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Introduction:	The	Role	of	Statistics	and	Probability	in	Engineering	Design	
1.1	 Probability	

The concept of probability was developed to describe the property of an experimental 
situation in which it is impossible to tell what outcome to expect from any one experiment but yet in 
a series of trials (experiments), the proportion yielding a particular outcome seems fairly stable. 
Probability theory provides a formal basis for quantifying risk or uncertainty in engineering designs. 
According to Ang and Tang (1975), the role of probability methods in engineering design can be 
broadly categorized as – a) The modeling of engineering problems and evaluation of systems 
performance under conditions of uncertainty; b) Systemic development of design criteria, explicitly 
taking into account the significance of uncertainty, and c). The logical framework for risk assessment 
and risk benefit trade-off analysis relative to decision making. 
1.2	 Statistics	

Statistics is the art and science of gathering data and making inference from such data. 
Statistical techniques are useful for describing and understanding variability. By variability, we mean 
that successive observations of the outcome from a system or phenomenon do not produce exactly 
the same results. Statistics gives us a framework for describing this variability and for learning about 
the potential sources of variability. 

 
 

Figure1. Relationship between Probability & Statistics  
 

1.3	 Relationship	Between	Probability	and	Statistics	
Probability and statistics deal with questions involving the population (or universe) and 

samples drawn from that population. Consider a population with certain properties (called parameters 
or parent values) which are assumed to be known and so questions regarding a sample from the 
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population or universe are posed and then answered.  The problem is that because of the nature of 
the population, the values of the parameters are unknown but assumed and it is only by collecting 
samples from the population via random experiments that we can truly know the properties of a 
population or have an idea about the values of the parameters. For example, the probability of getting 
a head in a toss of a coin is assumed to be ½ and a way to verify this is through an experiment involving 
infinite number of trials. 

 Probability deals with the population with its parameters (parent values) while statistics deal 
with the sample and its statistic (values computed from the sample used as true representation of the 
population or universe parameters). Thus, while probability and statistics both deal with questions 
involving populations and samples, they do so in an “inverse manner” as shown in figure 1.  From 
the point of view of the population, information about the sample can be obtained by probability 
analyses. On the other hand, given some sample statistics, one can use those values to make inference 
about the nature of the population parameters. Statistics really is about statistical inference, namely, 

trying to infer whether the sample statistic (such as sample mean 𝑋 versus the population mean  or 

the sample standard deviation S2 versus the population variance 2 ) can reasonably be assumed to be 
good estimates of the parameters of the parent population.  Thus, probability projects information 
from the population to the sample via deductive reasoning, while Statistics tend to project information 
from the sample to the population via inductive reasoning 
	
Data	Handling	and	Data	Storage	
 Data handling is one of the major activities that engage the time of engineers and scientists in 
general but more so engineers.  Engineering activities and processes generate considerable data that 
have been gathered in different contexts and situations for the purpose of understanding the behaviors 
and patterns of the underlying distribution so that reasonable assumptions and hence engineering 
decisions, which are the real motive the data have been generated and gathered in the first place, can 
be made. In its complete form, data handling involves data collection, data recording and data 
presentation.  Properly organized and displayed data make it easy to understand and hence interpret 
the data for engineering decisions.  Thus, there is universal agreement among engineers that data 
handling is perhaps one of the most important activities of any engineer.  

More recently, new developments and growth in information technology (the internet in 
particular) and instrumentation have resulted in the generation of massive amounts of data. 
Consequently, engineers and scientists are inundated with unusual amount of data, most of that 
generated unwittingly. New storage platforms of such unimaginable sizes have been developed over 
the past few years. We have gone from Kilobytes, and Megabytes just a few decades ago to now 
Gigabytes and Terabytes.  
 By way of perspective, a computer Bit is the smallest unit of data that a computer uses. It can 
be used to represent two states of information, such as go, no-go. On a higher scale than the Bit is the 
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Byte. A Byte is equal to 8 Bits. A Byte can represent 256 states of information, for example, numbers 
or a combination of numbers and letters.  Kilobyte is yet on a higher scale than Byte. A Kilobyte is 
approximately 1,000 Bytes. A Megabyte is approximately 1,000 Kilobytes. A Gigabyte is approximately 
1,000 Megabytes. A Gigabyte is now a common term used to refer to computer disk space or drive 
storage. A 500 Gigabyte hard drive computer seems to be the basic standard these days. 1 Gigabyte 
of data is almost twice the amount of data that a CD-ROM can hold. A Terabyte is approximately one 
trillion bytes, or 1,000 Gigabytes. One and two Terabyte drives are the normal specs for many new 
computers. As an example, a Terabyte could hold close to 1,000 copies of the Encyclopedia 
Britannica.  It is estimated that 85,899,345 pages of Word documents would fill one Terabyte [Source: 
The Information Umbrella, Musings on Applied Information Management, 2014] 
2.1	 Data	Analytics	and	‘Big	Data’	

Thus there is now a new area of concern and study commonly referred as "Big Data." and an 
accompanying new methodology of data Analytics and data mining.  Big data is used to describe data 
sets that are so large or complex that traditional data processing applications are inadequate to deal 
with them. Some of the challenges to Big Data handling include analysis, capture, search, sharing, 
storage, transfer, visualization, querying, updating and privacy. 

Analytics is the discovery, interpretation, and communication of meaningful patterns in data. 
Data analytics have become an important tool in most engineering disciplines and are especially 
valuable in areas rich with recorded data. Data analytics combines basic theories and applications in 
statistics, computer programming and operations research to quantify performance and hence to 
support engineering decision making.  
	
Descriptive	Measures	of	Data	

For any given data, the goal is to extract some information or some of summary statistic about 
the data in terms of its central location and its variability.  The natural tendency is to try and locate the 
center of the data and to know where the data is anchored.  Another common measure is the 
dispersion or variability in the data.  In other words, the measure of dispersion gives an idea about the 
type of variability inherent in the data.  The central tendency represents a single value that attempts to 
describe a set of data by identifying the central position within that set of data. As such, measures of 
central tendency are sometimes called measures of central location and are often referred to as 
summary statistics.  The measures of dispersion focus on different measures of variability. 

 
3.1	 Central	Tendency‐‐Mean,	Median,	Mode,	and	Mid‐Range	

The Mean, Mode, Median and the Mid-Range are used as measures of the Central 
Tendency of a data set.  

Mean 
 The arithmetic means or the Mean is one statistic that describes the central tendency of a 
dataset and is typically denoted as 𝑋ത . The population mean is denoted as . 

The general formula for the sample mean is given as: 
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Where fi is the frequency (or the number of occurrences) associated with the ith data point. 
Median 

 The Median refers to the ‘middle’ value when the data is arranged in increasing or decreasing 

order.  Thus, the Median is computed from ranked data and is denoted as 𝑋෨ (referred to as X curly) 
and the corresponding population value is denoted as 𝜇෤. For a set of values X1, X2, …..Xn, the Median 
is computed as shown depending on whether the sample size n is even or odd. 

For n odd, The Median value is denoted as 𝑋෨ ൌ
2

1n
position 

For n even, The Median 𝑋෨ is given by the average of the values of 
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n
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
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
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n
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Mode 
 The Mode of a set of observations is the observation in the data that occurs most often. Not 
every set of numbers has a mode. If no numbers repeat {3,5,6,9,12,8} then there is no mode. 
Sometimes we might have more than one mode. For example, for the set {1, 4, 4, 6, 8, 9, 9}, the 
modes are 4 and 9. As another example, the mode of the sample [1, 3, 4,5, 5, 6, 6, 7, 7, 7, 11, 11, 16] 
is 7. Given the list of data [4, 4, 2, 9, 9] the mode is not unique - the dataset may be said to be bimodal, 
while a set with more than two modes may be described as multimodal. 

Mid-Range 
 The Mid-Range defined [(XL+XS)/2] can also be considered as a central tendency, where XL 
and XS refer to the largest and smallest number in the dataset respectively. Regardless of which is used, 
the Central tendency is typically a point estimate of the data.  
 

Numerical Examples for Central Tendency 
Set of numbers: {2, 5, 7, 8, 12, 13, 16} 
Mean={2+5+7+8+12+13+16}/7 
Mean=63/7 
Mean=9  
Median={2,5,7,8,12,13,16} =8 
Mode: There is no mode (No number occurs more than once) 
Midrange=2+16/2=9. 

Given the set of 19 data points: 30,44,55,60,70,75,84,84,84, 90,92,93,93,95,98,110,115,115,120 
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MEAN ( X ) = 84.57895, MEDIAN ( X
~

)= 90, MIDRANGE = (30+120)/2=75 
MODE= 84 (The mode is the number with the highest frequency) 
MAX = 120, MIN=30 

VARIANCE  S2 =593.1462, STANDARD DEVIATION √S2 =S=24.35459 

3.1.1	 Special	Case	of	the	Equality	of	the	Mean,	Median	and	Mode	
The mean and median have different functions and are usually not equal or identical. When 

the data is negatively skewed (that is long tail to the left), the Median is more than the Mean. When 
the data is positively skewed (that is long tail to the right), then the Mean is greater than the Median.   

In the case where the data is symmetric, the data plot will look more like a bell-shaped curve. 
It is only in this special case that the Mean and the Median are identical. Additionally, it is also under 
this circumstance where we have a unimodal data set that the Mode would be equal to both the Mean 
and the Median. This special case happens to occur when the underlying probability distribution that 
generated the data set is said to be the Normal distribution. So, a useful test for the Normal 
distribution is to compute the Mean, the Median, and the Mode of the set of data. If all three 
statistics are equal or nearly equal (close to 90% of each other) then one can claim that the data set is 
from a Normal distribution. Note that for empirical data set the values will probably not be identical 
because of the error in measurement.  

