 abc
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Effects of a factor.
To determine the effects of a factor, say A, we examine what happens to A when B is low and also
when B is high. The average of these two will give us the average effect of A, similarly for B.

ab
<j a
2
9 (1 b
2 : \
Factor B

Figure 1 Two Factor (A, B) Factorial Design at 2 Ievels

From figure 1, the effect of A At the low B is [(a-(1)]. The effect at high B, is [ ab-b].
Therefore, the average effect of A is:

:%[(a—(1))+(ab—b)]:%[—(1)+a—b+ab]

An intuitive way to look at this is the following. Where A exists, you have a positive sign (+), where
it does not we have a negative sign (-). Using this rule of thumb, we can develop the effect of B as
follows:

1 1
B= E[_ (1)-a+b+ab]. Similarly, for AB:E[+ (1) —a-b+ab]
Another thing to notice at this stage is that the signs are equal. To summarize:

A=%[—(1)+a—b+ab]:> 2A=[-(1)+a—b+ab]
B :%[—(1)—a+b+ab]: 2B =[-(1)-a+b+ab]

AB =%[+(1)—a—b+ab]:> 2AB =[+(1)-a-b+ab]

In addition to the effect, we also have contrasts as follows:

2A=[-(1)+a-b+ab]=-1+1-1+1=0

2B=[-(1)-a+b+ab]= -1-1+1+1=0

2AB =[+(1)-a-b+ab]= +1-1-1+1=0

Each of 2A, 2B, 2AB is a contrast and together they form a set of orthogonal contrasts. To

demonstrate that for two of the contrasts A, AB; [-1-1+1+1] = 0. Additionally, because there are
two levels for a 2f design, we can also represent the levels with +1 and -1, depending on whether the
effect is present or not present. The low level always assumes the negative sign for each effect.
Once this is done, we can also determine the coefficient of the interaction (in this case AB) by
multiplying the proper corresponding signs of the effects. We can also use the table of signs (table
13) to determine the Main effect and the interaction effects 2°. We will show proof of concept by
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looking at the table of signs for 2 (8 total points). For each interaction, we get the sign of the effect
by multiplying by the signs of the factors that make up the interaction.

Table 13 Table of Signs for 2 Factorial Design

Treatment Effects
Combinations | Response | A B AB C AC | BC ABC
o) ¥ e I P I I
a + + - - - - + +
b + - + - - + +
ab + + + + - - - -
c + - - + + - - +
ac + + - - + + - -
be + - + - + - + -
abc + + + + + + + +

Consider the following 2x2 design:

Table 14 New Notation and data Representation for 2 ZDcs{gn

Factor A
Factor B Al A2 TOTAL
B1 30 (1) 40 a 70
B2 0 b 20 ab 20
TOTAL 30 40

AoBy=30 :(1), A1B():a:40, A()B1:b:O, A1B1=ab=20
From the normal ANOVA, approach, with replication r=1 in this example.
CF = (90)2 /4 =2025, ZZ y§ =30% +40% +0+20° = 2900, SS,,,, =2900-CF =875

2 2 2 2
sS, =¥_CF =625, SS, :%_CF — 225,55, =875-225-625=25
Using the new Approach, the effects are: Define the following:

Contrast = r.2 " *(Effect )

1 Contrast )
Effect = sz—_lj(Contrast ). SSeect = (r2f)

A=%[—30+40+20]=15,B=%[—30—40+0+20]=—25,AB=%[30—40—0+20]=5

The Contrasts are: 2A=30, 2B=-50, 2AB=10

30 2 900 _50 2 10 2
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Using the table of signs, we will introduce yet another way of computing the sum-of-squares
and that is the YATES scheme or YATES method. In the Yates methods, the treatments are added
in pairs all the way through. That forms half of the elements in a given iteration. Then the same set
of numbers is again manipulated by subtracting the first elements from the second and continuing to
till the list is exhausted. This second operation then fills the remainder of the elements of the
iteration. 'This continues for the next iteration and so on until the number of iterations equals the
number of factors. In our example, there are two factors, so the number of iterations is two or two
columns. At the end, the third last column is used to indicate the sum-of-squares. The sum-of-

squares is obtained by diving the results of the f" column (or second column in this example) by the
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divisor defined as: r x 2'=N which essentially is the number of data points in the experiment.

Table 15 YATES Scheme Solution for 2 ZDcsign

Treat Com. | Resp. I II SS= (Col I1)*/(r x27)
(1 30 70 90 2025=CF
a 40 20 30 225 =S88x
b 0 10 -50 625=SSg
ab 20 20 10 25:SSAB

The following will help explain how the YATES Scheme works. Starting with the response column:
1. First Iteration for Column I
Starting with the Response Column

° Add 30 to 40 =70

° Add0to20 =20
Done with the addition.

Next is subtraction

° Subtract 30 from 40=10
° Subtract 0 from 20=20
2. Second Iteration for Column II

Starting with Column I
. Add 70 to 20=90

° Add 10 t0 20 =30
Done with addition

° Subtract 70 from 20=-50
° Subtract 10 from 20=10

End after f iterations. In our case f =2 the number of factors

4. Now divide elements in the last column by the divisor (r XZf) to give the sum-of-squares

www.SunCam.com
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3.5 23 Factorial Design

Consider a chemical process where the yield is of concern. Three factors, Temperature (A),
Humidity (B), and % Catalyst (C) are of concern. The experiment was run with 3 replications (r = 3).
The coded data is as shown. The model is:

Yix =4+ A + Bj + ABU. +C, +AC, + BCjk + ABCijk + &)

Table 16 Data Table for 2° factorial Design with replication

Al A2
B1 B2 B1 B2 Tie

-2 3 -3 -1

C1 -3 -1 3 5 -1 -3 2 4 5
4 (1) | -1 b 1 a 3 ab
-1 2 2 0

C2 0 6| -2 1 -3 3 2 3 13
7 (o 1 bc 4 ac 1 abc

Tej 5 6 0 7 | Tee=18
B1 B2 Al A2 Cc2 Cc2
5 13 11 7 5 13

Table 17 The three 2-way tables for the 2’ Design
B1 B2
Tejk c1 4 9 5
c2 9 4 13
Teje 5 13 18
Al A2 Teex
Tiek C1 4 1 5
C2 7 6 13
11 7 18
Al A2
Tije B1 5 0 5
B2 6 7 13
Tiee 11 7 18
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Table 18 Computation of Sum-of-squares using YATES Scheme
Treat Resp I Il 1] SS
(1) -1 -4 5 18 13.50 | CF
a -3 9 13 -4 0.67 | SS(A)
B 5 9 -3 8 2.67 | SS(B)
ab 4 4 -1 6 1.50 | SS(AB)
C 6 -2 13 2.67 | SS(C)
ac 3 -1 -5 2 0.17 | SS(AC)
bc 1 -3 1 -18 13.50 | SS(BC)
abc 3 2 5 4 0.67 | SS(ABC)

As a check, we will use the traditional method to compute the SS for the main effects and the
interactions to confirm that, indeed, the YATES Scheme in this case of 2 indeed works.

CF =182/24=13.50

2 2

ss, =% —CF =14.167 -13.5=0.67
2 2

SS, :% — CF =16.167 —13.5=2.67
2 2

SS, :% — CF =16.167 —13.5= 2.67

We can also set up the 2-way tables (3 in all) to see if we can compute the interactions the usual way
and compare with the YATES Scheme

ss(BxC)=33T2 = (-4)" + (9)26+ ©) +(4) op _ SS(B) — SS(C)
=32.33-13.5—2.67 — 2.67 =13.50
SS(AXC)=3">T2 = (a) + @) 2(7)2 +6) _cr _ss(a)-ss(c)
=17.00-13.5—0.67 —2.67 = 0.17
ss(AxB)=>>"T: = (6) + (0 2(6)2 +()° _cr _ss(a)-ss(B)
~18.34—13.5—0.66 — 2.67 = 1.50
SS(Total) = (—2)* +(=3)* +(4)> + (3’ +(8)* + (=1)* +..+ (0)* + (@)* + (2)* —CF
166 —13.5 =152.5
(=12 +(5)* + (=3 +(4)> +(6)* +.....+(3)°
3
SS(AxBxC) = SS(Cell)— SS(AB)—SS(AC)—SS(BC)—SS(A)—SS(B)—SS(C)
21.84-15-0.17-13.5-0.67-2.67—-2.67 =0.66

It is clear from the computations that the conventional method agrees with the YATES scheme.

