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Introduction 
The focus of this course is on an important area in engineering analyses and design, namely 

how we analyze data and use the information to make decisions about the engineering problem. The 
whole process of explicating the complexities of the data to yield information that would eventually 
be used to make design or mission decisions is known as inference or more appropriately statistical 
inference. If we examine the relationship between the population and the sample (as we did in the 
first course) we note that there is sort of a symbiotic (parent-population, offspring-sample) 
relationship between the two. Probability deals with the population with its parameters (parent 
values) while statistical inference deals with the sample and its statistic (values computed from the 
sample and used to estimate the population or universe parameters). Thus, while probability and 
statistics both deal with questions involving parameters and statistic, they do so in an “inverse 
manner” as shown in figure 1.  

From the point of view of the population, information about the sample can be obtained by 
probability analyses. On the other hand, given some sample statistic, one can parley those values 
into making inference about the nature of the population parameters. Statistics really is about 
statistical inference, namely, trying to infer whether the sample statistic (such as sample mean 
𝑋𝑋 versus the population mean µ or the sample standard deviation S2 versus the population variance 
σ2) can reasonably be assumed to be good estimates of the parameters of the parent population.  
Statistical inference is the idea of assessing the properties of an underlying distribution through the 
method of deductive analyses. Inferential statistical analysis infers properties about a population 
through the following major schemes, namely; a). Estimates (point estimates, interval estimates), and 
b). Tests of Hypotheses. The population or the universe is assumed to be infinite and thus is larger 
than the sample from which a data set is drawn. Thus, probability projects information from the 
population to the sample via inductive reasoning, while we use the sample statistic as a means of 
understanding the nature of the population parameter using deductive reasoning. 

 

 
 

Figure 1: Relationship between Population and Sample 
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1.1 Mean and the Dispersion 
 In any data analyses scenario, the focus has always been on finding some way to understand 
what the data means, what it is saying about the underlying process and if there is anything that can 
be gleaned about the trend or characteristics. Unfortunately, parameters are not easy to come by and 
for that matter neither is the population itself.  For engineers, it is important to understand that 
we do not conduct experiments for the sake of the estimates but for eventually assessing the 
parameters. The goal of any experiment is beyond just computing the statistic from the sample but 
to go over and above that to understand how those statistics explain away the population 
parameters. The measures or the sample estimate or statistic are never the goal but a pathway to the 
goal which in this case is the population parameter. That is why we always seek the best estimators 
for the parameter that we want to estimate so we can get as close as possible to the real thing. 
Given the nature of a random experiment it is expected that each realization of the experiment 
may very well produce different statistic(s).  Hence each realization of the experiment may produce 
different estimates of the same statistic(s). For example, the Diametral-Pitch (DP) for a sample taken 

from a lot or population of spur-gears, the first sample n1 could yield a mean value .41 inchesX =  A 

second sample n2 from the same lot could yield a DP of .61 inchesX = Thus the statistic from the 
two samples would be numerically different, even though as we would show later, they could be 
statistically the same.  
 The overarching goal in any experimental situation is not to estimate the different statistic 
for their own sake because they are useful only to the extent that we need them to discover the true 
value of the population. The ultimate goal is therefore to get a sense of the population parameter(s) 
value (µ or σ in this case) or what is generally called the true mean or the true variance. These 
measures or statistic are used as a pathway to access the population parameters. No one sets out in 
an experiment hoping that the statistic they obtained from a sample is the end all. Even for those 
without a background in mathematics and/or statistics it is generally understood that samples, 
everything else being equal, are mere representatives (and in some cases true representatives) of the 
parent population and hence any decisions made will hopefully reflect the parent population. Thus 
statistic(s) from samples are mere surrogates because we really do not have access to the population 
(very rarely do we have access to the population) in most cases and so the closest thing is the 
sample.  In essence, all we are doing is to estimate the parameter value from the sample statistic 
because they (sample statistics are the only things we have access to. 
   
Statistical Inference 

In many engineering settings (manufacturing, chemical, electronic, computing, service, etc.), 
we encounter many random quantities. Often, we do not know the probability structure of these 
variables or their underlying characteristics. Still we do want to determine these quantities to have 
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better control of the system operation. This is usually accomplished by taking random samples or 
observations on the random variables. Based on the classical definition of probability, the 
determination of the probability or the expected value associated with the random variables would 
require an 'infinite number of observations.  However, since in some cases (the case of the spur-gear 
described earlier) we have a very large but finite population, we can usually estimate the values in 
question in the form of sample statistics computed from the samples.   

Ultimately, at the end of a statistical inference analyses, the decision is always to act 
or not to act. In some instance, the decision could be to accept the observed or computed value of 
the estimator as the unknown parameter without requiring that it be exactly the true value.  On the 
other hand, we may decide to reject or not reject the assumptions about certain distribution without 
conceding that such a statement is true beyond doubt.  Thus, the use of statistical inference enables 
us to control the possible errors that could arise as a result of our decisions and to ensure that these 
errors, while inevitable, are as small and as economically as possible. 

As indicated earlier, inferential statistics can be divided into three main branches, namely 
point estimation, interval estimation, and test of hypotheses.  
 
Estimation (Point Estimation) 

For a good estimation, a fairly large sample is needed.  In some cases, only very limited 
samples may be all that is available. Such limitation could result in a situation where the distribution 
is assumed beforehand since the sample size is limited and thus the ensuing analysis is only meant to 
verify that the distribution has not changed.  

There are two types of estimators, namely point estimators and interval estimators. Two 
methods are generally used in generating estimators of parameters, namely, the methods of moments 
and maximum likelihood.  For some problems both the method of moments and maximum 
likelihood lead to the same estimators and for others they do not.  When the two methods do not 
agree, the maximum likelihood estimator is usually preferred.  

Let X be a random variable with probability density function (pdf).  The pdf has a known 
form and is based on an unknown parameter θ that belongs to the parameter space Ω.  This means 
that we have a family of distributions whose values all lie in the parameter space.  Thus, to each 
value of θ ε Ω, we have one member of the possible family of distributions. In most cases the 
experimenter wants to choose only one member of the family to represent the pdf of the random 
variable of interest. Since we have a family of distributions whose parameter values belong in the 
parameter space Ω, the problem becomes one of defining a statistic that will be a good point 
estimator of the parameter of interest.   
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3.1 Point Estimates for the Mean, Median and Variance 
A point estimates is a single value or number, a point on the real line, which we feel is a 

good guess for the unknown population parameter value that is being sought.  They are statistics 
obtained from the sample that we then use to estimate the population parameter. The motivation for 
conducting an experiment stems from the understanding that in most cases it is impractical to obtain 
the value of the parameter that we seek because that would require the almost impossible task of 
observing the outcome of an infinite population.  This being the case, the problem then reduces to 
one of attempting to extract as much information as possible about the parameter from the 
sample(s) based on the sample statistic.  