3.1.2	 Significance	of	Sample	Statistics	as	Estimators	of	the	Population	Parameters	
 It is important to understand that the ultimate goal is not to estimate the different statistics (as 
each measure of central tendency is called or referred to) because in and of themselves they are useful 
only to the extent that they are used to discover the true value of the population parameter. The larger 

or ultimate goal is to get a sense of the population parameter value ( in this case) or what is generally 
called the true mean. All these measures or statistics are mere surrogates that we use to gain access to 
the population value which is not possible in almost all cases and so we must take a sample from the 
population to get an estimate. Thus, what we are doing in effect is to estimate the parameter value via 
the sample values because they are the only things we have access to.  
 As engineers, it is important to understand that the sample estimate or statistic is never the 
goal but a means to the goal. The population parameter is always the goal. That is why we always seek 
the best estimators for the parameter, so we can get as close as possible to the real thing. Please note 
that by the very nature of a random experiment as we discussed earlier, each realization of the 
experiment may very well give us different statistics. So, it is expected that each realization of the 
experiment may produce different estimates of the same statistic. 
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3.1.3	 The	Sample	Mean	as	the	Best	Estimator	of	the	Population	Mean		
 As indicated earlier, the mean is prone to the effects of outliers since it is simply the arithmetic 
average with no weighting involved.  This means that other measure of the central tendency may be 
preferable. The median as a measure of central tendency for example is resistant to the effect of 
outliers. However, while this may be the case, it has been shown that in most situations the sample 
Mean tends to be a more stable estimator of the population mean. So, what we need more than 
anything in order to determine the most preferable estimator is the properties of unbiasedness and 
efficiency. So, a statistic that is both unbiased and efficient is the one that we must use to represent 
or estimate the parameter value. So, in the case of the central tendency while the other estimators 
are unbiased, the sample mean is most efficient of the group of estimators and so it is commonly 

used as the estimator of the population mean ().  
 
3.2	 Dispersion	–Variance,	Standard	Deviation,	Range,	Interquartile	Range	
 The measure of central tendency gives us an idea about where the data is located or anchored.  
However, while that information is useful, it is incomplete because as we noted earlier different 
samples from the population will likely give us different estimates of the central tendency. While we 
could have the same estimates for the Mean and Median for different samples, realistically the spread 
or dispersion for the different data set could be significant and hence cannot be ignored.  Thus, it is 
important that we not only look at the central tendency but equally important, we must also look at 
the dispersion or the variability to a get a true sense of what the data is about. Again, it is important 
to realize that because of the random nature of an experiment, there is inherent variability and so it is 
important that we understand and estimate that variability in order to be able to get a true estimate of 
the population parameter. Thus, the central tendency estimates alone do not tell us the complete story 
and we must of necessity get a measure of the variability or dispersion to get an accurate picture of 
the data. The known measures of dispersion or variability are; the Variance, Standard Deviation, 
Range, Inter-quartile Range. 

3.2.1	 The	Range	
 The sample range is the simplest measure of variability but only based on two values.  It is 
simply the difference between the smallest value XS and XL for a given data set (. i.e., XS - XL).   Because 
of variability, each sample from the population will have different range values. The range is a good 
measure of variability when the sample size is small, less than 5 and greater than or equal to 2. A good 
rule of thumb is to use the range as an estimator of variability if the sample size is less than 5, and to 
use standard deviation if the sample size is 5 or more. As we will see later, in the computation of the 
standard deviation, the numerator or divisor is (n-1), so the standard deviation is not a suitable 
estimator of variability for small sample sizes especially for sample sizes that are 2 or less. Of course, 
if the sample size is one (n=1), we will not be talking about variability because practically we cannot 
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measure it. Of course, for very large samples, the sample variance or the square of the sample standard 
deviation is the most unbiased and efficient estimator of the population variance.  

3.2.2	 The	Inter‐quartile	range	
Before discussing the inter-quartile range, it is important to we identify what quartiles are and 

how they are computed to guide our discussion. The quartile is the name given to segments of the 
data when they are divided into fourths. The reason is that it is easy to look at such segments to see 
where and how the data is located   

• 1st Quartile (Q1) = 25th percentile 
• 2nd Quartile (Q2)= 50th percentile= The Median 
• 3rd Quartile (Q3) = 75th percentile 

The 100pth percentile for a sample set is a value such that at least 100p% of the observations in the 
data set are below this value and (100(1-p)% are at or above this value. 
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The Inter-quartile range is a measure that indicates the extent to which the central 50% of 
values within the dataset are dispersed. It is based upon, and related to, the median. As indicated the 
data can be further divided into quarters by identifying the upper and lower quartiles. The lower 
quartile is one-quarter of the way along a ranked or ordered dataset whereas the upper quartile or 3rd 
quartile is found three-quarters from the top of the dataset or one-quarter of the way from the bottom.  
Therefore, the upper quartile lies half way between the median and the highest value in the dataset 
whilst the lower quartile lies halfway between the median and the lowest value in the dataset. The 
inter-quartile range is the difference between the 3rd and 1st quartiles that is (Q3-Q1). Like the 
range however, the inter-quartile range is a measure of dispersion that is based upon only two values 
from the dataset. 
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3.2.3	 The	Standard	Deviation	
 Statistically, the standard deviation is a more powerful measure of dispersion because unlike 
the range and the inter-quartile range, it takes into account every value in the dataset. The square of 
the sample standard deviation, also known as the sample variance, is an unbiased estimator of the 
population variance. Please note that the sample standard deviation is NOT an unbiased estimator of 
the population variance, but the sample variance is.  
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Data	(Graphical)	Displays	
 The purpose of data display is to convey the data to the viewers in pictorial form that is easily 
understood. Data displays in the form of a graph are much more visually appealing than a table or list.  
A graph should be able to stand alone, without the original data.  It is easier for most people to 
comprehend the meaning of data presented graphically than data presented numerically in the form 
of tables.  This is especially the case for those with limited background and knowledge of engineering 
and statistics.  More specifically, data is displayed graphically to  

 To describe the data set 

 To analyze the data set (Distribution of data set) 

 To summarize a data set 

 To discover a trend or pattern in a situation over a period of time 
 As an important aside, several statistical packages have been created as standalone packages 
or as part of a main software package and are used to construct graphical displays of data. MINITAB 
and MATLAB are two packages that are very familiar to engineers.  Also, SAS and SPSS are major 
packages that are universally used.  Microsoft EXCEL also has graphing capability and has been found 
to be very useful and sufficient for this type of analyses as it contains most of the statistical tables 
needed for the common distributions.  As a result, we will not spend a lot of time on graphing 
techniques or on table lookup for probabilities resulting from common distributions.  
4.1	 Quantitative	versus	Qualitative	Data	
Data comes to us in two different forms, namely, qualitative and quantitative.  
a) Quantitative data is numerical and acquired through counting or measuring.  There are a 
variety of ways that quantitative data arise in statistics.  Each of the following is an example of 
quantitative data: 

 The size of steel beam ion a construction site 

 The dimensions of different electronic boards 

 The values of homes in a neighborhood 
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 The lifetime of a batch of a certain electronic component. 
b). Qualitative data sets are data sets that are not numerical. They are typically in categories 
separated by traits are attributes such as physical traits, gender, colors or anything that does not have 
a number associated to it. Qualitative data is sometimes referred to as categorical data.  Qualitative 
data sets do not contain numbers that we can perform mathematics upon. 
	
4.2	 Quantitative	Data	Graphs	
The three most commonly used graphs for quantitative data include: 
1. The histogram. 
2. The frequency polygon. 
3. The Cumulative Frequency Graph, or the Ogive 
 
4.2.1  Histograms 

The histogram is a graph that displays the data by using contiguous vertical bars (unless the 
frequency of a class is 0) of various heights to represent the frequencies of the classes. It is a bar graph 
that displays the data from a frequency distribution 

– Horizontal Scale (x-axis) is labeled using CLASS BOUNDARIES or MIDPOINTS 
– Vertical Scale (y-axis) is labeled using frequency  
– NOTE:  bars are contiguous (No gaps) 

 
Figure 2:  Histogram 
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4.2.2 Frequency Polygon 
 Consists of: 

• Line graph (rather than a bar graph)  
• Uses class midpoints rather than class boundaries on x-axis 

 

 
Figure 3:  Frequency Polygon 

 
4.2.3 The Cumulative Frequency Graph, or the Ogive 
 Consists of: 

• Line graph (rather than a bar graph) 
• Uses class boundaries on x-axis 
• Uses cumulative frequencies (total as you go) rather than individual class frequencies  
• Used to visually represent how many values are below a specified upper-class boundary  
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4.3	 Qualitative	Data	Graphs	

a. Pie Chart 
b. Bar Chart 
c. Pareto Diagrams 

 
4.3.1 Pie Chart 

Pie Charts divide a complete circle into slices each slice corresponding to a category. The 
Angle subtended by each slice is proportional to the relative frequency of each category. The Annual 
Robot Sale by key industries. (Source: International Federation of Robotics, 2013-2015) 
 
4.3.2  Bar Chart 

The number of Nuclear Plants by country in 2016 can be represented in a bar chart as 
shown [ USA(99), Russia(35), France(58), Germany(8), China(35), Japan(43), India(21), 
Canada(19),Source: Nuclear Power Plants worldwide-European Nuclear Society, Nov 2016] 
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Figure 4: Cumulative Frequency Graph or the Ogive 
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Figure 6: Bar Chart of Number of Nuclear Plants by Country, 2016 
 
4.3.3 Pareto Diagram 

Also known as ABC analysis in inventory analysis, the technique is importance because it is 
sometimes physically impossible (even with the use of computers) to track the hundreds of thousands 
of items that make up typical inventory systems. In more general terms, it is used to rank occurrences 
based on their significance or contribution.  For example, the cause of errors or defects in an 
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electronics manufacturing facility could be due to: Human errors:70%, Machine issues: 20%, 
Environment: 8%, Others (temp, vibration, etc.) <3%. 
 