SS(Cell) = —CF =31.33-13.50=17.83
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3.6 3fDesigns

3t designs are very powerful and yet complicated designs. The motivation for a 3? design is

the need to dig deeper to understand the functional relationships between the factors and the

response. However, we will limit our work to the 32design, namely 2 factors at 3 levels. From basic
engineering principles, it is known that if you desire a linear function or linear relationship, you will
need at least two data points. Similarly, if there is a need for a quadratic or curvilinear relationship
one would need at least three data points. However, for most basic engineering designs, the
quadratic and the cubic are mostly used because they are more easily explained. This does not
obviate the fact that when there is need for higher order representation based on theoretical
considerations (such as in space systems) that a cubic and higher order design may not be used.
Most engineers will confess that when a relationship is beyond the cubic, quartic or quintic, it is not
only very difficult to visualize but also to explain to clients and colleagues what such relationship
looks like in practical terms. Again, it is much easier to explain to a client that there exists a quadratic
relationship or even a cubic than it is to explain a quartic or quintic representation or relationship.

L . £, . . .
As we indicated earlier, 2° designs are called screening designs because we employ them to

understand the limits of the response. Typically, the two levels for a 2" factorial represent the lower

and upper limits of the response. Once we have that information, we have a good idea about the

. £ o
behavior of the process. In 3" design, we add another level to have a more comprehensive idea of

the relationship. One of the benefits of a 3t design is that even if the linear relationship is what is of
interest, we know that from basic design principles, a quadratic function also includes a linear
function so going up one more level would enable us understand the relationship surface more
comprehensively and still cater to the need of what is really of interest. The only drawback to this
approach is of course the problem of over fitting.

The over fitting issue comes about because each parameter (or term) that is introduced into
the model uses up one degree of freedom. As an example, suppose we have 4 data points and we
introduce 3 parameters. Because of the constant term in the model, there will only be three degrees
of freedom left to be shared among the parameters including the error term. In this scenario, there
will be no degree of freedom left to use for the error term. A good way to make sure that we avoid
this problem is to use replication. With replication there is always going to be enough degrees of
freedom to estimate of pure error.

Going back to the 3fdesign, the 3 levels are represented by 0, 1 and 2. To apply the method

of the YATES Scheme, we will use the third order polynomial (k = 3) to compute the column values
on the YATES table and then the sum-of-squares. Before we do that let’s look at a conventional

way to compute the sum-of-squares (SS) and the ANOI"A table for 3f design.
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Example: We are to consider the effect of two factors (Temperature and Humidity) on the yield of
a process. The data is as follows:

Table 19 Data Table for 3° Factotial Design with replication

TEMPERATURE
COLD AMBIENT HOT Tiee

0.8 15 2.5

50% 3.6 4.7 6.7 15.0
. 2.8 3.2 4.2
a) 1.0 1.6 1.8

S | 70% 2.6 3.4 2.8 8.8
2 16 18 1.0
2.0 1.5 2.5

90% 4.2 2.3 6.5 13
2.2 0.8 4.0

Teje 10.4 10.4 16 36.8 | Tee

Model : y,, = u+H,; +T; + HT; + &, (ij)

2
> > > yi =92.44, CF = % — 75.24,

SS(Total )= 92.44 — 75.25=17.20
(3.6) +(4.7)* +...+(6.5)°

ss(cCell) = > —CF =85.64—75.24 =10.40
T_ 2 2 2
SS(H)= %—CF _(@5)° + (8':) +(13)° 25 04_78.57-7524-3.33
T. 2 2 2
SS(T) = %—CF _(104)" + (1064) +16.0)° 54— 78727524 -3.48

SS(HXT)=ss(Cell)-SS(H)—SS(T)=10.40-3.33—-3.48 = 3.59
SS(Error) = SS(Total )= SS(Cell ) =17.20 -10.40 = 6.8
Table 20 ANOVA for the 3 2 Design

Source | SS Df MS F(computed) | F (table) Sig
H; 3.33 2 1.67 2.20 F(0.01,2,9)=3.01 | n.s.
T 3.48 2 1.79 2.29 F(0.01, 2,9)=3.01 | n.s.
HTj; 3.59 4 0.90 1.19 F(0.01, 4,9)=2.69 | n.s.
ExGi) 6.80 9 0.76

Total 17.20 | 17

Based on the results from the ANOVA table, none of the factors appear statistically

significant at o equals at 1% level
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3.6.1 YATES Scheme for 3f Design

For a 3" design, the minimum number of data points is 9, which represents a 3° design. If
you recall in the case of the of design, the operations performed to get the sum-of-squares (SS) on
the YATES table was carried out in pairs. So, in the case of the 3f, the operations will be carried out
in triples or in threes. The following procedure will be used to obtain the SS on the YATES for 3",

Before we go further, we want to re-write the model to reflect the fact that in a 3t design we
have constant, linear and quadratic components. Note that, in general, we can do this for any factor.
However, in practical terms, it makes sense only for quantitative factors since for qualitative factors,
the differences in the levels are not ratios or intervals.

Yik = u+T, +T,+H, +TH +T,H, +H,+T,H,+T,H, +Ex(if)
3.6.2 YATES Scheme Procedure for 32 Design

1. Obtain the orthogonal polynomial for k=3 (that is, the number of levels for a 3f design). As we

noted previously, the maximum number of orthogonal polynomial for k levels is k-1, so in the case
of 3 levels, we have 2 orthogonal polynomials as follows:
(-1 o0 1]
1 -2 1]
These represent the linear and quadratic components, so we add the constant component to give us

the complete polynomial structure. The result will look as follows:

1 1 1
-1 o 1
1 —2 1]

With this we can then compute the YATES scheme table entries to yield the SS. As we indicated,
this will be accomplished in triplets following the 3 x 3 orthogonal matrix.

2. Compute the table elements as follows

a). First Iteration:

Add the values as triplets, namely, first three values, the second three, and then the last three in the

case of 3%, This is represented by (1 1 1). In the case of 32, there will be only three sets of this type of

addition because there are only 9 values

b). Second Iteration:

Subtract the 1% value from the 3™ for the first three values, the same for the second set of three
values and same for the third set of 3 values all the way through. This is represented by (-1 0 1).

©). Third iteration:

Add the 1st and 3rd values and subtract from the result 2x the middle value for the first set of three
values, same for the second, and same for the third set of three values. This represented by (1 -2 1).
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Similar to 2° design, repeat the procedure f-times (2 times in this case), where f represents the
number of factors. Note that we performed each operation 3 times because we have a 32 design or
nine data points. If we had a 3’ design, then we will have 27 data points so we have to perform each
set of operations nine times.

3. Compute the Divisor: The divisor is given by: Divisor =2"3""°r  Where,

M = number of letter involved in the interaction (m=0, 1 or 2), for T1Hi, m=2 (due to T, H)

P = number of linear terms in the model (for T1Hi, p=1)

F = number of factors (for this example, f=2)
R = number of replications (for this example r=2

For example based on this 32 design
T.Hy; p=1,m=2, 2"3' Pr=2°3'2=24, T,; p=0,m=1, 23" Pr=2'32=36
T>Ho; p=0, m=2, 23 Pr=2%322=72

Table 21 YATES Scheme for 32 Design Using data from Previous Example

Treatment | Resp. I 11 Effect Divisor = SS=Col (II)"2
Comb om3f-p, /Divisor
(1) 00 |3.6 15.0 36.6 | CF 20329 _18 | 75.24

t 10 | 4.7 8.8 56 | Ti (linear) 2l3lo —12 | 2.61
to 20 | 6.7 13.0 5.6 | Ta(quadratic) | 21322 =3¢ | 0.87

hy 01 |26 31 | 20 [H olgly _12 [ 0.33
uhy 11 |34 02 | -08 [TiH, 22309 _g | 0.08
ohy 21 |28 2.3 52 | ToH; 22319 _op | 1.12
h, 02 |42 09 | 104 [H, 21329 _36 | 3.00
th, 12 |23 | -14 | 50 |TiH, 22319 _oa | 1.04
th, 22 |65 6.1 9.8 | TH; 22329 _ 79 | 1.33

We can now re-do the ANOVA table with the linear and quadratic components and show their
significance. Please note: SS(T)= SS(T1)+SS(T2)=2.61+0.87=3.48
SS(TxH)=SS(T1H:)+SS(T>H:)+SS(T1H2)+SS(T2H2)=0.08+1.12+1.04+1.33=3.57
SS(H)=SS(H1)+SS(Hz)= 0.33+3.00=3.33

Interaction

When several factors are involved in an experiment, the effect of one of the independent
variables on the response may depend on the level of the other factors in the experiment. When the
difference in the response between the levels of one factor is not the same at all levels of the other
factors, we have interaction. Thus, if the effect of a given factor on the response variable is
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dependent at the level of the other factors then we have interaction. If a change in a factor (A)
produces a different change in the response variable (Y) at one level of another factor (B) than at

other levels of factor (B), we have interaction.