In other words, point estimates are summary statistics that capture the essence of the 
parameter being sought.  However, there are several ways in which a parameter can be represented.  
As an example, in estimating the central tendency, which is a population parameter, it is generally 
agreed that the mean and the median are both reasonable quantities with which to measure such a 
parameter.  Also in estimating the variance of a random variable, the sample variance and the range 
are both used as estimators. Obviously, only one of estimates can be used or employed at any one 
time.  Thus, there needs to be a set of criteria, standards, or properties by which to judge or 
characterize the estimators. The properties of unbiasedness, and efficiency are two of the commonly 
sought-after properties that are desired in a good estimator.  

A statistic X  is called 'best unbiased estimator (BUE) for the parameter  θ  if the statistic is 
unbiased and efficient, i.e., if E( X ) = θ and if the variance of X  is less than or equal to the variance 
of every other unbiased statistic. The issue of the efficiency of an estimator has to do with its 
variance.  In terms of the BUE, the smaller the variance of an estimator, the more efficient the 
estimator.  

In the case of the sample mean and median as estimators of the population central tendency, 

both are considered unbiased estimators, i.e., E ( X ) = θ and θ=)~(XE . The variance of the sample 
mean and that of the median are as shown.  

 ( ) ( )
n

XVMediantheFor
n

XVMeantheFor XX

2
2
~

2
2 57.1~,,, σσσσ ====  

The variance of the median is 1.57 times the variance of the mean. Therefore, using the criteria for 
BUE, the sample mean is considered the BUE because it has the minimum variance with respect to 
all the estimators of θ. As noted previously, both the Mid-range and the Mode are also unbiased 
estimators of the population mean but they are not BUE. 
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3.1.1 Point Estimates for the Mean and Variance of the Population 
The following are the point estimates for the mean and variance. For the mean, we have  

 
 
 
Where k =number of subgroups and n is the sample size 
 
 

3.1.2 Central Limit Theorem 
  The central limit theorem (CLT) is a statistical theory that states that given a sufficiently large 
sample size from a population with a finite variance, the mean of all samples from that population 
would be approximately equal to the mean of the population. Let nXXXX ,......,, 321  denote the 
measurements or output of a random sample of size n from any distribution having finite variance σ2 

and mean µ, then the random variable ( )
X

Xn
σ

µ−  has a limiting normal distribution with zero 

mean and variance equal to unity.  In other words, even though the individual measurements have a 
distribution that is not the normal distribution, the distribution of the sample means 

nXXXX ,......,, 321  as n→ ∞ , tends to be approximately normally distributed.  In other words, the 
sampling distribution of the sample means is the normal distribution. When this condition is true it 
would be possible to use this property to compute approximate probabilities concerning the 
distribution and to find an approximate confidence interval for µ as well as test certain hypotheses 
without knowing the exact distribution of µ in every case or situation.  

The central limit theorem (CLT) establishes that, for the most commonly studied scenarios, 
when independent random variables are added, their sum tends toward a normal distribution even if 
the original variables themselves are not normally distributed. This is very important especially 
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Figure 2: Variance of Mean & Median 
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because it is often difficult to determine the underlying parent distribution which is needed to 
determine the probabilities of event occurrence to enable engineering decisions to be made in an 
informed manner  

3.1.3  Sampling Distribution for the mean 
 The sampling distribution of the sample mean is the normal distribution based on the CLT. 
In other words, the distribution of the sample mean X  is the normal distribution with the mean and 

variance as follows:  
n

andX XX

2
2, σσµ == . 

For example, the Diametral-Pitch (DP) for a sample taken from a lot or population of spur-gears, 

the first sample n1 could yield a mean value .41 inchesX =   A second sample n2 from the same lot 

could yield a DP of  .61 inchesX =   The larger the DP, the higher the stress on the gear tooth.  
Assume that on the average, the DP is 4 inches with S= 0.55 inches.  A sample of 25 spur gears is 
taken from the lot with the following measurements as in table 1.  Find the probability that some of 
the gear-spurs will not meet requirement, that is )( 0µ>XP .   
   
 
 
 

 
        
 
 

)1(149909.4,11.0
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There is only a 9% chance that the spur-gears from that population will not meet the design 
requirements. Note that we did not use the standard deviation we computed for the data for the 
problem. Why? You will recall that we are focused on the sampling distribution of the sample mean 
so the mean is the random variable in this particular case.   

X  

µ  

Figure 3: Sketch of Probability Distribution for X-bar 
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Later we will consider the sampling distribution for the variance based on the values from the data. 
The variance is considered a random variable because each sample realization (each sample we take) 
results in a variance estimate or statistic just like we have a mean estimate for each sample we take. 
Due to the unbiased nature of the sample mean as an estimator of the population mean, the 
sampling distribution of two or more means is normally distributed. sum of the means is also 
normally distributed.  

3.1.4 Sampling Distribution for the Mean-The Student-t Distribution 
The student-t arises when estimating the mean of a normally distributed population in those cases 
where the sample size is small, and/or the population variance or standard deviation is unknown. 

The Student-t distribution is like the standard normal distribution when the sample size is 
small, typically n<30.  Some of the characteristics of the student-t are the following: 
1). The probability distribution appears to be symmetric about t = 0 just like the standard 

normal distribution 
2). The probability distribution appears to be bell-shaped.  

S/N Diametral Pitch 
(DP) inches 

S/N Diametral Pitch 
(DP) inches 

1 2.442966 14 4.616154 
2 5.870707 15 3.914669 
3 4.127012 16 5.484784 
4 2.060597 17 3.387145 
5 5.96805 18 2.976296 
6 3.022355 19 4.135116 
7 3.301695 20 4.422885 
8 5.172247 21 5.738772 
9 5.341773 22 4.407002 
10 4.402271 23 4.690581 
11 2.806244 24 3.997262 
12 4.831229 25 3.40529 
13 3.224622   
n 25   
Mean  4.149909   
Std Dev 1.09433   
Table 1: Diametral Pitch (DP) Measurements (in) 
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3). The density curve looks like a standard normal curve, but the tails of the t-distribution are 
"heavier" than the tails of the normal distribution.  That is, we are more likely to get 
extreme t-values than extreme z values.  

The nice thing about the student- t or the t distribution is that we can use it in the case where the 
sample size does not justify the use of the standard normal, that is when n<30.  

Recall that in the case of the Standard Normal Variable, the random deviate 
n

XZ
/σ

µ−
=  

In the case of the student-t, the random variable t is give as  

nS
Xt

/
µ−

=  with υ=(n-1) degrees of freedom.  Just like the Z-score, this is also called the t-score 

3.1.5 Sampling Distribution for the Sample Variance  
From the central limit theorem (CLT), we know that the distribution of the sample mean is 

approximately normal. Unfortunately, unlike the sample mean, there is no CLT analog for variance. 
However, when the individual observation Xis are from a normal distribution, there is a special 
condition under which we can consider the sampling distribution of the sample variance as follows. 
Suppose as indicated earlier, X1, X2, . . . , Xn are from a normal distribution N(µ,σ2), and we will 
recall that the CLT applies to any arbitrary distributions. The distribution of the sample variance 
is the Chi-Square distribution. Note the following. For the X1, X2, . . . , Xn,  

∑
=

=
n

i
iX

n
X

1

1  is the mean, and ( )∑
=

−
−

=
n

i
XX

n
S

1

22

1
1 is the sample variance then 

( )
2

21
σ

Sn −
is the 

Chi-square distribution with (n-1) degrees of freedom. The Chi-square is available in most basic 
statistics texts. 