 
 

Early	Development	of	the	Concept	of	Uncertainties	and	Randomness	
The development and the use of probabilistic and statistical concepts in engineering design 

goes as far back as the early to mid-nineteenth-century and even beyond and came about as a result 
of the recognition of the fact that the outcome of any real experiment random.  The development of 
the concepts of probabilistic and statistical design in engineering models began and continued through 
the period in the 1950s and 1960s when reliability engineering became established as an important 
component of engineering practice and to the present day when safety as well as reliability goals are 
now considered design parameters and are part of engineering designs and specifications. 

Typically, assumptions and simplification of natural processes often times do not consider 
uncertainties inherent in those processes and phenomenon (be they mechanical, chemical, electrical, 
biological, etc) and tend to assume that the situation is either deterministic or qualitative or both.  
While in certain situation such assumptions may suffice, in the realm of engineering design with its 
associated risks, such assumptions and simplifications are not sufficient as uncertainties are 
unavoidable in almost all engineering analysis and design problems. Thus, regardless of the elegance 
and sophistication of the approach adapted for the model, approaches developed without due 
recognition of uncertainty and the inherent natural variability may not be valid and thus would not 
reveal the true picture of the situation under study. Uncertainty mostly arises due to: a) incompleteness 
of the available information/data, and b) consideration of natural processes and phenomena, which 
are inherently random. Even though definite decisions in such cases are difficult for obvious reason, 
however, the decisions are required even with the incomplete information/data so as to produce or 
implement the design or process. 
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 Decisions in such situations are taken under the condition of uncertainty and thus are 
understood as such.  Hence proper assessment of associated uncertainty is essential, and the effects 
of such uncertainty in engineering design problems are very crucial in order to quantify the risk 
envisaged in terms of safety factors and safety margins.  

According to Ang and Tang (1975), the role of probability methods in engineering design can 
be broadly categorized as - a) The modeling of engineering problems and evaluation of systems 
performance under conditions of uncertainty; b) Systemic development of design criteria, explicitly 
taking into account the significance of uncertainty, and c) The logical framework for risk assessment 
and risk benefit trade-off analysis relative to decision making. 
 
5.1	 Uncertainty	and	Probability	Methods	

There are three major types of types of uncertainties that can be associated with any 
engineering design problem, namely– a) Parameter uncertainties; b) Data uncertainties; c) Operational 
uncertainties. 

5.1.1	 Parameter	uncertainty		
 Inability to quantify the accuracy of model parameters and inherent variability in model inputs 
lead to the parameter uncertainty. Moreover, different descriptive statistics, such as the, mean, 
standard deviation, skewness, among others also vary from one sample data to another. Thus, 
uncertainties are also associated with these descriptive statistics.  

5.1.2	 Data	uncertainty			
 Error in measurements, problems in consistency and homogeneity of data are known as data 
uncertainty. Limitations in adequate representation of sample data are addressed by quantifying data 
uncertainty. Generally, histograms are basic graphical representation of such uncertainty and 
probability density functions (pdf) are fitted with the histograms to assess the uncertainty associated 
with the data. These details would be discussed later.  

5.1.3	 Operational	Uncertainties		
 These arise from changes in the operational conditions of structures and errors associated with 
construction, manufacture, deterioration, maintenance, human activities etc. All the uncertainties are 
assessed with the help of the concept embodied in the theory of probability.  
	
Definitions	
	
6.1	 Experiment	

An experiment is any process or operation that generates raw data, the nature or outcome of 
which cannot be predicted with certainty. 
6.2	 Sample	space	(S)	

A sample space S is the set of all possible outcomes of an experiment. 
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6.3	 Outcome		
An outcome is one of the set of possible observations which results from the experiment. 

One and only one outcome results from one realization of the experiment, e.g., the toss of a fair coin 
results in the realization of only one outcome, namely, either a head or a tail  
Examples: 

 Roll a single die one time.  The experiment is the roll of the die.  A sample space for this 
experiment is: S= {1, 2, 3, 4, 5, 6} 

 A process for making pharmaceutical bottle caps produces 4 types of cap each time the 
process is completed: the sample space S= {c1, c2, c3, c4} 

 Select 1 card at random from a deck of 52 cards.  The experiment is the selection of the card.  
If the cards are numbered in a specific order from 1 to 52, then the sample space would be. 
S= {1, 2, 3, 4, 5, 6, 7,…….., 52 } 

6.4		 Multiple	Outcomes	
Often an experiment will yield more than one piece of information or more than one outcome 

which we may want to use. If we observe 2 pieces of information every time the experiment is 
performed, we would reasonably want a sample space that is a collection of 2-tuples or two pairs, with 
the two positions corresponding to the two pieces of information, i.e. 

S= {(X1, X2):X1=….., X2=…. } 
Suppose an experiment consists of one roll of two dice (one red-R, the other green-G). The sample 
space will be the collection of all possible 2-tuples (X1, X2), where:  The number on the first position 
of the 2-tuple corresponds to the number on the face of the Red die and the other is the number on 
the face of the Green die, that is   

S= DR x DG, where DR = {1, 2, 3, 4, 5, 6} and DG = {1, 2, 3, 4, 5, 6} 
S= {(X1, X2,): X1=1,2,3,4,5,6; X2=1,2,3,4,5,6} 

The total element in this sample space S is 36 (or 6x6) 
6.5	 Events	

An event is a subset of the sample space.  Every subset of a sample space is an event.  For any 
experiment, an event occurs if any one of the elements of the event an outcome of the experiment. 
Consider the toss of a 6-faced die (labeled 1- 6, dice is plural) as an experiment.  
The sample space is: S = {1, 2, 3, 4, 5, 6} 
Each of the following subset of the experiment is ALSO AN EVENT, that is: 

Let A= {1}, that is the occurrence of a face with 1 
Let B= {1,3,5}, that is the occurrence of the faces 1, or 3 or 5 
Let C= {2,4,6}, that is the occurrence of the faces 2, 4, 6 or even numbers 
Let D= {4,5,6}, that is the occurrence of 4, 5, 6 or numbers greater than 3 
Let E= {1,3,4,6}, that is any numbers except 2 and 5. 
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Please Note: These are not the only events since they are not the only subsets of S. However, note 
that these events are distinct since no two are equal. For this example, if one were to perform the 
experiment (roll the die) and get a 1, then the events A, B, and E have occurred since each of these 
subsets of the experiment contains the number 1.  
Another example: If we roll a pair of dice one time, the sample space S is the set of all 2-tuples: 
S = {(X1, X2): X1=1, 2, …6; X2=1, 2..6} 
One can define the following events, namely: 

 A: sum of the faces of the two dice is 3,  

 B: the sum of the faces of the two dice is 7 

 C: the two dice show the same face. 
A= {(1,2), (2,1)}, B={(1,6), (2,5), (3,4), 4,3), (5,2),( 6,1)}, C={(1,1), (2,2), (3,3), 4,4), (5,5), 6,6)} 

 
6.6	 Definition	of	A	Random	variable	

a).  A Random Variable is a function that to each sample point in the sample space, S, 
assigns a number ( a real number) OR 

b). A rule that maps events in a sample space to point (values) on the real line  
Note the Following 

 The mapping is one-to-one 
 The sample space S is the collection of all possible outcomes of the experiment. 
 The DOMAIN (or the house) of the random variable is S, and the RANGE of the random 

variable is the real line .  

RANDOM VARIABLES

• S= sample space (domain), x = elements of   sample. 

x

x
x

S

RANGE

 
Figure 8: Example of Random Variables 

 
The height of males is a random variable given by X(x), where x is the outcome. That is, X(John) = 6 
ft, and X (Charles) = 7 ft 
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Note: The height of Charles cannot be 7 ft and then 8 ft.  Hence, we say that the mapping is unique.  
Charles can be 7 ft. and so can Andrew. Hence the mapping is unique in one direction (from the 
domain to the range and not the other way)  

	
Definitions	of	Probability	
7.1	 Classical	Definition	of	Probability	

The classical definition of probability presupposes knowledge of the exact nature of the 
population from which the sample is drawn.  Thus, in a population of N items, if n of those are labeled 
as successes, then the probability of success is given by: P(success)= n/N  
Practical Problem with this classical definition approach:  
We may not know or have access to the population. Quite often only the sample is available. 
  
7.2		 Relative	Frequency	Definition/Approach	

In the relative frequency approach, probability is defined as the relative frequency of an 
outcome of a repeated experiment.  It is the long run proportion of time a given outcome occurs.  
P(# of heads in n tosses)  = Limit ( fn/n), as n ∞, where fn = # of heads in n tosses of the coin. 