Example: Consider three factors Concentration (C: 50%, 60%), Temperature (T: 60C, 50C), and

Catalyst (M: 1, 2).

Figure 2: At Low Temp (T); C=87-14=73, At High Temp (T); C= 120-50=70.
Interaction CT is the average difference of change in effect of C= (70-73)/2=-1.5 (quite small)
Figure 3: At Low Catalyst (M); C=-4-55=-59At High Catalyst (M); C= 180-12= 168.

Interaction CM is the average difference of change in effect of C=(168-(-59))/2=163.55 (This is

quite large)

CONC (C)

50%

60%

TEMP 50

14

87

(T) 60

120

50 120

14 L

CONC(C)

CONC((C)

200 (no Interaction)

Interaction between Time & Concentration

100

0

= Series?. 120

// SeriesT; 87

Yield Time

1 Conc (C)

2

Figure 2 No Visible Interaction Effect
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CONC(C)
50% 60%
CATA 1 55 -4
M) 2 12 180
+
________________ . M
- 12 | 180 M
M a a
55 R, - 4 M+ M
| | I !
CONC(C) CONC(C)
Interaction between Catalyst (M) &
Concentration (C)
200 Series2,
180
150
v /
£ 100
= /
=
9 50 =
> 7\
0 == Seriest, 4
1 2
-50
Concentration (C)
Figure 3 Visible Interaction Effect
Confounding

In factorial experiments, there are practical cases in which randomization is restricted. As an
example, restriction can happen in factorial experiment when all data points cannot all be run in one
shift or one day. This is more than a question of economics. For example, in a situation where an
environmental chamber is to be used to test the reliability of an electronic component, one chamber
may not be enough to run the entire test. In such a case a decision must be made about what
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information will be sacrificed. As we indicated earlier, usually the highest level interaction effects or
any interaction whose effect is considered not significant is usually confounded for the sake of
obtaining the true functional relationship among the factors and the response. Under no
circumstances are main effects confounded with blocks.

Thus, confounding is the process by which unimportant comparisons or interactions are
deliberately confused for the purpose of assessing the more important comparisons with greater
precision. Confounding is required in factorial experiments in which the number of observations
capable of being carried out under strictly comparable conditions is less than the number required
for the design. Confounding is carried in blocks so that the block effect is confounded with the
effect of the interaction chosen for the confounding scheme. In this case, the sum-of-squares for
the effect or interaction confounded is exactly equal to the sum-of-squares of all the blocks among
which the confounding took place.

To implement a confounding scheme, a defining contrast is first set up. The defining
contrast is an expression that indicates which effects (usually interactions) are to be confounded or
confused with block. Main effects are never used to confound with blocks.

5.1 Confounding, Interaction and the ANOVA Table

When we have confounding, not all treatments can appear in one block because of the
restriction imposed on complete randomization. Therefore, some interactions are usually
confounded with blocks. When the same interaction is used for all the blocks, similar to what we
have so far, then we have complete confounding. In some cases, we may have replication of the
experiment, and rather than use the same interaction, we use a different interaction for each
replication. When this happens, we have partial confounding.

In many situations, the engineer cannot afford several replications of an experiment.
Additionally, there is the restriction on randomization which means not all the treatments can be run
at one time. This means that confounding will be used, which results in the experiment being run in
blocks. As was discussed earlier, the best way to obtain an independent estimate of error is through
replication. When there is no replication, some of the higher order interaction terms (order than the
ones used for confounding) must be pooled and used as experimental error. The rule of thumb is
that when a second order interaction (e.g. ABC) is used as the defining contrast, then all second
order interaction and higher are pooled to form the error sum-of-squares. This does not work when
a specific interaction is of interest in which it is not used.

There is often some confusion about how interactions are named or labeled. First order

interaction involves two factors. A second order interaction involves three factors, while third order
interaction involves four factors and so on.
5.2 Methods for Confounding

1. Table of Signs (This is good for 2" designs)

2. ABD System (This is good for 2" designs)

3. The Kempthorne method (This is good for 2"and 3" designs)
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5.2.1 Table of Signs

Consider three factor A, B, C, assuming no replication, and we are to confound the highest
order interaction ABC. In such a case, the defining contrast is: (I, ABC). For the defining contrast,
those treatment combinations with the same sign (negative or positive relative to the defining
contrast) are assigned to the same block. Whichever block contains (1)’ is the principal block. For
the table of signs, write down each treatment combination in the usual order and then write down
applicable main effects in the columns (see table 22) as column headings. Also, write down the
term or interaction to be confounded as a column heading. To begin, if a main effect appears in the
treatment combinations then we assign a positive (+ sign), if not we assign a negative (-sign). Note
that for all main effects, the sign with respect to ‘(1)’ is negative. Finally, to obtain the sign for the
contrast or the interaction being confounded, multiply the signs of the main effect that make up the
interaction or contrast.

Note that this is a simple case of confounding in which the treatment combination is split
into two blocks in which one interaction (usually the highest) order is confounded. Higher degrees

of confounding involve larger number of blocks. For two blocks only one interaction is needed. For

4 blocks (the blocks in a 2" must be in multiples of 2) any two interactions appropriately determined
will do. Usually the number of block is given by 2 where j is the number of defining contrast

specified. So, if j=1, then we have 21 which is 2 blocks, if j=2, then we have four blocks and so on.

Table 22 table of Signs

Treat. Comb A B C ABC
D) S N E
a + - - +
b - + - +
ab + + - -
c - - + +
ac + - + -
bc - + + -
abc + + + +

The T'wo Block are as follows:
Principal Block # I Block # 11
O) a
ab b
ac c
bc abc
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5.2.2 ABD Method (Good for 2f)

Consider the treatment combinations that we examined eatlier. Let the defining contrast be
given by {I, ABC}. The procedure to determine what goes into each block is as follows. Those
treatment combinations with even number or zero numbers in common with the contrast go in one
block. Those with odd number go in another block.

For {I=ABC}:
(1) Has 0 letters in common with ABC.
a: has one letter in common with ABC.
b: has one letters in common with ABC.
c: has one letter in common with ABC.
ab: has 2 letters or 0 letters in common ABC (2 modulo 2 =0).
ac: has 2 letters or 0 letters in common with ABC.
bc: has 2 letters or 0 letters in common with ABC.
abc: has 3 letters or 1 letter in common with ABC (3 Mod 2 =1)
Block I (principal block): [ (1), ab, ac, bc ]; BlockII: [a, b, ¢, abc]
Suppose the defining contrast {I, AB}
For { I=AB}
‘(1)” has 0 letters, 'c' has 0 letters, 'ab' has 2 or 0 letters, 'abc' has 2 or 0 letters
"a' has 1 letter; 'b' has 1 letter; 'ac' has 1; 'bc' has 1.
Block I (principal block): [ (1), ¢, ab, abc]; BlockII: [a, b, ac, bc]

5.2.3 Kempthorne (Good for 2fand 3fDesigns)

For the Kempthorne method, we use the defining contrast to specify the defining equation.
Each defining contrast in the system of confounding scheme results in a defining equation. The
defining equation in general is given as:

L=AX,+AX,+.+A X,
Where: Aj = the exponent on the i factor for each defining contrast
X; = level of i factor in the treatment combination
Example: Let the defining contrasts for a design be given as {I, ABC, ABZC}
L1=X1+X2 +X3
Lo=X1+2Xo+X3