3.1.6 Sampling Distribution for Two Variances 
When we are concerned about the variances from two populations, the resulting sampling 
distribution of the combined variance of the two populations, follows the Snedecor’s F-distribution 
or simply the F-Distribution. The sampling distribution for two variances is used to test whether the 
variances of two populations are equal. The F distribution is given as: 

2
2

2
2

2
1

2
1

/
/
σ
σ

S
S

F =  with (υ1, and υ2) where υ1 =n1-1 and υ2 =n2-1; where the notation of 1 or 2 is 

perfunctory and depends on which variance is larger. Please note that for ease of computation, it is 
recommended that when taking ratios of sample variances, we should put the larger variance in the 
numerator and the smaller variance in the denominator. We will see how this is done with a 
numerical example later. To use this test, the following must hold: 

• Both populations are normally distributed 
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• Both samples are drawn independently from each other. 
• Within each sample, the observations are sampled randomly and independently of each 

other. 
 Interval (Confidence interval) Estimators 
4.1 Error of Estimation 

In practical situations, there are usually two types of estimation problems.  In one case, we 
may have a constant φ which represents a theoretical quantity that has to be determined by means of 
measurements.  For example, the time it takes to complete a machining operation, the amount of 
yield from a given reaction, the number of material handling moves required for a certain material 
handling type, and so on.  The result Y of the measurement activity is a random variable whose 
distribution function depends on the constant  φ (and perhaps other quantities).   

The parameter or the unknown constant has to be estimated from the measurements taken 
namely; X1, X2 , X3 , ...., Xn.  In the other case, the quantity itself is a random variable, for example, 
the weights in a filling operation, the length of pistons from a given machine, and so on.  In these 
types of cases we are interested in the average value and/or the dispersion of X, where X is the 
random variable of interest.  Hence, we have to compute E(X) for the mean, and or D 2 (X), where 
D 2(X) = σ 2.   

If we want a single number to use in place of the unknown constant or parameter, then 
point estimation is the appropriate method.  If we are using a good estimator, based some of the 
criteria we discussed earlier, then it is understood that the resulting estimate should probably be 
close to the unknown true value. We know that an estimator is subject to error of measurement (in 
the case of the constant) and variability (in the case of the random variable).  In other words, the 
single number (or statistic) does not include any indication as to probability that the estimator has 
taken on a value close to the unknown parameter value. Consequently, it is instructive to have some 
information or some knowledge about the amount of deviation of the computed statistic from the 
true value (in our case the true mean or the true deviation). This is where confidence intervals come 
in because due to the variability or the error in measurement, we want to establish an interval within 
which we would reasonably expect the parameters value we seek to lie. In other words, in repeated 
sampling and using the same method to select the different samples, we would expect the true 
parameter value to fall within the specified interval a given percent of the time.  Thus, confidence 
intervals are established for parameter values NOT for sample statistics. 

For example, a 95% confidence interval means that in repeated sampling and using the same 
sampling method, we would expect the true parameter value to fall or lie within our confidence 
interval 95% of the time. 

Let us do some housekeeping before we delve deep onto the area of Confidence intervals.  
First let us look at the error associated with the estimate .X  
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Thus, the confidence interval for the mean which is a probability statement is given by: 
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4.2 Determination of Sample Size 
If we examine at the error associated with the mean X-bar say E where E is given by 

µ−= XE , we can re-express Z as follows 
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The question you might have is what does this all mean or why do we need n.  Well the 
problem is that typically no one will give you the value of n to use as your sample size. What usually 
happens is a company may have a policy on the size of the error for a process which they have 

2/α  
2/α  

Figure 4: Confidence Interval for the Mean 
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determined historically. Given that value and the level of confidence specified based on the data, 
then the sample size needed to cover that error is computed. A company may say that it is 
comfortable with an error of ±10% being the error between the true mean and the estimated mean.  
Example:  A company is willing to accept an error of ± 15% with a 90% confidence.   
a). Assuming that the variance is known and σ =1.5 units.  What sample size is needed to guarantee 
this level of protection? b) Assuming that variance is unknown and that somehow the company has 
a value of the process sample standard deviation that was estimated from experience with a value of 
S=2 with 90% confidence, what sample size will be required? 

a). knownisif
E

Z
n σ

σα
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2/
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
= , α =(1-0.90)=0.1, α/2=0.05, E=0.15 

from the standard normal Table Z0.05=Z0.95=1.645, ( )
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b) unknownisif
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
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


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Strictly speaking, there is no way we can evaluate this without knowing the sample size.  Remember 
that to evaluate the t-statistic we need the degrees of freedom equal to n-1.  So even though the 
variance is unknown, we do have the estimate of S (where S is an estimate of σ) determined 
historically from the sample, we can use the Z distribution in place of the t-distribution to evaluate 
the sample size.  Note that the t-statistic and the Z-statistic is identical when n= infinity.  So, in this 
case we will use the value of t-statistic with υ =∞. From the formula for n, the smaller the error 
E, the larger the sample (n) required to detect the error and conversely, the larger the error, 
the smaller the sample size required to detect it.   
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4.3 Confidence Intervals for the Mean 
The method of confidence intervals is meant to provide an indication of both the actual 

numerical value of the parameter and also the level of confidence, based on the sample information, 
that we have a correct indication of the possible value of the unknown parameter or constant. We 
have three different scenarios, namely Case I, Case II, and Case III 
4.3.1 Case I  

Confidence Interval for the population mean µ with σ2 (the population variance) known or 
assumed. The sampling distribution is the normal distribution and the test statistic is the standard 
normal deviate.  The (1-α) Confidence Limits for µ is: 
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4.3.2 Case II 
Confidence Interval for the population mean µ with σ2 (the population variance) unknown 

and n >30. The sampling distribution is again the normal and the test statistic is the standard normal 
deviate.  The (1-α) Confidence Limits for µ is computed by replacing or estimating σ using sample 
standard deviation. Note: The limits of the confidence interval are referred to as the Upper 
Confidence Limit (UCL) and the lower as the Lower Confidence Limit or the (LCL)  

 
 
 
 
 
4.3.3 CASE III 
Confidence Interval for the population mean µ with σ2 (the population variance) unknown and  
n<30. Replace σ with sample standard deviation s. The sampling distribution is the student t 
distribution and the test statistic is the student T statistic. Hence replace Z with the t with degrees of 
freedom df = υ, where υ = n-1.  
 
