

A SunCam online continuing education course

 Verilog for Digital Design

 By

 Raymond L. Barrett, Jr., PhD, PE

 CEO, American Research and Development, LLC

 Raymond L. Barrett, III

 IT, American Research and Development, LLC

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 2 of 48

Abstract & Preamble

Engineering Practices - With the recognition of the Professional Engineering status for the
practice of Computer Engineering in April of 2009, the practice of Control Systems
Engineering in October of 2011, and the practice of Software Engineering in April of 2013,
there has been the need for specialized continuing education courses related to these
practices. Computer Engineering majors may have taken a course with some component of
digital design without using Verilog, or may have had a course using the VHDL language.
Control Systems engineers will find Verilog to be a useful tool for modeling and simulating
real-time hardware and embedded systems for control applications, Software engineers can
apply the principles of the concurrent parallel system representations available in Verilog for
numerous applications. Other disciplines, including Electrical Engineers will also find the
digital design practices encapsulated in Verilog useful all the way to the device level
representations available in the language.

For this course, we assume that all readers are familiar with digital design concepts, but are
interested in an introduction to the capabilities of the Verilog Design Language and how to
use it in the design practice. Likewise, we assume that readers generally have rudimentary
experience with computer languages, text editors, and general concepts of computer program
compilation.

Digital Design Methodologies – Nearly all of today’s digital design approaches find a basis
in early design practices inherited from analog circuit design. A circuit schematic was drawn
using electrical or logic-gate symbols and interconnected to represent the design intent.
Analysis and expected behavior was annotated to the connections, often in the form of
Boolean equations and dynamic behavior represented using timing diagrams. At first, nodal
and loop descriptive equations were written and hand-analyzed. As soon as computer-aided
differential equation solvers became available, they were employed in time-domain
simulators to verify the behavior of essentially analog circuit representation of digital logic.
For digital design practice, however, the continuous-time , continuous-magnitude signal
representation used in analog design practice proves non-optimal.

In early practice, the collection of circuit schematics, timing diagrams, simulation results, and
narrative descriptive text was also used as design documentation as a deliverable. The US
military funded the Very High-Speed Integrated Circuit (VHSIC) initiative

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 3 of 48

(https://en.wikipedia.org/wiki/VHSIC) and as part of that effort, mandated use of the VHSIC
Hardware Description Language (https://en.wikipedia.org/wiki/VHDL) as a standardized
form of design documentation. Initially, the designers attempted to document designs from
device level through higher levels of complexity to full system descriptions. In various
scopes, that same VHDL is used in Europe and often still mandated by the US military.
Compared to earlier practice, VHDL is superior to the ad-hoc prior practice. Verilog has
many of the features inherited from VHDL practices, but has added strengths.

As computers and their languages evolved, the Verilog language (http://www.verilog.com)
was developed that combined features borrowed from the “C” language, but maintained a
focus on logic design. Verilog is less verbose than VHDL that was implemented on an
“ADA” language backbone basis, and has been adopted by a wide range of digital designers
for its ability to support additional design emphasis as well as for supporting roles in design
description and documentation.

Predecessor methodologies are still in use to some degree, but Verilog has become a popular
tool for design capture, as well design synthesis. Verilog tools supporting implementation
capabilities targeted to numerous technologies, including: discrete devices at a board level,
Field-Programmable Gate Array (FPGA) devices, Application-Specific Integrated Circuit
(ASIC) custom devices, and even embedded “C” programs in devices using the Verilator
(http://www.veripool.org/projects/verilator) and other translator applications.

There are several textual and graphical design entry mechanisms available for Verilog tool
suites. This course employs a simple text-editor for alphanumeric program entry and a
compiler that produces a textual output. More complex GUI support is available including
some proprietary schematic capture methodologies with symbol generators and other tools
that are not discussed here. We introduce the simplest tools we can find to get hands-on
experience with the language, but we later direct the reader to somewhat more complicated
tools that may be used to increase productivity.

1.0 Introduction to Verilog Design

1.0.1 The Verilog Language Abstraction Features - Verilog is a parallel and concurrent
computer language, in addition to supporting more common sequential programming
constructs, and it can be used at several levels of design abstraction. At the highest level,

http://www.suncam.com/
https://en.wikipedia.org/wiki/VHSIC
https://en.wikipedia.org/wiki/VHDL
http://www.verilog.com/
http://www.veripool.org/projects/verilator

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 4 of 48

Verilog can be used as a general-purpose numerical computation platform to capture some of
the essence of digital system behavior.

 In another, more-restrictive environment, it can be used as a “Register Transfer Level”
(RTL) digital design-capture tool for preparing a design for synthesis into target digital
hardware.

In its most detailed usage, it can be used to describe digital components at the device level,
including MOS devices and components, along with the interconnecting wiring of the
components. To some extent, we can choose and interchange the level of abstraction for
component sub-systems in a design. At all levels, though, Verilog maintains a relationship
with its roots in logic design by defining signals as “wires” and “reg” register bit value
assignments, primarily for simulation.

In the signal representations, individual signal bits can be represented a “1”, “0”, “X”
(unknown), or “Z” (un-connected) value with other representations available as collections.
Yes, we can represent signals as floating point entities, but only as Behavioral Level
constructs (not currently synthesizable to digital logic).

We explore each of the levels of abstraction, starting from the highest level and progressing
to a detailed structural level. At each level, we enter a design using a text-processor, compile
that design to an intermediate file format, and display the results in the time-domain using a
waveform display software tool. All tools are Free, Open-Source Software (FOSS) and can
be obtained from on-line repositories at the links provided.