Example: We have a 2’ design with confounding where the defining contrast for the confounding
scheme is given as {I, ABC). Find the elements of the blocks using the Kempthorne scheme. Note

that for 2 design, the processes are modulo 2.
Solution: L= X; +X, +X;
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Table 23 Kempthorne Table with Principal Block

Treat. Comb. Kempthorne Equation values: (L)
(1) L=0

2 L=1 (L=1+0+0=1)

b L=1 (L=0+1+0=1)

ab L=0 (L=1+1+0=2=0 mod 2)

c L=1 (L=0+0+1=1)

ac L=0 (L.=1+0+1=2 mod 2 =0)

bc =0 (L=0+1+1=2mod 2=0)

abc =1 I=1+1+1=3 mod 2 =1)
Note: those elements with L=0 go in one block and the ones with L=1 go in the other.
Principal Block Other Block

@) a

ab b

ac c

bc abc

5.3 Confounding and the Elements of Blocks

The principal block is a unique block in the confounding scheme. The following properties
of the principal block are useful in determining elements of the principal block. Note that the
Principal block is the block that contains the element '(1)'. INote that in this system 2 mod 2=0
Property 1. The elements of the Principal form a group closed to multiplication. Thus, when any
two or more of the elements or treatment combinations of the principal block are multiplied

and the indices appropriately reduced, the resulting product is also an element of the principal block

Property 2. Multiplying the elements of the principal block by any element or treatment

combination not in the principal block, generates another block in the system.

Example: From the last example, the principal block (PB) and the other block were as the follows:
Table 24 Continuation of Table 23

PB(I) Other Block (II)
(1) a

ab b

ac c

bc abc

Property 1.  (ab)* (1) = ab
(ab)*(ab)=a’b”=a"b"=1 = (1)
(ab)*(ac):azbcz a’be =bc
(ab)*(bc)=ab’c
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Property 2. (a)*(a)= a"=1=(1)
(@)*(b)=ab
@)*(c)=ac
(a)*(abc) —a’bc=hc
5.3.1 Generating the Blocks and the elements of the Block

Suppose we have 2* and we want to confound in 4 blocks. Since there are 16 total elements,

each block will have four elements. We know the number of blocks = 2. In this case j=2. This
means that we have two defining contrasts or two defining equations. The third defining contrast we
get by multiplication mod 2. With the two defining equations, we can generate the elements of the
four blocks. Note that the number of iterations needed to get the block is also j=2.

Generate the blocks (or the block headers).

Assume that the defining contrast is given by: {I, ACD, BCD}. "I" typically tepresents the principal
block. We get the 4th block by multiplying the two contrasts mod 2, so that
(ACD)*(BCD)=ABC*D*=AB

The full set of defining contrast then is: {I, ACD, BCD, AB}

Note that in a of design, the levels are 0,1.

o{/g\oﬁ ?*o/\h

With these we generate the labels: 00, 01, 10, 11
Using I=ACD, BCD
Li=X1  +X3+Xy, Lo=Xo +X3+Xy4
1. Write down all the elements including their combinations in this ot design:
[(1), a, b, ab,c,ac,bc, abc, d, ad, bd, abd, cd, acd, bed, abcd]
Substitute (1) in both equations, we get 00 => (1) belongs in the first (Principal block).

Substitute 'a', we get 10 = 'a' belongs in the second block.
Substitute 'b', we get 01 = 'b' belongs in the third block.
Substitute ' ¢', we get 11 = "¢’ belongs in the fourth block.

2. By inspection, we can quickly get the elements of the principal block. Once we have that we
can use the elements that we already determined for the remaining blocks to multiply the
elements of the principal block to fill up the remaining blocks.

The remaining elements of the principal blocks are
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'cd" will give L1=0, L,=0 =00

'abc' will give 1.1=0, L,=0 =00

'abd' will give 1.1=0, L,=0 =00
We know 'a' is in second block, so multiply 'a' with the elements of the principal block one after the
other to get the elements of the block containing 'a'., that is block 2

= (2)* (1) = a; ()*(cd)=acd; (a)*(abc)=a’bc=bc; (a)*(abd)=a’bd=bd
Similarly for b and so on

= B)* (1) = b; (b)*(cd)=bed; (b)*(abc)=ab’c=ac; (b)*(abd)=ab’d=ad

00 01 10 11
(1) a b c

cd acd bed d
abc bc ac ad
abd bd ad abcd

Example. The following data from a 2 design with defining contrast {I, AC} was run in two
blocks. Use the Kempthorne approach to determine the elements of the blocks. Use the Yates
scheme to compute the SS for the effects and their interaction and show that, indeed, the effect AC
was confounded with blocks.

The model is Yy = u+ A +B; + AB; +C, + AC, +BC + ABC +¢&y

Al A2
B1 B2 B1 B2
C1 5 1) | 4 b 0 al|2 ab
C2 -3 c|-1 bc | 0 ac | -2 abc
I=AC, L=X,+X;. Since this is a of design, the blocks are labeled L=0, and L.=1
L=0 L=1
(H)=5 a=0
ac =0 c=-3
b =4 ab=2
abc=-2 bc=-1
+7 -2
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Table 25 YATES Scheme for 2! Design with Confounding {I,AC}
Treat | Resp. I II I | Divisor | §5=(Col HDZ
Comb r2'=8 | /Divisor
(1) 5 5 11 5 |8 3.125
a 0 6 -6 5 |8 3.125
b 4 -3 -7 1 |8 0.125
ab 2 -3 1 |8 0.125
c 3 -5 1 17 |8 36.125
ac 0 2 9 |8 10.125 Same as block |
be -1 3 3 1 |8 0.125
abc -2 -1 -4 7 |8 6.125
2 2 2
SS 1y = @) +4(_ 2 (58) - (49: 4)— (285) ~13.25-3.125=10.125

Since we used AC for confounding, all other first order interaction or higher are added to the error
sum-of-squares, that is, (AB, BC, ABC).

Table 26 ANOVA for Table 25
Source df SS MS F Sig
A 1 3.125 3.125
B 1 0.125 0.125
C 1 36.125 36.135
AC or Block 1 10.125 10.125
Error (AB, BC,ABC) |3 6.375 2.125
Total 8 55.875

Example: Consider a 2 design with confounding in four (4) blocks of 8 treatments each. Since we

are not given the defining contrast, we can set up our own. Note that the number of blocks is given

by 21, where j is the number of defining equations. With 2 blocks, j=2, so we need two defining

equations. Let the defining equations be {I, ADE, ABCD}. Since we have four (4) blocks, there are
3 degrees of freedom to account for. We can get the remaining contrast since we need 4 blocks, that
is, the principal blocks (I in the defining contrast) plus three more. We can get the remaining
contrast by the multiplication of the set of contrasts we have on hand modulo 2, that is :
(ADE) * (ABCD) = BCE. So, the full set of defining contrast is given by: {I, BCE, ADE, ABCD}.
We choose BCE and ADE for the Kempthorne equation:

L= X, +X,+ X, = BCE

L, =X, + +X,+X; = ADE
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Table 27 Layout of Block Confounding {ADE,ABCD}

(0.0 (1,0 0,1) (1,1)

1) b a e

ad abd d ade

bc c abc bce
abe ae be ab
abed acd bed abcde
bde de abde bd
ace abce ce ac
cde bcde acde cd

5.4 Confounding in 3f

. 3 . . . . .
Consider a 3 experiment in which the experiment cannot be completely randomized.