 
 
 
If the individual values are normally distributed, then the confidence interval for µ is the following: 
      
 
 
EXAMPLE: CASE I 
For a grinding operation A, assume that n = 25, X = 75 minutes, σ =10 minutes. Find a two-sided 
95% CI (Confidence Interval) for µ. 
Since σ is given, we will assume that the sampling distribution is the normal distribution with the 
sample statistic equal to the Z.  
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This says that in repeated sampling and under the same sampling scheme, we will expect the mean 
of the population µ to lie in the interval: [71.08, 78.92] 95% of the time. 
 
Example Case II 
For the grinding time (in sec) for another product B, Let n = 36, X = 70 seconds, S =8 seconds. 
Find a two-sided 90% CI (Confidence Interval) for µ 
Since n>30, we will assume that the sampling distribution is the normal distribution with the sample 
statistic equal to the Z. 
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Example Case III  
For yet another product C, let n = 25, X = 15 minutes, S =1.5minutes. Find a 95% CI (Confidence 
Interval) for µ. Since n<30, we will assume that the sampling distribution is the Student-t 
distribution with the sample statistic equal to the t. 
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Note that student-t is not symmetric so  
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4.4 Confidence Intervals for One Variance 
The sampling distribution of the variance (one variance) is the Chi-square distribution with (n-1) 
degrees of freedom. Please note that unlike the symmetric normal distribution, the Chi-square is not 
symmetric so the α values corresponding to the tails of the distribution are different. As a matter of 
fact, the Chi-square is a skewed distribution. Consider the following 6 data points (in inches) from a 
welding process: {24, 28, 21, 23, 32, 22} 

∑
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n

i
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n
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1
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

, the Range =(32-21)=11 inches 
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We indicated earlier that that statistic 
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is approximately Chi-square distribution, that is  
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. Thus, we can establish the confidence interval as 
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Figure 5: The Chi-square Distribution 

http://www.suncam.com/


 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT ENGINEERING STATISTICS II 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 18 of 41 
 

Want:    ( ) ασ −=<< 12 UCLLCLP  

From 
( )

αχ
σ

χ −=







<

−
< 1

1 2
22

2
2
1

Sn
P  

We have:  ( )
( ) 2

2
1

2

2

2

2
1

1
1

1 σ
χ

σ
χ

>
−

⇒
−

>
Sn

Sn
;   and   

( ) 2
2
2

21
σ

χ
<

− Sn
 

Hence: 
( ) ( )

α
χ

σ
χ

−=






 −
<<

− 111
2
1

2
2

2
2

2 SnSnP , hence ( )
( )

( )
( )

α
χ

σ
χ αα

−=








 −
<<

−

−−−

111
2

1,2/1

2
2

2
1,2/

2

nn

SnSnP  

Please note that for the same degrees of freedom (n-1), ( ) ( )
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Example: Assume for the grinding example product D, the sample size n=25, s=4.9, establish a 95% 
confidence interval for the variance σ2. 
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4.4 Confidence Intervals for Two Variances (σ12, σ22 ) 
The Test Statistic is:  
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Example:  
Suppose that in the Diametral Pitch example, the Spur-gears were supplied by two suppliers/clients, 
with the following data, Supplier 1: n1=21, S1=0.56 inches, Supplier 2, n2=16 S2=1.8 inches. Find a 
95% confidence interval on the ratio of the two variances.  Assume that the processes are 
independent, and the Spur-gear operations are normally distributed 
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4.6 One-Sided Confidence Interval  
Under certain conditions only one-sided intervals may be of interest.  For example, take the 

case of still bars where we want the measured strength to be as high as possible.  Our major concern 
then is that the strength values do not go beyond a certain lower limit.  In that case, we will be 
establishing a lower confidence (one-sided) interval rather than a two-sided interval.  On the other 
hand, we may have a variable (say the number of defects) in which case we want the value to be as 
close to zero as possible.  In that case, we only worry about how high the value can go.  So, we want 
to establish a one-sided confidence interval. A one-sided confidence interval is looked at as a one-
tailed interval (UCL or LCL but not both) unlike the two tails of the two-sided confidence Interval.  
That being the case we use α rather than α/2.  
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Let us use the example for CASE III example to illustrate. Assume now that we want a 95% lower 
confidence interval (LCL) for the grinding duration of product C.  
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Test of Hypothesis 
A test of hypothesis is a test on an assumption or statement that may or may not be true 

concerning the parameter of the population of interest. The truth or falsity of such a test can only be 
known if the entire population is examined.  Since this is impractical in most situations, a random 
sample is taken from the population and the information used to deduce whether the hypothesis is 
likely true or not.  Evidence from the sample that is inconsistent with the stated hypothesis leads to 
a rejection whereas evidence supporting the hypothesis leads to its acceptance. The acceptance of 
a statistical hypothesis does not necessarily imply that it is true. It does not necessarily mean 
that the hypothesis is true because if we have another set of data, the decision might be different. 
The acceptance of a statistical hypothesis is simply an indication that, the data on hand and only 
because of the data on hand, we have been led to accept the hypothesis. It does not necessarily 
mean that the hypothesis is true because if we have another set of data, the decision might be 
different. This is where the issue of variability comes in 

 The hypotheses that are formulated with the hope of rejecting are called null 
hypotheses and denoted by Ho. The rejection of Ho leads to the acceptance of an alternate 
hypothesis denoted by H1. The decision to reject or not reject a hypothesis is based on the value of 
the test statistic.  The test statistic is compared to a critical value.  The critical value is based on the 
level of significance of the test and represents values in the critical region as defined by the 
significance level.  Depending on the nature of the test, that is:  
 
Less than (µ < µo) 
Greater than (µ > µo) 
Not Equal (µ ≠ µo). 

Based on the value of the test statistics as compared to the critical value (or the table value of 
the significance level of the test), a decision is made to reject or not reject the null hypothesis.  In 
such test of hypothesis, if the test statistic falls in the acceptance region, then H o is not rejected, else 
it is rejected. The hypothesis is then specified as:  
The null is give as:   

Ho: µ = µo 

The alternative is given in the form of one of the following:  
H1: µ < µo  

    H1: µ > µo 

    H1: µ ≠µo 

5.1 Errors Associated with Decisions on Test of Hypothesis 
Decision to reject or not reject a test naturally leads to two possible types of errors.  The 

reason for the error is that the decision is made based on information from a sample rather than the 
actual process population itself.  The fact is that we are trying to ascertain the true state of nature 
using information from the sample. We of course do not know the true state of nature and would 
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like to INFER it from the sample. This notion is perhaps one of the most important foundations of 
statistics, namely the fact that while we do in fact seek the population value we can only approach 
that value by way of the sample value which in and of itself is of limited value unless it points us to 
or gives us the population value. All samples are taken not for their own sake but to provide 
information or inference about the population value.  The errors are the errors of Type I (α), and 
Type II (β). 
5.1.1 Type I Error (α) 
This type of error is committed when the null Hypothesis (H0) is rejected. 

5.1.2 Type II Error (β) 
This is the type of error committed when the null Hypothesis (H0) is not rejected.  This is 

loosely referred to as accepting the null Hypothesis. It is a more consequential and less forgiving 
error than the type I or alpha error.  