 
Problem with this approach:  
This method is often times not practical. Even when they may be practical it could be very tedious 
and time consuming due to:  System size and Cost 
7.3		 Modern	Definition/Approach	

Due to the problems inherent in both the relative frequency and the classical definition 
approaches, modern definition and theories of probability start with constructing Axioms of 
probability. In this NEW approach it is no longer necessary to conduct experiments (in the case of 
the relative frequency) or to know or have the entire population from which the experiment is being 
conducted (as in the classical case).  

n 

0.5 

Plot of  (number of  heads /n) vs n (tosses of  the coin) 

Figure 9: Relative Frequency Definition of Probability 
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7.4	 Axioms	(or	Laws)	of	Probability—Addition,	Multiplication,	Inverse	
The axioms are then used to construct the general laws of probability.  

Let A be an event, and let S be the sample space then. 
  i) 0 ≤ Pr(A) ≤ 1,  ii) Pr (s) = 1 
7.4.1 Addition Laws 
 Consider two events A and B in S  

 General Law:     P(AՍB) = P(A) + P(B) -P(A∩ B) 

 Mutually Exclusive Law:  P(AՍ B) = P(A) + P(B) 
In an experiment, two events A, B are Mutually Exclusive if and only if: 
A ∩ B = Ø, This means that the intersection of A and B is the null set. Hence P (A ∩ B )= 0 

so that P(AՍ B) = P(A) + P(B)  
Note: Mutually Exclusive events are associated with the outcomes of a SINGLE experiment. Also, 
If the occurrence of one event does not preclude the occurrence of another event in the same 
experiment, then the two events are mutually exclusive. 
Note:  The events of an experiment forma set for that experiment and the resulting sample space.  If 
the intersection of two or more events associated with the outcome of an experiment is the empty or 
null set, then the events are said to mutually exclusive. 
7.4.2 Multiplication Laws 
 Consider two events A and B in S  

 Dependent Law:   P(A ∩ B)= P(A)P(B|A) 
 Independent Law:  P(A ∩ B)= P(A)P(B) 

Two events A, B are independent if and only if: P (A ∩ B ) = P(A) P(B).  In other words A, B are 
independent if P(B|A) = P(B).  i.e., the occurrence of B does not depend on the occurrence of A.  
The occurrence of A does not preclude the occurrence of B.  Independent events are usually associated 
with the outcome of two or more experiments 
7.4.3 Inverse Law 
Consider two events A and B in S  

 Complementary law:  P(A) = 1-P(Ã) = 1-P(A) 
7.5	 Venn	Diagram	Representation	of	the	Axioms		
 
 
 
 
  
 
 
 

 
A B 

Figure 10: Venn Diagram for mutually 
exclusive events A and B 
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A and B are mutually exclusive since (AB)=. Hence P(AB )=0. That is to say that ‘A’ 
intersection ‘B’ is the null set hence the probability of A intersection ‘B’ is zero. 
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Analysis with Venn Diagrams 

Assume that there 90 members of the engineering honors group Tau Beta PI and we have 
interest in looking at the different classes taken by the members. 
Let:  Engineering Statistics=A, Linear Systems =B, Computational Methods =C 
Let the number of students enrolled in A=34, in B=33, in C=38. Those enrolled in A and B=8, and 
those in A and C=14, and those in B and C=19. Let those enrolled in all three classes=3 
Question: Draw the Venn Diagram to represent this scenario. From the Venn Diagram determine 
how many are not enrolled in any of the three classes? 
 

Figure 11: Venn Diagram of Non-mutually Exclusive Events ( A Cat  and a Dog)
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Figure 12: Venn Diagram Example of Student Enrollment in Engineering Classes 
 
N(A) = 15+5+14=34, N(B) = 9+16+8=33, N(C) = 11+3+16+8= 38 

N (A B) = 5+3=8, N (A  C) = 11+3=14, N (B  C) =3+16=19, N (A  B  C) = 3 

N (A  B  C) =34+33+38-8-14-19+3=67, N(S)- N (A  B  C) =90-67=23  

N(AB) =N(A)+N(B)-N(AB) =34+33-8=59, N(BC) = 33+38-19=52 
Also: 

N (A' B'C) =N(A’) +N(B’) +N(C)-N (A'  B’)-N (A'  C) -N(B'  C)+N(A'  B'C) 

N (A'  B’) = N(AB) '   

N(A’) =N(S)-N(A)  N (A B)' =N(S)- N (A B) =90-59=31= N (A'  B’)  

N (A  B)' = N(S)-N (A ∩B) = 90-8=82  

N (A' C) = N(C)-N (A C)=38-14=24 

N (B' C) =N(C)-N(B C)=38-19=19 

N (A'  B'  C)= N( C) –N(A C)-N(B C)+N(A B C)  =38-14-19+3=8  

N (A' B' C)=56+57+38-31-24-19+8=85 

N (B(A C))= 5+3+16=24 

7.6	 Mutually	Exclusive	Events		
The events of an experiment form a set. If the intersection of two or more sets is the null set, 

then the events are said to be mutually exclusive. 
Example:  A purchase clerk wants to order supplies from one of three possible vendors, numbered 
1,2,3. All vendors are equal with respect to price and quality.  The clerk writes all three vendor numbers 

N(S) = 90 
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on a piece of paper, mixes paper in a bowl and picks one piece of paper at a time at random. An order 
is placed with the vendor whose number was selected.  
 Let ei represent vendor i (i=1 to 3). Let B be the event that vendor 1 or 3 is selected and C the 
event vendor 1 is not selected. Find the following probabilities a). P(Ei), P(B), P(C) 

3

2
)()()()(

0)(,
3

2

3

1

3

1
)()()()(

3

1
)()()(

)(:

23231

321

3131

3131

21

321

321















EPEPEEPEP

EEEC

EEPEESince

EPEPEEPBP

EEBDefinitionBy

EPEPEP

capabilityequalhavevendorsallEEEGiven

 

7.7	 Non‐Mutually	Exclusive	Events	
Pieces of paper numbered 1 through 9 are mixed together in a bowl. Find the probability that 

a number drawn is either even or divisible by 3.  
Solution 
Define A= event, number is even 
Define C=event number is divisible by 3 
Based on the sample space S of 9 elements, where S={ 1, 2, 3, 4, 5, 6, 7, 8, 9 } we have: 
A ε S={2,4,6,8}, C ε S={3,6,9} 
P(C) =3/9, P(A)= 4/9 

AC ={6}, hence P(AC )=1/9 

P(AC)= P(A)+P(C)- P(AC )=4/9+3/9-1/9=6/9  
7.8	 Multiplication	Law	(Dependent	Law)	
 From a deck of cards, select 2 cards without replacement. What is the probability that the two 
cards are Aces? 
Define A= event Ace in the first draw, Define B= event Ace in the second draw 

P(AB)= P(A)P(B|A)= (4/52)(3/51)  
	7.9	 Multiplication	Law	(Independent	Law)	
 Independent events are associated with the outcome of more than one experimental trial.  
Thus, the outcome of the present trial does not depend on the outcome of the previous trial. 
Example: A toss of two coins is made. 
Show that the events: a) Heads on the 1st coin, and b). Coins fall alike; are independent.  
S= {HH, HT, TH, TT}, P(HH)=P(HT)=P(TH)=P(TT)=1/4 
Event head on 1st coin =A = {HH, HT}, Event head fall alike= B= {HH, TT} 
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AB= {HH}=P(A B)=1/4 
P(A)= P(HH  or HT) = P(HH)+P(HT)=1/4+1/4=1/2 
P(B)= P(HH or TT)= P(HH)+P(TT)= 1/4+1/4=1/2,    P(A)P(B)=1/2(1/2)=1/4 

hence P(AB)=P(A)P(B)=1/4, Thus A and B are independent. 

Counting	Techniques	
Often times it can become tedious if not impossible to determine the number of elements or 

the outcomes of a sample space by direct enumeration.  Counting techniques are ways in which these 
enumerations are made without complete listing of all the possibilities. There are several rules that are 
used to implement such counting, including.  

• Multiplication or the m x n rule 
• Permutation 
• Combination 
• General Enumeration 
• Tree Diagram approach 

8.1	 Multiplication	or	the	m	x	n	Rule	
If there is an operation that consists of k parts and the 1st can be performed in n1 ways, the 

second in n2 ways, the 3rd in n3 way, and…., then the total possible ways of performing the operation 
is:  knnxnxn .....321  
If choosing a meal, there  

– 5 types of sandwiches or burgers 
– 4 types of salads 
– 6 types of fountain drinks 
– 6 types of desserts 

The number of ways of choosing the meal is: 5(4)(6)(6)=720 ways  
8.2	 Permutation	

In general, if r objects are to be chosen from n distinct objects, then any particular arrangement 
or order of these objects is called permutation.  

Thus, in permutation order is important.  In the case of telephone numbers or license plates, 

the order of the digits is important. For example, the set of digits: 1234  1324  1432 
The formula for permutation of r things out of n is given by: 
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Some quick notes on permutation: 
0! =1, 1! =1 , 2! =2(1)=2,  6!=(6)5!=6(5)4!, and so on, 6!= 6(5)(4)(3)(2)(1)= 720 
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How many different ways can a local chapter of ASCE schedule 3 speakers for three different meetings 
if they are all available on any of 5 possible dates. 