Suppose nine can be randomized and run in one shift, nine on another shift and the last nine on the
third shift. We have 3° design in 3 blocks of 9 each. The number of blocks is given by 3. In this

case, j=1 since 31=3. 1f we choose to confound the interaction, ABC, then the defining contrast is:

{I, ABC}. This requires only two degrees of freedom to be confounded with blocks (3 block
requires 2 df) Why does the ABC interaction have eight (8) degrees of freedom? Well, since each
factor has three levels, the degree of freedom for each factor is 2. Thus, for ABC interaction, we
have (2)(2)(2)=8. So, since ABC interaction has 8 degrees of freedom, we can partition ABC into its
four component parts each with 2 degrees of freedom. We can then use one of the four to confound

with the blocks. ABC(8df) = |ABC(df = 2), AB’C(df = 2), ABC?(df =2), AB2C?(df =2)]

Using Kempthorne Equation, we have:

L=X1+X»+X3 The blocklabels 2 0, 1, 2

Table 28 Results of Kempthorne for {I,ABC}

0 1 2
000 (1) 001 Co 002 Cq
111 ABiCr | 112 A1BiCq 110 ArBr
201 AqCL 202 AgBqg 200 Ag
210 AgBrL 211 AgBiCL 212 AgBiCq
102 A1 Bq 100 AL 101 ArCr
120 A1Bqg 121 A1BoCr 122 A1BoCq
021 BoCL. 022 BoCq 020 Bo
012 Bi.Cq 010 B 011 B.C.
222 AgBoCq | 220 AqBq 221 AgBoCr
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Table 29 Effects and Degrees of Freedom for Table 28

Source df

A 2

B 2

AB 4

C 2

AC 4

BC 4

Block or ABC 2
Error: or 6

ABZC, ABCZ, ABZR2 (no replication)

TOTAL 26

Fractional Factorial Design

The idea of a confounding scheme is because there is no opportunity for complete
randomization. For example, the shift is too short to accommodate all the runs required to complete
the experiment. When that happens, the experiment is run partially and completed at a later time.
The total number of treatment combinations to be run in one shift depends on the type of design.

For 2 design, the treatments per block are in tuples as are the blocks. For example, we can

have 2 treatments per block, 8 treatments per block, 16, or 32 treatments per block and so on. Also,
in the case of Zf, we can have 2 blocks, 4 blocks, 6 blocks and so on all in multiples of 2.

For 3' designs, the treatments per block are in triples as are the number of blocks in the
system. Consequently, we have 3 treatments per block, 9 treatments per block, 27 treatments per
block all in multiples of 3. The blocks are also in triples, namely, 3 blocks, 9 blocks, 27 blocks, etc.

In fractional factorial designs, while we still use confounding to determine which treatment
combinations (interactions) are confused with the block, only a fraction of the experiment can be
run. In fractional design, it is not possible to completely randomize or to run the total experimental
replications due to size and, hence, leading to the high cost of running the experiment. Thus, in the

f . . . . .
case of 2', we talk about running one-half replicate, one-quarter replicate or one-eighth replicate of
the experiment using a defining contrast that would ensure that the important treatment
combinations in the design are run. The same with 3" design. A third-replicate or one-ninth replicate

and so on are run. That is why it is important in fractional factorial designs that the confounding
scheme and the resulting defining contrast are well thought out so that interactions that are really
important are not confounded. Regardless, main effects are never confounded with blocks.
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6.1 Aliases

In fractional designs, we have the issue of aliases. Aliases happen when two or more effects
have the same numerical values when confounding is used. Aliases are indistinguishable in terms of
their numerical values. Thus, in fractional design, it is important to ensure that they are not both
present in the fraction of the experiments that is to be run if the design is to be of any value. What
we want to avoid especially is for a main effect to be aliased with another main effect because we
cannot extract the significance of the effects. We determine an alias as follows.
Determination of Aliases for 2

For each treatment effect and interaction that is not part of the defining contrast, multiply
the treatment or interaction with the defining contrast (modulo 2 or modulo 3 depending on the
design. The result after the multiplication is the alias. For the sake of an example, suppose the

defining contrast was (I=BCE, ADE, ABCD) for a 2> and a one-quarter replicate was run. This

means that these interactions are confounded with the four blocks. The aliases for the main effect
and some interaction are as follows:

A(BCE)= ABCE, A(ADE) =A’DE=DE, A(ABCD)=A’BCD=BCD

B(BCE)=B’CE=CE, B(ADE)=ABDE, BABCD)=AB*CD=ACD

C(BCE)=BC*E=BE, C(ADE)=ACDE, C(ABCD)=ABC’D=ABD

D(BCE)=BCDE, D(ADE)=AD’E=AE, D(ABCD)=ABCD*=ABC

E(BCE)=BCE*=BC, E(ADE)=ADE?, E(ABCD)=ABCDE

AB(BCE)=AB*CE=ACE, AB(ADE)=A’BDE=BDE, AB(ABCD)=A’B*CD=CD
It is obvious that this is not a bad design because the main effects are not aliased with any main
effects or the fourth-order interaction, that is, the highest order interaction in this case. The highest

order interaction in any design with no replication, is pooled to form the SS error .

Determination of Aliases for 3f

The Alias for 3" is computed a little differently. The exponent on the first effect in a 3" is never

greater than unity so when it is greater than one, the combination is squared to reduce the exponent
modulo 3. For 3f, multiply the effect by the contrast modulo 3 and again multiply the square of the
contrast modulo 3 resulting in two separate alias value per effect. For example for a 33design with
1=AB?C. The aliases will be as follows: For A: A(ABZC ):AZBZC:(AZBZC)2 =ABC? (exponent on
first effect can't be greater than 1). Again for A:A(ABC )*=A(A’B*C*=A’B*C*=B*C’*=BC%

B: B(AB’C )=AC, BAB*C )? =A*B°C*=A"B'C*=ABC, etc.
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6.2 Fractional Factorial for a 2f

There are two different scenarios in any fractional factorial design. In one scenario, the
defining contrast is given and the issue is to determine the treatment combination that will result
from the defining contrast. In this case, we can employ the Kempthorne approach or the table of
sign to determine the resulting treatment that would apply.

A more difficult situation is where the engineers know the treatment combinations that are
required in the experiment and so the question is what is the defining contrast that would yield the
given treatment combinations. This is a more difficult problem and would require more detailed
effort than we can devote at this time. However, it is an important consideration and much more

practical than the other case where the defining contrast is given.

5, . . T
Example: Suppose we have a 2 design where, due to the physical limitation of the system and the
cost of experiment, all we can afford is a one-quarter replicate. The defining contrast is not known

but we have determined that it is : {I, ACD). The eight data points (1/4 of 24) are as follows
Table 30 Data for the one-quarter replicate of 2% Fractional Design

Treat. Comb | a ab C bc d bd acd | abcd
Response 96.6 | 1257 | 14.1 | 9.5 435 | 22.4 28.2 | 52.5
Al A2
B1 B2 B1 B2
D1 | C1 96.6 125.7
C2 14.1 9.5
D2 | C1 43.5 22.4
C2 28.2 52.5

If we use the table of sign, we can setup the sign for the treatment and the interaction in the
usual way. Namely, if the treatment exists in the effect shown then we indicate that existence by a
positive sign, if not we indicate by a negative sign. The reason is that if the defining contrast did
indeed result in those treatment combinations, the sign of each element with respect to the defining
contrast will be positive. Note that in a fractional factorial design, the block to be used is chosen at
random. For example, the treatment 'a' will have + sign under the effect A negative for all other
effects. However, if you multiply the signs for 'a' for the effects that make up the defining contrast
(ACD), the sign is positive. This is the same for all the treatments. The aliases with the main effects
are:
Main Effect Aliases: A(ACD)=CD, B(ACD)=ABCD,
C(ACD)=AD, D(ACD)=AC

Table 31 Table of Sign to confirm the defining contrast for 25 fractional Design
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Treat A B C D ACD
Comb.

a + - - +

ab + + - - +

C - - + +

bc - + + - +

d - - - + +

bd - + - + +
acd + - + + +
abcd + + + + +

We will use the YATES scheme to compute the SS. We will indicate the full compliments of a 2% in
the YATES table but with holes because some values were not actually run. We will proceed the
usual way on the YATES table, only now where the values are nonexistent, we will assume they are
ZEros.