These errors are aptly demonstrated by the schematic in Table 2. 
 
                 TRUE STATE OF NATURE 

    
 
 

    H0 True                           H0 False 
 DECISION     
  Accept NO ERROR                     TYPE II ERROR 
      
DECISION     

  
Do Not 
Accept TYPE I ERROR             NO ERROR 

 
 

5.1.3 The Relationship Between the Type I (α) and Type II (β) errors 
Note that α and β are always at the opposite side of the target or what we will later call the 

dividing line of criteria.  However, it is important to note that we cannot talk about committing a 
type II error (β) if we do not know what the true mean value is. In order words, you can only have 
made a mistake when you know what the target or what the aimed at value is.  If we look at the real 
implication of the type II error, it says that we are accepting the null hypothesis when it is false.          

This is a very serious error that is not taken lightly.  And to say that we committed such an 
error, we must know what the true state of nature is to say that we did commit the error of Type II.  
This says that given that we have µ0 and the sample X or X  we can look at the probability of type I 

Table 2: Schematic for Type I and Type II Errors 
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error as the probability of rejecting the null hypothesis when indeed it is true. However, if we say we 
accept the null hypothesis then we must know the true mean value to say that indeed accepted 
something we should not have.  That true mean value is denoted as µ1.  So µ0 is related to type I 
error (α) and µ1 is related to type II error (β). Note that sometimes rather than specifically talk about 
β, we talk about (1- β) which is also referred to as the power of the test.   

 
5.1.4 Computation of the Required Sample Size (n) given (α) and (β) 

In order to exert some control over a process, the engineer might specify the size of both 
Type I and Type II errors that the system can tolerate.  The question then what value of n (sample) 
would help guarantee the level of protection based on these error levels.  

When the underlying process is normally distributed or when our focus is on the mean of 
the process (as you may recall even if the process is not normally distribution according to the 
central limit theory, the means from the process follow the normal distribution). 

Assume we have specified α and µ0. If we also specify β then we must necessarily specify µ1. 
A ketch of the relationship between these parameters will help explain the procedure    
              
 
 
 
 
 
 
        
 
 
 
 
 
 
  

0µ  
β  

α  
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Figure 6b: Exploded view of Fig 6a 

Figure 6a: Location of α and β, μ1>μ0 
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Example 
Let µ0=100, σ=10, α=0.05.  Let β=0.1 for µ1=110 
Compute n that will provide the level of protection given by the type I and type II errors 
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5.1.5 Computation of β when µ1>µ0 
Suppose µ0=100, σ=10, α=0.05.  Let β=? for µ1=110 

Previously we observed: ( ) ( )
n

Z
n

Z
n

Z
n

Z σµµσσσµµ αβαβ −−=⇒⇒=−−− 0101 0  

( )
αβ σ

µµ
Z

n
Z −

−
= 01  

αβ ZnZ −∆= , where 





 −

=∆
σ

µµ 01 , Note: If Zβ <0, then β>0.5 or 50% 

For our example: µ0=100, σ=10, α=0.05.  β=? for µ1=110 
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645.1121 −⇒−∆= αβ ZnZ =3.464-1.645=1.82, Ф(1.82)=0.9656 

From Figure 6, β=1-Ф(1.82)=0.0344 or 3% 
 
5.1.6 Computation of β when µ1< µ0 
To complete this important example, let look at the case when µ1<µ0 
 
 
  

X  

µ0 µ1 

α 
β 

α 

β 

μ0 

μ1 

AX  

Fig 7a:  α and β for μ0 >μ1 

Fig 7b: Exploded view of  α and β for μ0 >μ1 
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5.2 Operating Characteristic Curve 

Operating characteristic curves are useful tools for exploring the power of a control process. 
Typically used in conjunction with standard quality control plots, OC curves provides a mechanism 
to gauge how likely it is that a sample statistic is not outside of the control limits when, in fact, it has 
shifted by a certain amount? This probability is usually referred to as β or Type II error probability, 

For μ1 >μ0, Zβ, = αβ ZnZ −∆=  

For μ1 <μ0, Zβ, = ( )∆+−Φ− nZα1  

For μ1 ≠μ0, 2/αβ ZnZ −∆=  

n= 
( )

2
01

2







 −

+

σ
µµ

βα ZZ
 for both μ1 >μ0 and μ1 < μ0 

 

n=
( )

2
01

2
2/







 −

+

σ
µµ

βα ZZ
    for μ1 ≠μ0 
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that is, the probability of erroneously accepting the ‘true state of nature’ (e.g. mean, variance, etc.) as 
being "in control" when in fact it is not.  The OC curve also provides another measure of the test in 
the context of its overall power, namely know the extent to which the test can detect the effect or 
shift in quality level of a given metric, often referred to as the ‘power of the test’ and is denoted by 
1-β. Note that operating characteristic curves pertain to the false-acceptance probability using the 
sample-outside-of- control-limits criterion.  The sample size for establishing an OC curve is 
determined by the cost of implementing the plan (e.g., cost per item sampled) and on the costs 
resulting from not detecting quality problems and thus passing unfit products. The OC curve 
provides the ability to assess the risk associated with each quality level when there is a shift in the 
process quality. 

 
5.2.1 Computation of the Parameters of the OC Curve 

β (or the Type II error) is the probability of accepting the original hypothesis H0 when it is 
not true or when some alternative hypothesis, H1 is true. Thus β is a function of the value of the test 
statistic that is less (or greater) than the hypothesized value.  Suppose the critical Value (Y-bar) for 
the mean µ based on a 95% CI is 18.8.  Also, let n=25, and σ=2. We can now examine how β varies 
for different values of µ. 

 
 

µ 
   







 −
=

n
Z

/
8.18

σ
µ

 
     β   1-β (power of the test) 

18 2 0.02 0.98 
18.3 1.25 0.11 0.89 
18.5 0.75 0.23 0.77 
19 -0.5 0.69 0.31 
19.2 -1.0 0.84 0.16 
19.5 -1.75 0.96 0.04 
Table 3: Computation of the parameters of the OC Curve 

 
 

  

http://www.suncam.com/


 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT ENGINEERING STATISTICS II 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 27 of 41 
 

 
 

 
 
 
 

 
 

OC Curve

0

0.2

0.4

0.6

0.8

1

1.2

17.5 18 18.5 19 19.5 20

Mean   µ

Pa
 (B

eta
)

Series1

α=0.5 

µ=19.5 

µ=19.0 

µ=18.5 

β 

β 

25/2
8.18 µ−

=Z

( ) ( ) 69.05.05.01

5.0

5
2

5.198.18

==−−=

−=
−

φφβ

Figure 8: Computation of Operating Characteristic Curve Data Points 

Figure 9: Plot of the Operating Characteristic Curve 
 

Dividing line of criteria y-bar =18.8 
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5.3 Steps in Hypotheses Testing 
 
5.3.1 Set up the Hypothesis and its alternative 
Example Ho: µ = 19.5 g 

H1: µ < 19.5 g 
5.3.2  Set the significance level of the test α and the sample size n.  
Specify or compute σ 
Example:   α = 0.05, n = 25, σ = 2 
 
5.3.3 Determine a sampling distribution and the corresponding test statistic  
Choose a sampling distribution and the corresponding test statistic to test H0 with the appropriate 
assumptions. 