  60
!2

!2)3)(4)(5(

)!35(

!5
3

5 


P   

Example: Suppose we want to find the total count of the 4-digit numbers that can be formed from 
the digits: 1,2,3,4,5 if no digit is repeated 

Using the formula for permutation, we have:  120)1)(2)(3)(4(5!5
)!45(

!5
4

5 


P  

There will be 120 4-digit numbers with no repeats.  If repeats are allowed, then the no. of 4-digit 
numbers will be 54. 
8.3	 Combination	
 If in the enumeration or counting, there is no regard for the order then we have combination instead 
of permutation. For example, in combination: 123=231=321=312. 
Because of the disregard for order, combination is numerically less than permutation. The formula for 
combination is given as: 

   
!)!(

!

rrn

nn

r 
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




  

Suppose want to select 3 out of five of my favorite books on the shelf (labeled A-E) to read on a 
weekend trip.  In how many ways can this be done? 

  10
!3!2

!3)4(5

!3!)35(
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
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
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The 10 Combinations are: 
  
	
	
 	









CADCDEBCEBCDBDE

ACEABDADEABEABC  
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8.4	 General	Enumeration	
A bin has parts labeled 1-9.  Three of these are chosen at random.  Find the Probability of getting  
(Alternatively odd, even odd number OR even odd even number) 
P(odd)=5/9, P(even)=4/9 
P(odd, even, odd)=(5/9)(4/8)(4/7), P(even, odd, even)=(4/9)(5/8)(3/7) 
P(odd, even, odd) OR  P(even, odd, even) 
=(5/9)(4/8)(4/7)+(4/9)(5/8)(3/7)=10/63+5/42=(5/18) 
 

 
 
 
8.5	 The	Tree	Diagram	Approach	

Suppose a consumer testing service rates a lawn mower as being easy, average, or difficult to 
operate (3 ratings); as being expensive or inexpensive to repair (2 ratings); as being costly, average or 
cheap (3 ratings).  In how many different ways can a lawn mower be rated by the testing service? 
To handle this problem systematically, we can use the tree-diagram where each alternative is listed as 
the branch of the tree (Figure 14). as shown with the following parameters 

• So, we have E1, E2, E3 for ease of operation 
• P1, P2 for the price, and C1, C2, C3 for the cost of repairs 

Following a given path from left to right along branches of the tree, we obtain a particular rating, 
namely, a particular element of the sample space, and it can be seen that together there 18 possibilities. 
The results could also have been obtained by observing that there are 3-E branches, each of which 
feeds into 2-P branches and that each P branch feeds into 3–C branches. Thus, there are 3.2.3=18 
combinations. See Figure 14 for this example. 
 

1 2 3 

4 5 6 

7 8 9 

n=3 

5 odd #s 

4 even #s Figure 13: General Enumeration Example 
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Figure 14: Tree Diagram for rating lawn Mowers 
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        Upper Branch

       Game Wins

       4 1
       5 4
       6 10

       7 20
         35

       
2 Branches 
=2x35=70

         

       8 Wins in 5 games

       NNNAN 
       NNANN Upper
       NANNN 
       NAAAA 

       AAANA 
       AANAA Lower
       ANAAA 
       ANNNN 

         

       
Win in 6 games 
Upper Branch

       NNNAAN 
       NNANAN 
       NNAANN 
       NNAAAA 
       NANNAN 
       NANANN 
       NANAAA 
       NAANNN 
       NAANAA 
       NAAANA 

game game game game game game game    
1 2 3 4 5 6 7    

 
 
Figure: 15: Tree Diagram of the Seven game World Series Between National and American Leagues 
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Games No. of Possibilities Probabilities 
4 2 

𝟐 ൬
𝟏
𝟐

൰
𝟒

ൌ
𝟏
𝟖

 

5 8 
𝟖 ൬

𝟏
𝟐

൰
𝟓

ൌ
𝟏
𝟒

 

6 20 
𝟐𝟎 ൬

𝟏
𝟐

൰
𝟔

ൌ
𝟓

𝟏𝟔
 

7 40 
𝟒𝟎 ൬

𝟏
𝟐

൰
𝟕

ൌ
𝟓

𝟏𝟔
 

 70 𝟐 ൅ 𝟒 ൅ 𝟓 ൅ 𝟓
𝟏𝟔

ൌ 𝟏 

 
Table 1:  Seven-Game World Series: Games, No. of Possibilities, and Probabilities 
 
Figure 15 is an example of Tree Diagram approach for the Seven-Game World Series between the 
National League (N) and the American League (A). The tree shows only one branch, the upper branch, 
corresponding to the National League  
Game Specifics. 
1. Series can be won in 4 games or more. Any team that wins 4 games out of 7 wins the series 
2. Each team has an equal chance of winning each game and the world series 
3. The probability of winning a game is ½ (0.5). 

The tree diagram (Figure 15) shows the upper branch of the tree for the National League and the 
possibilities of winning the series in 4, 5, 6, or 7 games.  

Table 1 shows the summary of games and the possible number of winning each game as well 
as the computation of the associated probabilities. 
 

Probability	Distributions	
Each realization of an engineering process or operation such as a manufacturing activity 

represents a random experimental trial, in other words such an activity may be looked upon as a 
process or operation that generates raw data, the nature or outcome of which cannot be predicted 
with certainty. As discussed earlier, associated with each experiment or its realization is the sample 
space (S) which is the set of all possible outcomes of such experiment. 

An outcome of an experiment is defined as one of the set of possible observations which 
results from the experiment. One and only one outcome results from one realization of the 
experiment. Most quantities occurring in an engineering experiment (a chemical process, a 
manufacturing process, etc) are subject to random fluctuations.  
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Because of the fluctuation and the randomness of the experiments, the outcomes are random 
variables.  In order to characterize these random variables so that they can become useful tools in 
describing an engineering operation or process, it is important to understand what random variables 
really are. 
9.1	 Random	Variables	

 Definition 

 A random variable is a function that to each sample point in the sample space, S, 
assigns a number (a real number) Or 

 A rule that maps events in a sample space to point (values) on the real line  
Random variables in general are subject to random fluctuations and they exhibit certain 

regularities and sometimes they may have well defined forms. In some cases, they are also of a given 
form or belong to some class or family.  Thus, depending on the type of random experiment that 

generated the domain of the random variable, the mapping or assignment to the real line  can be 
generalized into closed form expressions, formulas, equations, rules or graphs that describe how the 
values are assigned.  Note the following 

 The mapping is one-to-one 

 The sample space S is the collection of all possible outcomes of the experiment. 

 The DOMAIN of the random variable is S, and the RANGE of the random variable 

is the real line .  
An intuitive definition of a random variable is that it is a quantity that takes on real values randomly.  

 An operating definition of a random variable is that it is a function that, to each sample point 

in the sample space S, assigns a real value a number on the real line. In other words, the random 

variable maps the sample space onto a real value on the real line. 
Because of its nature and the inherent characteristics, such a variable can be described as 

random.  Thus, the random variable can be expressed as the function:  
X ( x) = a numerical value equal to the height of a unique individual male named x, i.e.,  X 

(John1) = 6 ft,  X (Paul20) = 7ft, X (Don10) =6 ft, where in this case X is the random variable that 
assigns the value 6ft to John1, and 7ft. to Paul20. 

Please note that two elements from the sample space can have the same real values assigned 
to them.  In our example, John1 and Don10 have the same height.  However, John1 cannot have 
heights of 6 ft. and 7 ft. at the same time, hence the mapping is unique in one direction, why? 
9.2		 Domain	and	Range	of	a	Random	Variable	

The domain of the random variable is the sample space (S) and the range of the random 

variable is the real line .  It is the range of the random variable that determines the types of values 
that are assigned to the random variable under consideration. A more general definition of a random 
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variable (RV) is that it can take on any values on the real line . A real-valued random variable may 
assume one of the following:  

 (a) Two possible values.  For example, in the case of product quality, the values could be 1 if 
the product is conforming and 0 if it does not conform.  

 (b) A finite number of values.  If the face of a die is assumed to be random variable in some 
experiment, then the possible numbers are 1 through 6.  

 (c )  Also in the case of product quality, the number of nonconforming items in a lot is finite 
and will never be more than the lot size even in the worst case scenario.  

 (d)  Countably infinite discrete values.  (The number of telephone calls made in a given time 
epoch all over the world).  

 (e ) Any value on the interval on the real line .  For example, the weight of a container in a 
filling operation 

 (f)  Any value in a half infinite interval on the real line (the strength of a component may take 
values in the interval (0, infinity].  
These values that are possible for any random variable determine whether a random variable 

can be classified as discrete or continuous. A typical discrete random variable is one that takes on the 
first three values (a-c), whereas continuous random variables take on values as defined in the last three, 
namely, (d-f). 
9.3	 Rules	or	Equations	for	Mapping/Assignment	

These rules or equations for mapping or assignment from the domain to the real line are 
known as probability density functions (for continuous random variables) and probability mass 
functions (for discrete random variables).  In other words, probability density or mass functions are 
simply closed form expressions or rules that indicate how assignments to values on the real line are 
made from the domain of the random variable. 

The nature of the experiment ultimately determines the type of equations or rules that apply. 
For example, one of the problems associated with using the density function to characterize a 
manufacturing process or chemical process is that in some cases such closed form expression or 
equation are difficult to come by. Hence one is often left to make assumptions using the average value 
from the data obtained from the experiment or some measure of the variability obtained from which 
is often measured with the variance or standard deviation or the range.  The mean and standard 
deviation from the experimental data are referred to as the first and second moments. 