Table 32 YATES Scheme for 2° Fractional Factorial Design

Treat | Response |1 II 111 v SS=

Comb (Col IV)*2/8
(1) 96.6 222.3 245.9 392.5 -

a 96.6 125.7 23.6 146.6 213.5 5671.125

b 14.1 65.9 198.7 27.7 95.91

ab 125.7 9.5 80.7 14.8 79.1 781.10

c 14.1 435 222.3 24.5 -183.9 4227.40

ac 22.4 -23.6 3.2 -99.3 1232.56

bc 9.5 28.2 -65.9 33.7 11.7 17.11

abc 52.5 80.7 454 -21.3 56.71

d 43.5 96.6 29.1 -198.7 -99.3 Same as AC
ad 125.7 -4.6 14.8 -183.3 Same as C
bd 22.4 -141 211 -245.9 -21.3 Same as ABC
abd 9.5 24.3 146.6 11.7 Same as BC
cd -43.5 29.1 -33.7 213.5 Same as A
acd 28.2 -22.4 4.6 454 392.5 SS Block
bed 28.2 21.1 -24.5 79.1 Same as AB
abcd | 52.5 52.5 24.3 3.2 27.7 Same as B
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Table 33 ANOVA for 25 Fractional Factorial Design

Source df SS MS F F(0.05,1,3)
=10.1

A(or CD) 1 5671.125 5671.125 19.9 Sig

B(or ABCD) 1 95.91 95.91 <1 n.s

C(or AD) 1 4227.40 4227.40 14.83 | Sig

D(or AC) 1 1232.56 1232.56 4.33 ns

AB(or BCD) 1 781.1

BC(ABD) 1 17.11

BD(or ABC) 1 56.71

Error 3 854.92 | 854.92/3=

(AB+BC+BD) 284.97

Total 7

Please note that we cannot test for the significance of a block because there are no degrees of
freedom left since there is only one block. At any rate, the block (ACD) is aliased with the
correction factor CF so there is no need to explore this further. You will also notice that B is aliased
with the highest order interaction. This is quite unfortunate because the highest order interaction is
usually pooled with other non-relevant interaction to form the error sum-of-squares.

6.3  Fractional Factorial for a 3f

We will demonstrate this design with an example.

The torque (Ib) after pre-heat was to be measured on some rubber material with factor A (Temp) at
(145°C, 155°C, 165°C), factor B (Mix) at (I, II, III), and factor C (Lab; 1,2,3). The 33 27 experiments

seemed too costly, so a 1/3 (one-third) replicate was run with AB*C used as the defining contrast.
Using Kempthorne: L= X1+2X5+X3 The three blocks from the confounding scheme are:
Table 34 Blocks for 3° Fractional Design with AB°C

L=0 L=1 L=2
000 100 200
110 210 010
011 111 211
121 221 021
212 012 112
022 122 222
220 020 120
201 001 101
102 202 002

www.SunCam.com Copyright® 2017 O. Geoffrey Okogbaa, PE Page 41 of 53



http://www.suncam.com/

Suim )

The Design and Analysis of Engineering Experiments Il
A SunCam online continuing education course

With this design which consists of 3% factorial in 3 blocks of nine treatments per block, the effects
can be broken down into 13, 2 df effects, namely: A, B, C, AB, AB AC, AC BC, BC% ABC,
ABZC, ABCZ, ABZCZ, Now, if only one of these blocks are run (1/3 replicate), say block L.=1, the

numerical results are shown but now only 8 degrees of freedom since we have only nine data points.

Table 35 Data for 1/3 Replicate of a 3' Fractional Design with AB°C as Defining Contrast

Al(Temp) A2(Temp) A3(Temp)
145°C 155°C 165°C
B1(Mix) B2(Mix) B3(Mix)
I II 111 I II 111 I 11 111
Cl(Lab) | 1 16.8 11.2 9.9
C2(Lab) | 2 15.8 144 17.8
C3(Lab) | 3 17.1 20.5 15.7

The aliases are:
For A: A(AB*C) = A?B*C= (A?B*C)*=ABC?, again for A: A(AB*C)*=AA*B'cH=A"B*c*=BC?
For B: B(AB“C) = AB’C=AC, again for B; B(AB*C)*=A’B’C*=A*B'"C*=ABC
For C: C(AB®C) = AB*C?, again for C: C(AB’C)*=A’B*C’=A’B*=A"B*=AB?
For AB: AB(AB®C) =A’B°C=A"B°C*=AC?, again for AB: AB(AB*C)*=A’B°C*=B*C*=B'’C*=BC
So, we have the following:
A (ABC%, BCH
B (AC, ABC)
C (AB’C?, AB?)
AB(AC? BC)
We can compute the SS using the traditional method:
(49.7Y + (46.1) +(43.4) (139.2) (42.7F +(41.4Y +(55.1  (139.2)

SS, = - = 6.66,SS = - =38.13
3 9 3 9
2 2 2 2
s, = (37.9) +(4§) +(53.3) _(139;2) _ 1081

SStomaL = (15-8)2 + (17'1)2 + (16'8)2 + (11-2)2 + (14-4)2 + (20.5)2 + (15.7)2 + (9.9)2 + (17-8)2 - (13%2)2

= 2238.68 — 2152.96 = 85.72
SS s = SSrora — SS, — SS, — SS. = 0.12
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Table 36 ANOVA for 1/3 Replicate of a 3* Fractional Design with AB?C as Contrast

Source df [SS MS |F F(0.05,1,3)=10.1
A(ABCZ, BCH) 2 666 333|555 Sig

B(AC, ABC) 2 [3813 1907 |317.85 | Sig

CABC2, ABY |2 | 4081 2041 | 1021 | Sig

AB(AC?, BC) 2 o1z 0.06

Total 8 |85.72

Random, Fixed Effect Model and Expected Mean Square.

In the planning stages of an experiment, the engineer must decide whether the levels of the
factors to be run are to be set at fixed levels or chosen at random from many possible levels. A
major consideration affecting this choice may be stated as follows. Are the results from such an
experiment going to be judged for these levels only or are they to be extended to more levels of
which those in the experiment are but a random sample?

As an example, in the case of temperatures, time or pressure, it is usually desirable to pick
fixed levels since not all possible levels are practical in a given experiment.

However, in the case of operators, days, batches, or shifts, it is desirable to pick random
levels, since the performance of any operator, or a day's production is not as important as whether
the operator, batches, or days, in general, increase or decrease the variability of the process in
question. It is, of course, ridiculous that one would want to decide whether levels should be fixed or
random after the experiment has been performed. When all levels are fixed, we have a fixed model.
When all levels are random, we have a random model. However, when some are fixed and some are
random, then we have a mixed effects model.

Realistically, most models are mixed because even when all the factors have fixed levels, the
error term is always considered random, independent and identically distributed. The question then
is how to determine the mean square for the terms in the ANOI/A table to properly test for their
significance. So far, we have assumed that all the levels are random and so we directly divide the
mean square of each term by the mean square error to determine their significance. However, by
using the correct mean square or what we now call the expected mean square (EMS) for each term
in the model, we can now properly test for their significance.

7.1  Single Factor Model
Let y;, =pu+7;+¢

n=fixed constant, &j~Normal Independent and Identically Distributed with mean zero, and variance
equal to 6%, &~NIID (0, 6% ).
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1. If the treatment levels 7j are fixed, then the ANOIA will look as follows.
Source df EMS
n>» z7?

T; k-1 o+ (O‘ez+n<O'T2>)

k-1
With respect to the hypothesis test, we will test the hypothesis that the mean effect is zero versus the
alternative that some pairs of means are not equal zero. The variance component for the treatment
mean is called pseudo-variance because it does not meet the ordinary definition of variance. Note
that, in general, the mean square of any term in the model reflects the notion that the variance of

any term consists of the variance due to error plus a component due to the term itself.

In this case, our hypothesis is formulated as: Ho: =0, Hj: T: 70 for some j

2. If the treatment levels Tj are random, then the ANO1/A will look as follows:
Source df EMS
T; k-1 cZ+noc?
£ij k(n—-21) ol

The hypothesis in this case is as follows: Ho: GZTZO, Hi: %> 0
7.2 Two-Factor Model

We will demonstrate how we determine the expected means square (EMS) for a given model using a
two-factor mixed model. Let yy =u+A +B; + ABy +&,(;

where: 1i=1,2,....a (a levels of factor A), A is fixed
j=1,2,...b(b levels of factor B), B is random, k=1,2,..n (replication)
if A is fixed and B is random, then AB is random

The hypotheses to be tested are as follows:

Ho: A=0, o©%=0, 6*xs=0. The EMS table will look as follows

Source df EMS
A a—1 cZ+noci, +nb<oci >
B; b—-1 o? +nac}
AB;, (a—1)b-1) ol +nociy
Eiii) ab(n—1) ol

We will now develop a general procedure for populating an EMS column to determine how the
significance test will be run for a given model.