Example:  Assuming σ known, X  is normally distributed with mean µ and standard deviation 
n

σ

or Z  ε N (0,1).  Also for the test statistic, we have  
 

5.3.4 Set up a critical region for the test statistic  
 Set up a critical region for this test statistic where Ho will be rejected 100p percent of the 
samples when H o: is true 
Example:  In our example where H1: µ < 19.5 g, the critical region would consist of all computed 
values of the test statistic (ZC) less than the table or specified value (- αZ ).   

Thus, the decision would be to reject the null hypothesis H0 if ZC < -Zα.   
Similarly, for H1: µ > 19.5 g, the critical region would consist of all computed values of the test 
statistic (ZC) greater less than the table or specified value ( αZ ).  Thus, the decision would be to 

reject the null hypothesis H0 if ZC >Zα.   
 
5.3.5  Perform the Experiment 
Example: Choose a random sample of n observations, compute the test statistics and make a 
decision on Ho 
 
5.3.6 Numerical Examples: Hypothesis Tests for the Mean, σ known or n >30 
i) Hypothesis for: μ< μ0  
  Ho: µ = 19.5 g 

H1: µ < 19.5 g 
 Let: α = 0.05, n = 25, σ = 2, X =18.9, µ=19.5. Also, Zα=Z 0.95 =1.645 

n
XZ C /σ

µ−
=

Reject H0 if ZC <- Ztable., 
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With σ known the sampling distribution is the normal. The test statistic is the standardized Z, hence 

5.1
25/2

5.199.18
/

−=
−

=
−

=
n

XZC
σ

µ  

Critical Region: All values of the test statistic less than -1.5 
Reject if  ZC < -Z 0.95 
  ZC = -1.5, -Z0.95= -1.645 
  But: -1.5 > -1.645 
Therefore, do not Reject H0.  There is no evidence based on the data to suggest that the true 
mean of the population is not 19.0 grams. 
ii) Hypothesis for: μ> μ0 

  Ho: µ = 100 g 
H1: µ > 100 g 

a). Let: α = 0.05, n = 9, σ = 10, X =106.  Also, Zα=Z 0.95 =1.645, β=0.1 for μ1=110 

8.1
3/10
100106

/
0 =

−
=

−
=

n
X

Z
σ

µ
 

Critical Region: All values of Z > Zα, that is all Z > 1.645 
But 1.8>1.645⇒ Hence Reject H0 
 
iii) Hypothesis for: μ≠ μ0 

  Ho: µ = 100 g, H1   µ ≠ 100 g 
Let: α = 0.01, n =? , σ = 16, X =106.  Also, Zα/2 =Z 0.995 =2.976, β=0.20 for μ1=92 

Reject if  2/αZZ < , 
( )

σ
µµβσ 01

2

2
2/ ,

−
=∆

∆
+

= where
ZZ

n  

( )
( )

( ) ( ) 4767.46
64

1684.0576.2
16/8

84.0576.2 22

2

2

==
+

=
+

=n  

( ) 57.2
16
856.66

16
476

47/16
100106

/
0 ===

−
=

−
=

n
X

Z
σ

µ
 

Since 2/αZZ < ⇒2.57<2.976⇒Reject H0 

 
5.3.6  Examples for Test of Hypothesis for the Mean, σ unknown and n <30 
i) Hypothesis for: μ< μ0 

  Ho: µ = 175  
H1   µ < 175 

Let: α = 0.05, n = 6, s =7.9, X =172.8, μ0=175 
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Sampling distribution is the student-t (σ unknown and n <30) 
t (0.05, 5) =2.015. Reject if t<-2.015 
 

( ) 68.0
6.7

61758.172
/

0 −=
−

=
−

=
nS

X
t

µ  

Since -0.68>-2.015⇒ Do NOT REJECT H0 
Computation of n for this example:  
α = 0.05, n = 6, assume σ =7.9, X =172.8, µ0=175, µ1=170 for β=0.2 

( )
σ

µµβσ 01
2

2

,
−

=∆
∆

+
= where

ZZ
n = ( ) 1641.15

4006.0
1745.6

9.7
175170

84.0645.1
2

2

≈==







 −

+  

5.4 Summary Tests for One Mean  
 
5.4.1 Variance known 

Ho: µ = µo; 
H1: µ <µo           Reject if:  Z < -Zα 
H1: µ >µo           Reject if:  Z > Zα 

H1: µ ≠ µo          Reject if:  |Z| > Z α/2   

Test Statistic 
n

XZ
/σ

µ−
=  

5.4.2 Variance unknown, but n > 30 (σ estimated from s) 
Ho: µ =µ0  
H1: µ <µo           Reject if:  Z < -Zα 
H1: µ >µo           Reject if:  Z > Zα 

H1: µ ≠ µo          Reject if:  |Z| > Z α/2   

      Test Statistic: 
ns

XZ
/

µ−
=  

5.4.3 Variance unknown, n ≤ 30 (σ estimated from s) 
Ho: µ = µo  
H1:  µ < µo  Reject if: t < - tα, ν 
H1:   µ > µo  Reject if: t > tα, ν 
H1:   µ ≠µo   Reject if: |t| > tα/2, ν 
where df= ν = n-1 

nS
XtStatisticTest

/
: µ−

=  
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Test on Means (More Than One Mean) 
6.1 Variance known 
a). For two Independent Samples, the difference between two means ( ( )21 XX − The variance of the 
difference between two means for two independent samples from normal populations.  

( ) δµµ
σσ

σσσ ==−+=+=− 0, 21
2

2
2

1

2
1222

2121
and

nnXXXX
  

Ho: µ 1= µ2; and the alternatives, namely: 
H1: µ1 < µ2        Reject if:   Z < - Zα,  

H1: µ1 > µ2        Reject if:   Z > Zα 

H1:µ1 ≠ µ2          Reject if:  |Z| > Zα/2 
The Test Statistic is given by Z as shown above 
 
 

 
 
 
 
 
 
 
 
Example:  
The manufacturing engineer has been tasked to determine the setup configuration for two contract 
broaching processes.  The manufacturer of the broaching machine has historical data on the 
expected time to complete a broaching operation for each configuration. Assume that the 
population variances are also known and are as follows: 

05.0,8,10,25,50,25,45 212211 ======= ασσnXnX  

i) Ho: µ 1= µ2; ,    H1:µ1 ≠ µ2          Reject if:  |Z| > Zα/2 Note: Zα/2=Z0.975=1.96 
 

( ) ( ) 952.1

5
164
55

25
164
5

25
64

25
100

4550

2

2
2

1

2
1

21 ===
+

−
=

+

−−
=

nn

XXZ
σσ

δ  

Since Z (1.952) < Zα/2(1.96), Do not Reject. The two broaching configurations are essentially the 
same.  However, because of the closeness of the critical (table) value to the computed value, 
additional analyses need to be carried out. 