Usually the first and second moments (the mean and variance) do provide enough useful 
insight as to the behavior of the random variable.  However, in some cases these parameters (the mean 
and the standard deviation or variance) are not enough to completely characterize the underlying 
random variable and so one has to look to other approaches that would provide the confidence needed 
to ensure that indeed the equation or function assumed is the appropriate one. 
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These are closed form expressions or equation that is used to characterize the ransom variable. 
Probability distribution or Probability Density or mass Functions are closed form expressions that 
used to typify the behavior of a particular random variable. Based on our definition of the range of 
random variables, we have two distinct type, namely, discrete and continuous.  We will examine those 
subsequently. 
	
Discrete	Random	variables	

Discrete Random variables are those that assume: 
i) Finite or   
ii)Countably infinite values.  (The number of telephone calls made in all over the world in a 

given year).  
A typical discrete random variable is one that takes finite values on the real line, eg. 0 or 1, good bad, 

go-no-go, etc. A random variable X is called discrete if its range x is a discrete set of real numbers.  
Example:  We roll a pair of dice 1 time. Let x be the sum of the 2 numbers that occur. Then we have 
the sample space: 

S={(x1,, x2): x1=1, 2, …6; x2=1, 2,…6}, X()= x1,+x2, for =(x1,,x2)  S 

The range of X is x ={2, 3, …12} so X is a discrete R.V  

Example:  
A sample of 3 people is selected at random from the list of registered voters in Hillsborough County, 
FL. Let Y be the number of Republicans that occur in that sample of 3. For convenience, we use as 
our sample space the following:  
 S= {(x1, x2 , x3): x1=0, 1; x2 =0,1; x3=0, 1}   
Let the proportion of Republican voters Hillsborough County be 0.4. Also, assume that the number 
of registered voters is large very large compared to the sample and so the probability of selecting a 
Republican equal to 0.4. Therefore,  

P{x=1(prob. of Republican)}=0.4; and P{(x=0(prob. not Republican)} =0.6 
Then we have the following probabilities: 

P{(0,0,0)}=(0.6)3 , P{(1,0,0)}=(0.4)(0.6)2 
P{(0,1,0)}=(0.6)(0.4)(0.6), P{(1,1,1)}=(0.4)3 

The range of Y, the Republicans who appear in the sample is {0,1,2,3}, we define the following: 
A (0)= {(0,0,0)} ;    A(1)= {(1,0,0), (0,1,0), (0,0,1)},  A(2)= {(1,1,0), (1,0,1), (0,1,1)} ;    
A (3)= {(1,1,1)} 
The probability function Y which gives the number of Republicans selected in the sample is given by: 

Y=0, pY(y=0) = (0.6)3=0.216= P[A(0)] No Republican selected 

Y=1, pY(y=1)= P[A(1)]=(0.4)(0.6)2+(0.6)(0.4)(0.6)+(0.6)2(0.4)=0.432 One Republican Selected 

Y=2, pY(y=2)= P[A(2)]=(0.4)2(0.6) +(0.4)(0.6)(0.4)+(0.6) (0.4)2=0.288 Only two selected 

Y=3, pY(y=3)=P[A(3)]=(0.4)3 =0.064  Three Republicans selected. 



 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT ENGINEERING STATISTICS I 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 35 of 50

 

10.1	 Distribution	Functions	and	Density	Functions	for	Discrete	Random	Variables	
The distribution function for a random variable x denoted by F(X), where  

F(X)= Prob (X ≤ t), where t is a value on the real line.  We can derive the distribution function for a 
random variable X if we know the probability function of X 

  



tX

X xptF )()(  

Using our previous example of the Republican voters, we can develop the distribution function F(t) 
as follows: 
PY(y)=0.216, for y =0, PY(y)=0.432, for y =1 
PY(y)=0.288, for y =2, PY(y)=0.064, for y =3 
The distribution function is given by 
FY(y)=0    y <0 
FY(y)=0.216,   0 ≤ t <1 
FY(y)=0.648,  1 ≤ t < 2 
FY(y)=0.936,  2 ≤ t < 3 
FY(y)=1.0, t ≥ 3 
	
10.2	 Common	Discrete	Probability	Distributions	

There are numerous discrete distributions occurring in nature.  However, for the purpose of 
our study here we will focus on only a few of those that we encounter on a fairly regular basis.  These 
include: binomial, negative binomial, geometric, hypergeometric, and the Poisson.  

10.2.1	Binomial	Distribution	
For the Binomial distribution, each trial (or experiment) has only two possible outcomes, such 

as the occurrence or non-occurrence of an event (e.g. conforming/nonconforming, 
defective/nondefective, success/failure).  For the Binomial distribution, the probability (p) of 
occurrence of an event is constant and is assumed the same for each experimental trial 
There are n trials (n is constant) and the trials are statistically independent.  Thus, for a Binomial 
distribution,  

a) Each trial has only two possible outcomes 
b) The probability (p) of occurrence of an event is constant and is same for each trial 
c) There are n trials (n is constant) 
d) The trials are independent or more precisely, statistically independent 

Also, for the Binomial, the random variable of interest is the number of occurrences of a given 
outcome or event.  Once these conditions (a-d) are satisfied then the resulting random variable is the 
Binomial random variable. This process that generates the random variable is known as the Bernoulli 
trial. The Bernoulli trial is an experiment whose outcome is random and with two possibilities such 
as "success" and "failure" go, no-go., etc.  
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Let X be the number of occurrences of an event (where n is constant). The probability of having 
exactly x0 occurrences in n trials, where p is the probability of an occurrence is given by: 

  

 

 

 

  !

!
:

,)(

),(,

1)(),(

00

0
00

0
00

0

00

xn

n

x

n
Where

pnxFxXP

ondistributicumulativepnxfpnxF

pp
x

n
xXfpnxf

x

i

xnx






























 

The mean of the binomial is µ= np, and σ2  = np(1-p), where  0 ≤ p ≤ 1.  
 
The probability that a certain wide column will fail under study is 0.05.  If there are 16 such 
columns, what is the probability that  

a) at most 2 will fail, b) between 2 and 4 will fail, c) at least 4 will fail 
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For this problem, the mean μ=np(0.05)(16)=0.8, 2=(0.05)(16)(0.95)=0.76. The standard 

deviation is =2 = (0.76)= 0.872. 
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For the Binomial as well other distributions, there are tables for the cumulative well as the 
individual ( or point) probabilities for  different parameters and specifications. For example; Compute 

the following probability; P(X=2n=5, p=0.1); 
 
Solution:  
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The cumulative table can be used to compute single values as well as cumulative values. 
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10.2.2	Negative	Binomial	(The	Random	variable	is	the	number	of	trials)	
For a sequence of independent trials with a constant probability of occurrence of an event 

equal to p, the number of trials X before exactly the r th occurrence is known as the negative binomial 
or the Pascal distribution. The probability of exactly the rth

 occurrence is given by: 
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The mean and variance of the Negative Binomial are given by: 
2
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Example of Negative Binomial 
The probability that on certain production line, a critical defect is found is 0.3.  Find the probability 
that the 5th item inspected on the line is the 3th critical defect. 

X = sample size = 5, r = the outcome =3=defect found
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What is the probability that the 3rd critical defect will occur within the 5 items inspected, that is: 

P(X5r=3, p=0.3) 
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10.2.3	Geometric	Distribution		
The random variable is the number of trial until the 1st occurrence. In a Bernoulli 

sequence, the number of trials until a specified event occurs for the first time is governed by the 
Geometric distribution.   Thus, for a sequence of independent trials with probability of occurrence p, 
the number of trials X before the 1st success is the geometric distribution which is also a member of 
the family of Pascal distributions. 

If the occurrence of the event is realized on the xth   trial, then there must have been no 
occurrence of such event in any of the prior (x-1) trials. Hence it is same as the Negative Binomial 
distribution with r =1, i.e  
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The Geometric Distribution is an important distribution especially in process control when 
goal to determine the average run length (ARL) before we detect failure or critical defect. The ARL 
refers to the average number inspections or measurements before a fault is detected.  Assume that X 
is the number of trials, inspections or measurements before we detect the first failure or defect. This 
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means that we would have gone through X-1 trials (or inspections or measurements without detecting 
the defect or nonconformance and then at the Xth inspection or measurement, we make the detection.  

If as we discussed earlier the probability critical defect or failure is p, then the probability 
detecting the failure at the Xth inspection (that is, a specific value x0) or measurement is given as: 

. P(X=x0) =p(1-p)( X0 -1 ) .   
This says that for x0 =1, no detection was made with probability (1-p) and continuing up to  
x0-1, after which a detection was made with probability p.  
 P (No detection) =(1-p)(1-p)….. (1-p) until the x0-1 epoch.  
In order words we went through x0-1 trials or inspections before we made detection. Thus; 
 
P(X=x0) = p1(1-p)( X0 -1 )= p(1-p)( X0 -1), Note that ARL= 1/p 
 
Example of Geometric Distribution 

A certain type of part is made by 3 identical machines.  The part has both front and back sides.  
To select a machine for routine inspection, a testing procedure that calls for randomly selecting a piece 
part from a machine is used.  If the same face shows up for all three parts, another part selection is 
made until an odd part or an odd machine is encountered.  The machine that produced the odd part 
is inspected.  Find the probability that fewer than 4 selections are needed before an odd part is 
encountered.  Assume both faces are equally likely. 
Solution:  
Let X be the random variable representing the number of selection until the first odd selection. 
Possible sample space: FFF, FBF, FFB, BFF, BBB, BFB, BBF, FBB 
Based on the sample space, the Probability of having odd face = 6/8. 
P(fewer than 4 selection)= P(1 or 2 or 3 selections). 
The density function is given by: P(x) = p(1-p)x-1 
P(x=1,2,3) = 6/8 + (6/8)(2/8) + (6/8)(2/8)2 = 63/64 
Example: A process for monitoring systems fault has as a probability of fault detection of 0.1. a)What 
is the probability that the 1st fault will be detected by 10th trial or Inspection 
b).What is the Probability that the fault is detected before the 5th trial or Inspection?  
c). What is the probability that the fault is detected after the 3rd trial. 
d). For problem a), what is the ARL or the Average Run Length? 
 