7.3 EMS Rules for Establishing an EMS column for ANOVA
Example of a two-factor mixed model: Yy = g+ A +B; + ABy +&,

1. Write the factors as row headers in a row/column table

A
B;
AB;

2. Write down the ki) subscripts for each factor as
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column heading. Above each subscript indicate whether the factor for each subscript is fixed or
random by writing I or R above each. For the error term, always write R. Above the second row,
write the number of levels or replications corresponding to the factors or terms.

a b n
F R R
i j k

Aj

B

ABij

Ck(j)

3. For each row (each factor or term in the model) write down the level or observation on top of
each subscript, so long as the subscript does not appear in the row. For example, for A, copy down
'b' under subscript j and n under subscript k, but another under i because i appears in the A row .

a b n

F R R

i j k
Ai b n
Bi a n
AB ij n

k(i)

4. For any bracketed subscript in the model, place a one under those subscripts which are inside
the bracket.

a b n

F R R

i j k
Ai b n
B; a n
AB ij n
Ck(ij) 1 1 1

5. Fill the remaining cells with 0 if the subscript is for fixed effect (F) and 1 if it is for random (R)
effect.

a b n

F R R

i j k
Ai 0 b n
Bj a 1 n
Abij 0 1 n
Ck(ij) 1 1 1

6. To find the EMS, for any term in the model, do the following:
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1) Cover in the column or columns which contain un-bracketed subscript letters in this term.
For A cover i, for B, cover j for AB cover ij, for € cover k only.

ii). Multiply the remaining number in each row . Each of these products is the coefficient of
its corresponding variance term in the model so long as the subscript on the term is also a subscript
of the term is being sought. The sum of the coefficients multiplied by their corresponding variances
is the EMS of the term under consideration. For example, for A, cover column i. The products of
the remaining elements are: bxn for first row, 1xn, for second row, 1xn for third row, and 1x1 for
the last row. The product n from the second row is not used because it does not contain i, which is
part of the subscript for A that is being considered. So, the resultant EMS for A is:

bncs2 A+nc52 ABJrcsze
a b n
F R R
i j k EMS
A 0 b n c2+ncap2+nb<ca? >
B; a 1 n G2+ nacg?
ABij 0 1 n C2+noag?
€k(ij) 1 1 1 (552

7.3.1
7.4 Rule for Determining the Degrees of Freedom for EMS

Testing for Significance: Avs AB, B vs e kg, AB vs exgj)

Factor Subscript Rule df
A i i-1 a-1
B; j -1 b-1
AB; i G-DED | @b
ABy i) -Di a(b-1)
€k(i k(ij) (k-1)jj (n-1)ab

Nested or Hierarchical Designs

In the design of experiments, it is not always the case that all the factors are crossed with
each other the result of which captures our traditional definition of a factorial experiment. From
practical considerations, it is not always possible to cross levels of one factor with the levels of
another factor. We bring up this design because it is perhaps use of the most common designs that
engineers face and the one most commonly misused or misunderstood. Thus, it is important to
provide the tool necessary to handle it. Consider a situation where we want to take the readings of a
compression test on a particular specimen. There are four machining centers available for this test
and each machining center has four different heads. At first thought, we might consider this as
factorial design with two factors machines (M) and heads (H) where each machine is randomly
crossed with each head and then a typical factorial analysis is carried out with test of significance for
the factors and their interaction. The model that describes this usual factorial design model is:
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Yijk=pt Mi—i-Hj—l-MHii—l-Sk(iD’ assuming k replications.

The question that persists in this type of thinking is the following. Was every machine really
crossed with all heads? The answer of course is no because that would require removing the heads
from each machine and refitting them to all other machines, which may be possible but not
probable. Since a set of heads are tied only to set machines and only those, then the model has to
reflect this relationship because the heads are nested within each machine and not crossed with all
the machines. The recognition of this fact leads us to a new modeling scheme where we reflect the
fact that the heads are nested within the machine as opposed to being stand alone and crossed
among all machines. The revised model will now look as follows:

Yiik=p.+ Mi+Hj(i) +€k(ij), and we will analyze this model with the EMS approach. The
EMS table determines how the test of significance is carried out. This is unlike the regular ANOT”4
table where the test was based on the ratio of the mean square of each term error means square.
Example: Assume that in the scenario described we have Compression tests on tungsten
specimens were run on three machines each with three heads. The data is as follows:
Table 37 Data Layout for Nested/Hierarchical Design
Mach M1 M2 M3
Head H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 HI12
1.5 15 27 3|19 23 18 19|25 32 14 78
1.7 16 19 24|15 24 29 35129 55 15 5.2
1.6 1.7 2 26|21 24 47 28|33 71 34 5
Head 4.8 4.8 6.6 8155 71 94 82|87 158 63 18
Total
Mach
Total 24.2 30.2 48.8 103.2

We assume for this design that we have a random sample of heads that can be used on a given
machine., then we have a hierarchical or nested design in which the machines are fixed and the

heads random. Yijk=p+ Mi+Hj@ +exg), i=1..3,j=1,.4, k=1,...3

3 4 3

F R R

i j Kk EMS
M; 0 4 3 o2 t3ou2+12<om? >
Hi(i) 1 1 3 o2+3042
C(ij) 1 1 1 G2
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2
—(1033—('32) =381.44-295.84 =85.60

SStom = (1.5)° +(1.5)* +..(3.4)" +(5.0)°

2 2 2
SS . = (24.2) +(3i'22) +(48.8)" _ -k _323.26_205.84 - 27.42,df =2

SStim) = SShm,) +SSh(m,) +SShm,)

2 2 2 2 2
ssH(Ml):(“'S) +(4.8) ;(6'6) +(8.0) —(2‘;'22) —51.213-48.803=2.41
2 2 2 2 2
SSH(M2)=(5'5) +(7.1) ;(9'4) +(8.2) —(32'22) = 78.753—76.00 = 2.753
2 2 2 2 2
SSH(M3)=(8'7) +(15.8) ;(6'3) +(18.0) —(481'5) = 220.673-198.453 = 31.22

SS ) =SS + SShm,) + SShm,) = 2.41+2.753+31.22 = 36.383, df = (3)(3) =9
SSerror =SSt —SSy —SS () = 85.60 - 27.42 —36.383 = 21.80, df = (2)(3)(4) = 24

Error Total

Table 38 ANOVA for the Machine Heads EMS Example

Source SS df MS EMS F

M | 2742| i1=2 |1371 | ol+3ouP+12<om® > | 13.71/4.04

He |[3838] (-1i=9 | 404 | o+30m’ 4.04/0.91

ey | 218 | (Dij=24 | 091 | o

Total 85.6 35

8.1 Testing for significance on an EMS Table
e Mvs H, F=3.93 (F 0.01, 2,9=8.00); therefore not significant
e H versus Error, F=4.42 (F 0.01, 9, 24=2.3); heads effect is significant from machine to
machine.
Note that not all the terms or factors/interactions are tested for significance with the error mean

square as has heretofore been the case.

Regression Analysis

The purpose of Regression Analysis is not to explain what type of data should or should not be
collected for any given purpose. The purpose is to explain some of the techniques used in extracting
information, such as the main features of the relationship between the variables in the data, and to make
a strong case for the importance of properly designing the experiment to collect needed data.

In any system where quantities change, it is of interest to look at the effects, if any, of some
variables or others. Indeed, there may be a functional relationship which may be approximated by a
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simple mathematical relationship. In other instances, the functional relationship may be complicated.
Still, there are situations where no meaningful relationship seems to exist, but we might wish to express
or relate them by some sort of mathematical equations.

There are two main types of variables, namely predictor or independent variables (X) and the
response or dependent variables (Y).

A regression equation is a prediction equation fitted to a set of experimental data values to
describe a possible relationship between a single dependent variable Y and one or more independent
variables X. In the case of a single Y and a single X, the situation becomes a regression of Y on Xx.
For n independent variables, it becomes the regression of Y on X, Xo,...Xa.