µ1-µ0 

( ) ( )

2

2
2

1

2
1

2121

nn

XXZ
σσ
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+

−−−
=  
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Figure 10: Differences between two variances 
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b) We use the Test Static above when we are sampling from normal populations. However, we can 
use a modified version when the population is not normally distributed, but the sample sizes are 
large enough (>30) in which case we can apply the central limit theorem(CLT) and approximate σ1 
and σ2 with S1 and S2 respectively. That is  
 ( ) ( ) ( )

2

2
2

1

2
1

211

2

2
2

1

2
1

21211

n
S

n
S

XX
Z

n
S

n
S

XX
Z

+

−−
=⇒

+

−−−
=

δµµ  

Example 
As way to strengthen its material properties, a company is considering annealing of a piece part and 
then measure the ductility. The project engineer claimed that annealing will increase ductility by 
0.01in/in percent. After tensile testing the percent elongation as a measure of ductility for the 
annealed parts was 1X = 0.211 in/in with standard deviation =0.0035 in/in and n=40. Values 

(percent elongation) obtained for the standard material without annealing was 2X =0.187 in/in with 

standard deviation of 0.007 in/in and n=40. Set up the hypothesis and at α= 0.01, determine if the 
claim by the project engineer can be supported by the data.  
1. H0: μ1-μ2, H1:  μ1-μ2 >∂ (=0.01),  
2. α= 0.01, n1=n2=40 
3. Reject if Z> Zα (Z0.99=2.33) 
 
  
4. Decision: Since Z (3.232) is greater than the critical value of 2.33, then we must reject the null 
hypothesis.  This means that the data supports the claim of the project engineer for the annealing 
process.  
 

Example:  
Let us consider a common example of mating or tolerance parts, where the focus is on the optimum 
fit that is, the optimum clearance. Our example is a shaft/bearing scenario where the clearance is 
zero for optimum fit. Please note that if the clearance is less than or equal to zero, then it would be 
difficult for the shaft to fit into the bearing. Given the following information about the mating parts 
(shaft and bearing), what is the probability that 
 the shaft will not fit in the bearing? 
Define ,,, 222

BSCBSCBSC σσσµµµ +=−=−=  

Let µB=0.732 inches, µS=0.698 inches, σB=0.004 inches, σS=0.016 inches 
0165.0,034.0,1072.2)016.0()004.0( 4222 ===+= −

CCC x σµσ  

Note:  if X=aY then Vax(X)=a2Var(Y)   
This leads to: 
if D=X-Y, then Var(D)=Var(X)+Var(Y) 
            

( )
( ) ( )

232.3

40
007.0
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0035.0

01.0187.0211.0
22
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{ }
C

CCPBSP
σ

µ−
=≤=≤−

0
)0(0)(  

( ) ( ) %20197.09803.0106.2106.2,06.2
0165.0

034.000
≈=−=Φ−=−Φ−=

−
=

−
=

C

CZ
σ

µ  

The probability that in the mating arrangement the shaft will not fit into the bearing is about 2% 
6.2 Variance unknown but assumed equal and n<30 
Ho: µ1 = µ2; or H0: µ1 - µ2 =0 
H1: µ1 < µ2 or H1: µ1 - µ2 <0      Reject if:   t <- tα,ν  
H1: µ1 > µ2 or H1: µ1 - µ2 >0             Reject if:   t > tα,ν 

H1: µ1 ≠ µ2 or H1: µ1 - µ2 ≠0          Reject if:  |t| > tα/2,ν  

Where
( ) ( ) ( )2,

2
11

21
21

2
22

2
112 −+==

−+
−+−

= nndf
nn

snsn
s p υ  

For the previous problem assume that the variance is unknown and estimated from the data and that 

05.0,9,12,25,50,25,45 212211 ======= αSSnXnX , ν=48, t0.05, 48=1.68 

Ho: µ1 = µ2   
H1: µ1 < µ2           Reject if:   t < -tα,ν  

( ) 67.1
15
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255
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05045,6.105.112 −=−=−=
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−−
=== tS p  

Reject if t<-t. But -1.67>-1.68, hence Do NOT Reject.  However, the values are close enough to 
warrant further investigation and analyses. 
 
6.3 Variance unknown and unequal (σ1 ≠σ2) 

Ho: µ1 = µ2; or H0: µ1 - µ2= 0 
H1: µ1 < µ2; or H1: µ1 - µ2< 0   Reject if: t < -tα,ν 
H1: µ1 > µ2, or H1: µ1 - µ2> 0   Reject if:  t > tα,ν 

H1: µ1 ≠ µ2, or H1: µ1 - µ2 ≠0   Reject if: |t| > tα/2,ν 
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The above data is from two different plants. The difference in the machining time of two identical 
operations at the two different plants of a multinational company is of concern to the Director of 
Engineering Services. It is believed that a difference of more than 10 minutes would cause a 
problem about cycle time which would require a major change in the system design. Determine what 
should be done based on a test of hypotheses at α=0.1.  
i). H0: μII -μI=10, H1: μII-μI>10, Reject if t > tα 
 

( ) ( ) 21.0
1.12
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7
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5
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104.97110

75
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2
2

2
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==
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+

−−
=

ss

XX
t III  

t 0.1,7=1.415Since t (0.21) < tα, (1.47), therefore cannot reject H0.  Hence it is reasonable to suggest 
that the difference between the two machines is statistically not more than 10 minutes. 
6.4 Paired Tests 

 In some situation, the samples for µ1, µ2 are not independent which is an assumption we 
have made or implied in most of the foregoing tests. In some applications, paired data are 
encountered.  For example, while matching a cylindrical disk, it may be necessary to take 
measurements at two different reference points.  In such circumstances, the difference between the 
measurements rather than the actual measurements becomes important. The difference test is 
sometimes referred to as the dependency test. The random variable of interest is the difference, dj 
where: dj = X1j - X2j ,  j = 1,2,...n 
H0: µd = 0, H1: µd ≠ 0 
 

 Plant I(minutes) Plant II(minutes) 
 102 81 
 86 165 
 98 97 
 109 134 
 92 92 
  87 
  114 
Mean 97.4 110 
Variance 78.8 913.33 
n 5 7 
Table 4: Machining times for machines I and II 
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The Test Statistic is given by: dfnwith
ns

dt
d

d =−=
−

= )1(,
/

νµ
 

Example: A group of 10 engineering students were pre-tested before instruction and post-tested 
after 6 weeks of instruction with the following results as shown in table 5. 
          
 
 
 
 
 
 
Conclusion: Based on the test results, there is not enough statistical evidence to suggest an 

improvement due to the intervention. 