Solution : (1-p)=0.9, p=0.1, n=10 

  1101)10(  ppXP  

a). P(X=10)=   1101  pp = 0.1(0.9)9  =0.038 =0.04 
    ARL=1/0.04=26 part d 



 
WHAT EVERY ENGINEER SHOULD KNOW ABOUT ENGINEERING STATISTICS I 

A SunCam online continuing education course 
 

 
www.SunCam.com  Copyright 2017 O. Geoffrey Okogbaa, PE Page 40 of 50

 

b). P(X< 5)= P(X  4) =  



4

1

11)4(
i

ippXP  

For i=1, P(X=1)= p(1-p)0   = p  
      i=2, P(X=2)= p(1-p)  = p(1-p) 
      i=3, P(X=3)= p(1-p)2 = p(1-p)2 

                   i=4,  P(X=4)=p(1-p)3 = p(1-p)3 
)4( XP = 0.1+0.09+0.081+0.0729=0.3430 

c). P(X>3)=1-P(X2) = 1-  



2

1

11
i

ipp  

          i=1, P(X=1)= p(1-p)0 =p 
          i=2, P(X=2) = p(1-p) 

    P(X>3)= 1-P(X2)= 1-[0.1+0.09]=1-0.19= 0.81 

10.2.4	Hypergeometric	Distribution	
The Hypergeometric distribution is used to model events in a finite population of size N when 

a sample of size n is taken at random from the population without replacement and where the elements 
of the population can be dichotomized as belonging to one of two disjoint categories. Thus, in a finite 
population N with different categories of items (e.g., conforming/nonconforming, success/failure, 
defective/nondefective), if a sample is drawn in such a way that each successive drawings are not 
independent, i.e., the items are not replaced, then the underlying distribution of such  an experiment 
is the Hypergeometric. 

The random variable of interest is the number of occurrences X of a particular outcome for a 
classification or category 'a', with the sample size of n.  The probability of exactly x0 occurrences is 
given by:  
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The Hypergeometric satisfies all the conditions of the Binomial except for independence in trials 
and constant p, where: 

 X - The random variable representing the number of occurrences of a given outcome 
 “a”  - category or classification of N 
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 N - population size 
 n - sample size 
 The mean  = n (a/N), and the variance  2 = n (a/N)(1-a/N) 

Let p = a/N, then   = n p, and  2  =  np (1-p) 
 
Example: 

A company is interested in evaluating its current inspection procedure on shipments of 50 
identical parts.   The procedure calls for taking a sample of 5 items from the lot of 50 and passing 
the shipment if no more than 2 are found to be defective.  Assuming that the lot is 20% defective, 
what is the probability of accepting the lot? 

 Solution: Given: N = 50, n = 5, a = 20% of 50 = 10  
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For x = 0, P(x =0) = 0.31056,  For  x = 1, P(x =1)= 0.4313, For  x = 2, P(x =2)= 0.2093 

Hence P(X2) = 0.95166 

Also, =np=5(10/50)=1,   2  =  n (a/N)(1-a/N)=5(0.2)(0.8)=0.8 

10.2.5	The	Poisson	Distribution	or	the	Poisson	Process		
Many physical problems of interest to engineers involve the occurrences of events in a 

continuum of time or space.  A Poisson process involves observing discrete events in a continuum of 
time, length or space, with m as the average number of occurrence of the event.  

The Poisson process arises as the number of trials in a binomial experiment increases to 
infinity while the mean of the distribution remains constant. In the case of the Poisson it is usually 
assumed that the event will occur at any time interval or any point in space 

 For example, in the manufacture of an aircraft frame, cracks could occur anywhere in the joint 
or on the surface of the frame.   

 Also, in the construction of a pipeline, cracks could occur along continuous welds.  In the 
manufacture of carpets, defects can occur anywhere in a given area or part of the carpet. 

 The light bulb in a machine tool could burn out at any time.  
 

Examples abound of the types of situations where the occurrence rather than the non-occurrence of 
events in a continuum is of interest.  Such time-space problems can be modeled with the Bernoulli 
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sequence by dividing the time or space into small time intervals, assuming that the event will either 
occur or not occur (only two possibilities).  Some of the assumptions of the Poisson process include: 

 An event can occur at random and at any time or point in space. 

 The occurrence of an event in a given time or space interval is independent of that in any other 
non-overlapping intervals. 

 The probability of occurrence of an event in a small interval t is proportional to t and is 

given by t, where   is the mean rate of occurrence of the event (  is assumed a constant). 

 The probability of two or more occurrences in the interval t is negligible and numerically 

equal to zero (higher orders values of  t is negligible). 

A random variable X is said to have a Poisson distribution with parameter   if its density is given by 

  








2,

,....2,1,0,
!

)(

VarianceMean

x
x

e
xXf

x

 

 
NOTE: The Poisson is the only distribution whose mean is equal to the variance  
 
EXAMPLE 1--POISSON 
The average number of defects in a carpet of 50 ft long is 1.2.  If a random check is made, what is 
the probability of exactly 3 defects would be found. What is the mean and variance? 
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EXAMPLE 2--POISSON 
In the inspection of tin plates produced by a continuous process, 0.2 imperfections are spotted on the 
average/minute.  
a). what is the probability of spotting 1 imperfection in 3 minutes?  
b). what is the probability of at least 2 imperfections in 5 minutes?  
Since the occurrences are proportional to the interval,  

a) = (0.2)(3) = 0.6 ,  P(x=1=0.6) =f(X=1) =
x!
e

x  

=0.324 

 b) = (0.2)(5) = 1.0  

P(x2) = 1- P(x1) = 1- [ P(X=0=1)+ P(X=1=1)]= 1 – [0.3679+0.3679]=0.264 
Please note that individual or cumulative values of the Poisson are available in any basic text 
book on probability and statistics and can easily obtained from EXCEL as we did in this case.  
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From the Poisson such a table 

(a) P(x=1;),   =(t)= (0.2)(3) = 0.6 , P(x=1) = F(1,0.6) - F(0,0.6) = 0.878 -0.549 = 0.324  
(b) P(x=1)   =(t)= (0.2)(5) = 1.0 
P(x2) = 1- P(x) = 1- F(1,1)= 1 - 0.736 =0.264 
  
Continuous	Random	Variables	
 Let X be a random variable.  Suppose that the range space of X consists of intervals rather 
than points (there are infinite numbers of points in the interval), then X is a continuous random 
variable– X may assume all values in the interval 

Continuous Random variables are those that assume 
i) Any value on the interval on the real line R.  For example, the weight of a container in a 

filling operation 
ii) Any value in a half infinite interval on the real line (the strength of a component may   

take values in the interval (0, infinity].  
Let X be a random variable.  The probability density function of X denoted by pdf is a function f 
satisfying the following: 
 
a). f(x) ≥ 0  for all X, XεRx , (b).    
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Example of the analyses of a general continuous random variable 

 

Find 
 a). The constant k 
b). Compute P(0.1 < x < 0.2), c). Compute P(x >0.5) 
d). Find the cumulative function F(x) and show the limits or boundaries 
e) Find the mean µ and the variance 2  
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11.1	 Common	Continuous	Distributions	
 Among the continuous distributions that we will examine include: normal, the Uniform and 
the exponential. For each of these distributions we will provide details and examples that would make 
it easy for an engineer to identify them based on certain behaviors or characteristics that are observed 
in the process under study 

11.1.1	The	Normal	Distribution	
 All normal distributions are symmetric and have bell-shaped density curves with a single 
peak. To speak specifically of any normal distribution, two quantities have to be specified: the 
mean, where the peak of the density occurs, and the standard deviation, which indicates the spread 
or girth of the bell curve.  Normal distributions are symmetric, unimodal and the mean, median, 
and mode are all equal. A normal distribution is perfectly symmetrical around its center. That is, 
the right side of the center is a mirror image of the left side. Some of the major characteristics 
include: 
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 Normal distribution is symmetric around the mean. 

 The mean, median, and mode of a normal distribution are equal. 

 The area under the normal curve is equal to 1.0. 

 Normal distributions are denser in the center and less dense in the tails. 

 Normal distribution is defined by two parameters, the mean (μ) and standard deviation (σ). 

 68% of the area of a normal distribution is within one standard deviation of the mean. 

 Approximately 95% of the area of a normal distribution is within two standard deviations of 
the mean. 

 It is completely determined by its mean and standard deviation σ (or variance σ2) 

 

  
 

 
The density of the normal distribution (the height for a given value on the x axis) is shown below. 

The parameters μ and σ are the mean and standard deviation, respectively, and define the normal 
distribution. The symbol e is the base of the natural logarithm and π is the constant pi. 