One particular method commonly used in expressing the relationship between the variables is

the method of least squares. In this method, the unknown parameters are estimated under certain
assumptions and a fitted equation is obtained. The value of the equation can be examined by
substituting known values to see its predictability.

The method of least squares in regression analysis will be used to examine the data and to draw
conclusions about any functional relationship between the response and the independent variables.
The simplest kind of regression is the bi-variate linear regression.

Model: Y = (), ie, Y=o+ Bx

which can better be expressed as: Y, = B, + B, X, + &,, where &, ~ NIID(0,5?)

This equation can be expanded from the bi-variate to a polynomial regression. Under the least squares
method, we can also solve the multivariate or the multivariable linear regression which is expressed as:

Y = (X, X, o, Xo)= Ao+ ArXs + AXo + .+ AX,
We can also have a Multivariate polynomial regression. For a polynomial of 2nd degree, we will have
the following Model: Y= Ay + AiXi + AxXo + AuXy® + AnXe” + AXiXe
Nonlinear Regression can be handled with the least squares method if linear transformation is possible.
9.1 Model Solution.
Let a model be represented by: Y = o + Bixi + &,
where & = error ( sometimes called the residual) and has zero mean and a given distribution.
Let f(x) = by + b1 Xi be the predicted i y value(when X = X;) and

by = estimate of Bo, b1 = estimate of B

Then the deviation of the observed value of y from the line y is: & = y; - f(x;)
The aim of the curve fitting effort is to minimize this deviation. Specifically, the aim is to minimize
the SS of the error (deviation). The procedure used to accomplish this is the method of least
squares. Define Q as:

Q =zei2 :Z(Y - f(x))z =Z[Yi _(bo +b1X1)]2

A way to solve the model is to develop normal equations arising from the model. A way to do that is
to set up an expression for the least squares estimate and then optimize by taking partial derivatives
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with respect to the parameters of the model. Since only two parameters (3o, B1) are involved, we take

partials of QQ with respect to those two parameters and optimize.

@ = _Zi(yi _bo _blxi)

oa =

ob

nb, + B, D X =D Yo, @
bo D X+ b D> X2 =X V......(2)

0 =Xy -b Y x by =20 b 25y =5y by

b, = "l: nZXiYi _ZXiZZYi
anf—(in)

Let:SXY:nZXy_ZXZy’ Sxx:nzxz_(zx)z’blz’gl:%

@ = _Zi(yi _bo _blxi)(xi)

Equations one and two are called normal equations. The dimensions of the set of equations
(no of these normal equation is equal to the number of parameters) are such that the system of
equations is solvable so long as the data is not ill due to very significant differences in the magnitude
of the data. In other words, in a matrix form the matrix always has an inverse so long as the
determinant is not zero.

As the model becomes larger, due to the increase in the number of parameters in the model,
solving for the estimates becomes more tedious and time consuming. In such a case, we will resort
to matrix algebra. One of the advantages of a matrix approach is that once the problem has been
formulated in matrix form, the solution can be applied to any size problem.

9.2 Matrix Approach

Let: Y= Bot B1Xi+ &, = Y=XpB+¢

Define: Y = Vector of observations from the experiment-- (n x1 vector)
X= Matrix of independent variables-- (nx2) Matrix

T .
X" =A transpose of the X matrix
B = Vector of parameters to be estimated-- (2x1) vector

€= Vector of errors or deviations (nx1) vector

Y, ] 1 x (&, ]
y 1 x, & 1 1 e o 1
Y = 02 b X =|le e : ﬂ: IBO : — ° ! XT
B e= ¢ X, X, e e X,
[ ] [ ) [ J [ J
| Y 11 X, L &n ]
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1 x Y1
1 x y
XTx <o .2 |:1 1 e o 1:|:|: n ZXZ:|’ XTY:|:1 1 e o 1:| .2 :|:Zy:|
v oL ox e e dx >x X\ X, e e X | > xy
1 x, Yn
The normal equations can be rewritten in matrix form as:
(XxTX)3=xTy
= (XY,
where f=is the vector of the estimates of the parameters.
- n > x |[b >y
XTX)p=X"Y = °|=
(xTx)5 s S S
[bo} _|on > x -’ >y
b, Dx DIxy| | Do xy
Table 39 Data for the Regression Model
i |1 2 3 4 5 6 7 8 9
xX; | 1.5 1.8 2.4 3.0 3.5 3.9 44 148 5.0
Y; | 48 5.7 7.0 8.3 10.9 12.4 13.1 | 13.6 | 15.3

Example: Given the data of table 39, use the method of least squares to determine the parameters
of the model. Y=bp+b1X
n=9, > x, =303, >y, =911, > x;y; =345.09, > x? =115.11, > y? =1036.65

CF =(> y)f/9=922.134, X =3.3667, Y =10.122
Sxy :inyi _(inzyi)/n

= (345.09)—((30.3)(91.1)/9) = 38.387
Syx = D X? —((in)z /n)

— (115.11)— ((30.3) /9)=13.1

b, = ji S _ 38387 _, ga0a
S  13.10
by = B, =Y —b, X =10.22 —(2.9303)(3.3667) = 0.2545

vy

2
Sy, =2(yi-yS =2y’ —@ —~1036.65—922.134 = 114.516
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<7 x :[ n ZXi:|:|: 9 303 J:{ 9 30.3J1 1 [115.11 —30.3}

S x, >.x2| [30.3 115.11] |30.3 115.11] 117.9|-30.3 9

ry| 91 b,] 1 [11511 -30.3] 91.1 | [0.2545] [b,
345.09 | b, | 117.9| -30.3 9 345.09| | 295 | |b,

Table 40 ANOVA Table for the Regression Model
Source |df |df |SS SS (Matrix Form) N MS F F
b LI S yfin|=cF |[YU'Y=CF= |- : :
922.134
bilbo 1 1 b,S,y BTXTY -CF 112.485 | 112.5 | 26.00
etror | n2 [ 7 | Subtraction (Y Y _BTX Ty) 2.04 0.291
Total n-1 18 z y_2 —CF Y'Y —CF 114.52
I

91.1
345.09

=YY —B"X'Y =1036.65—-1034.611 = 2.04

iy (X TY)Z [0.2568 2.95{ } =23.394+1011.217 =1034.611, Y'Y = > y? =1036.65

SS

Error

Y1

YT11'Y =[y, e e vy, X1 o e 1] : =@xnxnx1)x(Ixnxnx 1)=a scalar

1 Ya
9.3 Coefficient of Determination (R2)
The coefficient of determination R* is a measure of the fit of the regression line. It represents the
amount or proportion of variation in the data that is explained by the fitted model or regression line.
It measures how well the model fits the data. The higher this value the better the model. In our
example the fit of the model or model accuracy is about over 98% which is very good.

i S
) SS Re gression _DbS, 2.9303(38.39) _ 0.9823

" Total Corrected Sum of squares - S,y 114.52

9.4 A Note about the Least Squares Method

The X'X (called the X transpose X) matrix is a symmetric square matrix. Because it is a
square matrix, we can always find an inverse of the matrix except when the determinant is zero or
close to zero. This happens when the magnitude of the differences in the data is very high. A way
to overcome this problem is to use transformation, such as the log or square root transformation or
appropriate scaling. We did not discuss hypothesis testing for the estimates, but those can be
accomplished by properly extracting the variance estimates for the parameters.
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Summary

This second course in the series covers some practical aspects of the design and analysis of
engineering experiments. There are no theoretical developments and most of the computations use
basic arithmetic. Several important and practical issues are addressed including factorial designs.

The issue of missing values due to a tool break or momentary loss of power, for example,
has been addressed with numerical examples and calculations. Missing values is a different issue
from incomplete designs. Incomplete designs happen when, in the intended design, only certain
number of days or shifts for example are available to run the experiment.

The issue of system physical limitations in handling the entire design was addressed using
confounding schemes where certain (unwanted or unimportant) interactions are confounded with
blocks in order to assess more important effects and/or interactions. Fractional designs have been
addressed as a way to handle limited resources where it is not practical or cost effective to run
complete experiments.

Nesting or hierarchical designs were introduced to address the practical situation where
complete randomization or crossing of factors is not possible. Regression using the method of least
squares was introduced as way to estimate the parameters of the proposed model. The matrix
approach was advanced as part of the least squares approach when higher order models are required.
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