 
Test of Variance 
 
7.1 Variance from One Population 

Let:Ho:σ2 = σo
2 

H1: σ2 < σo
2,  reject if: 1,1
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−−< nαχχ , σ2 > σo

2, reject if: 1,
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2, reject if: 1),2/1(1,2/
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−−− <> nn or αα χχχχ  

Student Before After Instruction Difference ‘d’ 
1 14 17 3 
1 12 16 4 
3 20 21 1 
4 8 10 2 
5 11 10 -1 
6 15 14 -1 
7 17 20 3 
8 18 22 4 
9 9 14 5 
10 7 12 5 
Table 5: Result of Post- Test Pre-Test 
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The sampling distribution for the variance of a population is the chi-square, where s2 is computed 
from a random sample of n observations and σo

2 is the given or specified value. Note that the Chi-
square unlike the normal is not symmetrical. Also for a specificα, and same degrees of freedom 
given by ν = (n-1): 

2
,1

2
, υαυα χχ −>  

Example:  The population variance from a machining operation was given by the lathe manufacturer 
as σ2 =30.  A sample from the current machining operation was taken with the following values 
N=25, S =4.92. α=0.05 
Test the hypothesis: H0: σ2=30 against H1:σ2 < 30 

 Reject if  1,1
22

−−< nαχχ  
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Do not reject H0. There is not enough evidence to believe that σ2 is not statistically equal to 30. 
 

7.2 Variance from Two Populations 
 

Ho: σ1
2  = σ2
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Due to the difficulty of accessing some of the data from the F-table, we recast the Test statistic 
and critical region as follows: 
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Example: We will use the Spur-gear example to demonstrate the F-test for two variances. Suppose 
that in the Diametral Pitch example, the Spur-gears were supplied by two suppliers/clients, with the 
following data, Supplier 1: n1=21, S1=0.56 inches, Supplier 2, n2=16, S2=1.8 inches. Perform a test 
hypothesis that says that the variance of supplier 2 is greater than that of supplier 1 at α=0.01. 
 
H0: σ1

2=σ2
2, H1: σ2

2 >σ1
2, Reject if F > Fα, ν2, ν1 

2015, 122
1

2
2 === υυwith

S
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F0.01,15,20 =2.20, Since F (10.331)> F0.01,15,20 (2.20), Reject the null hypotheses 
 
Example: Suppose we are interested in testing for H0: σ1

2=σ2
2, H1: σ2

2 < σ1
2 

Let n1=21, n2=13, S1=4.2, S2=2.7, α=0.01, Reject if 
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==F , Hence, we cannot Reject H0. No reason to believe that the variances are NOT 

equal based on the data we have. 
 
Example: Testing for equality of the variances 
Two types of production processes are under consideration. One is based machine enabled used a 
built-in mechanism, the other is robot enables. The production time in minutes is as follows: 
n1=10, s1=20.5, n2=8, S2=15.3, α=0.1. Determine if the variances are equal.  
H0: σ1

2 =   σ2
2, H1: σ2

2 ≠ σ1
2 

Reject if: 68.3, 7,9,05.01,1,2/ => −− FFF
mM nnα , (F0.05, 10-1, 8-1) 
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7.3 Why the F test for Two Variances 
 Let us examine why these hypothesis tests (especially the one about the equality of variances) 
are important. Recall that when we were carrying out the test of two means, we were concerned 
about the equality of variances, so we had to assume that the variances are either equal or not equal 
especially when we are not operating under the normal distribution.  As a matter of fact, we used a 
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certain test statistic if the variances were assumed equal and another if we could not assume they are 
equal.  What does all these mean now that we have a way to test for the equality of the variances. 
The implication of this going forward is that now that we have a way to determine whether the 
variances are equal or identical, we can no longer simply assume away the possibility.  As engineers, 
we must operate from the standpoint point of knowledge and information.  
So, this let us see how this would work in a more practical way. Recall that in our test for two 
means, we had two special cases, namely, variance unknown & equal, and variance unknown and 
unequal.  
 
For the case of Variance unknown but assumed equal we have the following test statistic:  
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For the case where the variance is unknown and unequal, we have  
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What we need to do now is rather than assume, we will first determine whether the variances are 
equal using the test of hypothesis and then based on that we make a decision on which of the test 
statistic to use. Let us assume that we have been given the times to perform a finishing operation by 
two different processes (X1, and X2).  
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Test: Ho: µ1 = µ2; H1: µ1 > µ2, at α=0.01 
Procedure: 
1. Test for the equality of the variances, then 
2. Test for the means based on the required hypothesis which in this case is: (H1: µ1 > µ ) 
Test for the variances 
a.) H0:  σ1

2 =σ2
2;  µ2:    H1: σ1

2 ≠ σ2
2 

b). n1=n2=12, α=0.01 

c). Test Statistics:  F=(S1
2/S2
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Note: nM= Sample size for the larger variance, while nm is the sample size for the smaller variance 
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Therefore, we Reject the null hypothesis of the equality of the variances 
Now we test for the means given that we know (rather than assume the nature of the variances) 
 
2. Test for the means: Ho: µ1 = µ2; H1: µ1 > µ2, at α=0.01 
The degrees of freedom df. is given by:  
 
ν=15, t (0.1,15) =2.602 
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Reject if:  t >tα, 15 

t= (4.799) > tα, 15(2.602), ∴ Reject H0 
Our decision then is to: Reject the null hypotheses that the finishing operating times by the 
two different processes are statistically the same.  
 
Summary 
 The result of a statistical inference is always a decision to act or not to act.  In some instance, 
the decision could be to accept, in place of the unknown parameter, the observed or computed value 
of the estimator without requiring that it be exactly the true value.  On the other hand, we may 
decide to reject or not reject the assumptions about certain distribution without conceding that such 
a statement is true beyond doubt.  The use of statistical inference enables us to control the possible 
errors that could arise because of our decisions and to ensure that these errors, while inevitable, are 
as small as economically possible. 
 Of interest is the determination of the type II error. We have provided several ways we can 
do that. Tables are available especially for the case of two means.  However, those were not included 
because it requires the use of tables which unfortunately we could not include here but they are 
available in most basic probability and statistics books. 
 Finally, we have the case of testing two means and the assumptions of the nature of the 
variances. Because of the nature of the work we do as engineers we should never assume away 
anything especially if the data is available for us to determine the veracity of the information.  Thus, 
in the case of the test of two means, if the we cannot assume that the process is normal then we can 
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use the central limit theorem as a guide.  If the variances are unknown, we must test to see whether 
they are equal or unequal in which case we can use the appropriate test statistic.  
 The materials present here are hardly exhaustive especially about hypothesis testing.  For 
example, we did not look at test for proportions and the like.  The idea is to provide a pathway that 
would lead to how we look at the problems of these type and then we can use the knowledge gained 
to extrapolate into related areas.  For example, the test of hypothesis for proportions follows the 
same method, in terms of the null and alternative hypothesis and the reject criteria.  The only 
deference is the Test Statistic which is determined by the underlying distribution of the random 
variable of interest.  
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