11.1.2	Properties	of	the	Standard	Normal	Distribution	
 In order to compute the probability of a distribution, the density function is typically integrated 
(or summed in the case of the discrete distribution) over the range of the function to obtain a closed 
form expression for the cumulative function when possible which is then used to compute the desired 
probabilities. The density function for the normal distribution is quite complex and does not yield a 
closed form for the cumulative distribution. As a result, a transformation of the density function is 

carried out resulting in what is commonly called the standardized normal with mean μ=0, and =1.  
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Figure 16: The density function of 
the Normal Distribution 
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 A new variable Z (defined as the number of standard deviations from the mean or the standard 

deviate) results with values from - to + and the probability is evaluated based on the number of 
standard deviates away from the mean.   Thus, the probability (or area) corresponding to a give number 
of standard deviation Z is give as Ф(Z). Due to symmetry, Ф(Z)=1- Ф(-Z).  

by definition and due to the transformation 




X

Z .  Give Z (also called the Z- score) then one 

can use the standard normal table determine the desired probabilities or areas. Tables of the standard 
normal are available in most statistics and probability texts.   For the standard normal, the probability 
of the normal random variable X taking on a value less than x0 is cumulative distribution function is 

defined as P(X<x 0 ) = z , where Z =[ ( x0 -  μ)/] is the number of standard deviations between the 
mean and x0 .  Note the following important relationship. 
  Ф(Z)=1- Ф(-Z) 
 Ф(1.28) =0.9 or 90%,  Ф(-1.28)=0.1 or 10% 
 Z0.1  = -Z0.9 

Normal Distribution Examples 
Example 1. 

Assume life in hours of a tube is normally distributed with N(200, 2).  A purchaser requires at least 

90% of the tubes to have lives exceeding 150 hr.  What is the maximum value of  under this 
condition. 

Ф(-1.28) = 0.1 in the left tail (150<200). Z= -1.28,  = 39.1 

Since Z = (x-μ)/ 

 -1.28 = (150-200)/   -1.28 = -50/  =50/1.28=39.1 
Example 2. 
A manufacturer knows that the process for the diameters of the pistons he manufactures follows a 

normal distribution with mean   of  2.5 cm and standard deviation of 0.025 cm.  If a customer has 
specification limits of 2.45 cm and 2.54 cm, what percentage of the manufacturers pistons will not 
meet the customer's specs.? 

P(2.45 < x < 2.51) =  P[ (2.45-2.5) / 0.025  <   z   <  (2.51- 2.5) / 0.025 ] 
P(-2  < z  < 2.4 ) = P( z < 2.4) - P( z < -2.0) 
= Ф (2.4) - Ф(-2.0) 
= 0.97932 - (1-0.97725),  [ Note:  Ф ( - z) = 1- Ф(  z)   if  z  >  0 ].  
= 0.97932 - 0.02275 (From the Standard Normal Table in EXCEL) = 0.95657.   

The proportion of pistons that would fall within the customer’s specs =95.6% 
Therefore, the percentage that would fall outside of specs is 100(1-0.95657) = 4.4% 
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11.1.3	Exponential	Distribution	
 If events occur according to a Poisson process, then the time θ until the first occurrence has 
an exponential distribution.  Thus, in a Poisson process, if the number of occurrence of the events in 
a continuum is λ, then time between occurrence is exponentially distributed with mean time to occur 
equal to θ where the mean occurrence rate λ = 1/θ. Thus, there is a reciprocal relationship between 
the parameter of the exponential distribution and the Poisson distribution. 

The mean of the Exponential =θ, and the variance 2 =θ2 

1
,

t
1 1

t t t t

0

1
f(t) =  = , where  =  F(T < t) = d  = 1  = 1 e e e e e  

    
 

         
      

Example: 
The life in years of a certain kind of electrical switch has an exponential distribution with λ = 1/2 
(θ=2).  If 100 switches are installed in a system, find the probability that at most 30 will fail during the 
first year. First try to find the probability that one switch will fail in the first year. 

Probability of failure is P(t <θ)= e 1 t
1

 






  

R(t) = prob. of survival = 1 - prob. of failure R(t)= 1 - P(t<θ) 
R(t) = 1 - (1 - e-λt) = e-λt , R(t=1) = e-0.5 = 0.6065= prob. one will survive during the 1st year  
F(t=1) = 1 - R(t=1) = 0.3935 = prob. one will fail during the 1st year (t=1). 

Now try to find P(x < 30), with n=100, p=0.3935 

11.1.4	The	Uniform	Distribution	
 A uniform distribution, sometimes also known as a rectangular distribution, is a distribution 
that has constant probability. The probability density function and cumulative distribution function 
for a continuous uniform distribution on the interval are. 

 100 4%
30

x 100 x

x=0

P(x 30) = ) )x (0.3935 (0.6065    

USL=2.54cm LSL=2.45cm 

µ=CL=2.5cm 
σ=0.025 cm 

Shaded Area is area within Specs 

USL=Upper Spec Limit 
LSL=Lower Spec Limit 

Figure 17: Schematic of Solution 
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 Note that the length of the base of the rectangle is (b−a), while the length of the height of the 
rectangle is 1/(b−a). Therefore, as should be expected, the area under f(x) and between the endpoints 
a and b is 1. Additionally, f(x) > 0 over the region support, namely a < x < b. Therefore, f(x) is a valid 
probability density function. Note that a, and b are the minimum and maximum values of the 
distribution.  The Mean of the Uniform Distribution is equal to the Median,  
 The density function f(x), is given by:  
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Figue 18: Density Function of the Uniform Distribution 
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Example 
The time for a a machining process has a Uniform distribution with the boundary values equal 
to 5, and 10 respectively, that is A=5, and B=10. 

1). Show that indeed this random variable has a legitimate Uniform density function. 
2) Find the P(X<5),  

3) Find P (6 X 8),   
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4) Find P(X7) 
5) Find the Mean, Median, and the Standard Deviation of this distribution 
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If f(x) is a legitimate density function then,  
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2) P(X<5) =0 since no value of the distribution exits beyond 5 
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Conclusion	

An engineer solves problems that are of interest to society by the judicious application of both 
scientific and engineering principles. In order to arrive at the engineering design decision, the engineer 
is often faced with the problem of collecting data or when available using data that have already been 
collected. Due to the inherent variability of nature, any data collected must be subjected to detailed 
analyses and scrutiny since data accuracy and integrity are key to making informed engineering 
decisions or designing systems and processes.   

Probability and Statistics theories provide a formal framework for quantifying risk or 
uncertainty in engineering designs and decisions. Thus, the significance of probability and statistical 
methods in engineering modeling, design, and analyses can be seen from the following viewpoints, 
namely; a) The need for the modeling and evaluation of systems performance under conditions of 
uncertainty; b) The need for the systemic development of design criteria, explicitly taking into account 
the significance of uncertainty, and c). The need for risk assessment and the need for the ensuing risk 
trade-off analyses with respect to decision making.  
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 The reviews and materials presented herein are an attempt to give the engineer a very broad 
overview of the concepts of Probability and Statistics. Some details have been omitted especially if 
those do not contribute essentially to the understanding of the concepts. For example, tables for some 
of the well-known distributions have been left out because they are available online or in any basic 
Probability and Stat book. Numerical problems have been provided to help elucidate some of the 
concepts.  
 
REFERENCES	
1. Ang, A.H.-S. and Tang, W.H. (1975). Probability Concepts in Engineering Planning and Design, 

Vol. 1, Basic Principles, John Wiley, New York. 
2. Kelly Brown, 'A Terabyte of Storage Space: How Much is Too Much,' in The Information Umbrella, 

Musings on Applied Information Management, University of Oregon, 2014. 
3. “Data to Action,” A Harvard Business Review (HBR) Insight Center White Paper, Sponsored by 

SAS, Inc., 2014, Harvard Business Publishing, Cambridge, M. 
4.   “Big Data Analytics, What it is and why it matters,”  International Institute for Analytics, Thomas H.   

Davenport and Jill Dyché, Copyright © Thomas H. Davenport and SAS, Institute Inc, 2013. 
5. International Federation of Robotics (IFR), Executive Summary, World Robotics 2013-2015. 
6. Nuclear Power Plants World-wide, Source European Nuclear Society, November 2016. 
7. Johnson, R.., Miller, I. (2015), Miller & Freund's Probability & Statistics, 9th ed., Pearson Publishers, 

Boston, MA, USA. 
8. Vardeman, S. (1994), Statistics for Engineering problem solving, 1st ed., PWS Pub. Co, Boston, MA.  
9. Montgomery, D.C.,  Runger, G., and Hubele, N. (1998), Engineering Statistics, 1st ed, John Wiley and 

Sons, NY, USA. 
10. Montgomery, D.C., and Runger, G. (2011), Applied Statistics and Probability for Engineers, 5th ed., 

John Wiley and Sons, NY. 
11. Devore, J.L., (2012), Probability and Statistics for Engineering and the Sciences, 8th ed., 
 Duxbury & Brooks/Cole, Boston, MA. 
12. Ross, S. (1987), Introduction to Probability and Statistics for Engineers and Scientists, 1st ed., John 

Wiley & Sons, NY.  
13. Walpole, R., Meyers, R.H. (2002), Probability and Statistics for Engineers and Scientists, 7th ed., 

Prentice- Hall Inc., Upper Saddle River, NJ.   
14. Hogg, R. Craig, A. (2004), Introduction to Mathematical Statistics, 6th ed., Prentice-Hall, 
 Englewood Cliffs, NJ. 
15. Larsen R.J., Marx M.L. (2012), Introduction to Mathematical Statistics and Its Applications, 5th ed., 

Prentice-Hall Englewood Cliffs, NJ. 
16. DeGroot M.H., Schervish M.J. (2011), Probability and Statistics,4th ed., Addison Wesley, Boston, MA 
   