1.0.2 The Verilog Language Simulation Features - Verilog employs a “discrete-event”
methodology for digital signal representation that is based on the four-valued binary signal
representation and an event-queueing, time-sequence based process model.

Most physics-based analog design systems construct models with their signals as continuous-
time and continuous magnitude representations. In such analog systems all signal levels are
valid as well as all time intervals; in contrast to the discrete-event signal representation.

Some Digital-Signal Processing (DSP) systems use different discrete-time approach with
magnitude representations as integer or floating-point signals but with those values only valid

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 5 of 48

at discrete times, evaluated at all clock instances. Verilog does not require evaluation at every
time instance, although it is common in many systems to have a regular clock signal.

The discrete-event approach treats the time variable as an index into its event queue.
Component “modules” are stimulated by input signals and produce output signals that are
scheduled for action during the execution of the Verilog program.

The component modules are relatively free to respond in any logical fashion but must obey a
causal relationship; outputs are related to inputs, but with their output not preceding inputs. A
rudimentary software tool is included in the compiler to detect non-causal attempts.

The discrete-event approach is most-often the most simulation time-efficient, as well as
simulation space efficient for digital design because intermediate signal and time values are
not computed or stored; they are displayed as continuous between events for ease of
interpretation. Later additions to the language re-capture some of the analog capabilities in
super-set versions like Verilog-A and System-Verilog.

1.0.3 Verilog Language Design Entry - As a computer language, Verilog can be entered as
a single text-based document or set of documents and translated using many alternate
proprietary and Free-Open-Source Software tools (FOSS). The tools range from very simple
single-function programs to complex multi-function integrated design environments. We
employ only the FOSS tools throughout, but begin using the tools in the simplest form and at
the highest level of abstraction to produce an introductory “Hello Word” message to the
designer. Admittedly this is a limited use Verilog program but the entry, compilation, and
running the program instills confidence for the experiences that follow.

The particular text editors are recommended as compatible with the “verilog.v” file notation
checking language syntax and signals errors they encounter. Each text editor provides line-
number references that the compiler uses to indicate where it finds certain errors during
compilation. Two such text editors are introduced and compared, one associated with Linux
and the other with the Microsoft Operating system environments.

The alpha-numeric representation of variables can be case-sensitive and many of the word-
processor software that is used for human-language text-processing often injects what it is
programmed to interpret as typing errors in a “correction” that creates Verilog language

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 6 of 48

errors. Please do not attempt to use a word-processor for program entry and stick with those
introduced here; these text processors will reduce avoidable frustrations.

1.0.4 Recommended Text Editor Tools – The Microsoft Windows Operating System (OS)
environment is widely available and we begin by introducing the “notepad++” text editor.
You can download the editor from: https://notepad-plus-plus.org/download/v7.2.1.html in
either 32-bit or 64-bit versions. You will probably find that the 32-bit version works equally
well in either environment, and also has no problem in Windows7 and Windows10 (both
were tested by us and work well). Again, we recommend that you avoid trying the use of a
“word processor” application because many of them inject “hidden” characters and automatic
features interact adversely with the Verilog language syntax.

Figure 1.0 - Installing the notepad++ program in Microsoft Windows

In a Linux environment, we have tested and illustrate examples using the “nedit” text editor
in a Xubuntu installation. You can manually download the editor from sourceforge at:
https://sourceforge.net/projects/nedit, but often just following your system’s installation
procedure works well; usually:

http://www.suncam.com/
https://notepad-plus-plus.org/download/v7.2.1.html
https://sourceforge.net/projects/nedit

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 7 of 48

sudo apt-get nedit install

Figure 1.1 - Installing the nedit program in Xubuntu Linux

If you are using the Linux environment, hopefully you are already fairly familiar with your
version and its installation procedures. Most of the early development of Verilog was done in
a Linux environment and there are many resources to support the installation of the tools, but
we have only the Xubuntu environment actually installed and working. Where there are
important points to be made about the Linux environment, we attempt to point out special
considerations.

1.0.5 Verilog Language Compiler Tool – As with many languages, there are standards for
the language (https://en.wikipedia.org/wiki/Verilog) and various revisions, and more than
one accepted set of software tools are available to use each version of the language. We have
chosen the Icarus Verilog version of Verilog, in part because it is the same in both Windows
and Linux environments.

http://www.suncam.com/
https://en.wikipedia.org/wiki/Verilog

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 8 of 48

 Figure 1.2- Icarus Verilog Web Page

We introduce Verilog compilation using the Icarus Verilog (iVerilog) tool. iVerilog
(http://iverilog.icarus.com) can be employed equally well in many Operating System (OS)
environments but you may need to try more than one installer to get it working; for Windows
there is a list (http://bleyer.org/icarus) of installers, but for Linux, the best approach is to use
the installer capability of your “dialect” of Linux trying your supported approach, perhaps
something like: (http://askubuntu.com/questions/217555/how-to-use-verilog-hdl-on-ubuntu)

 sudo apt-get install iverilog

It is not uncommon for the installation to inform you that some other software is also needed
to complete the iVerilog installation (most often a “C” compiler for your particular
environment). You will probably not need both Windows and Linux, so choose the one you
are most familiar working with and add the other as your interest takes you.

Take heart, getting the software tools installed is probably the most difficult part of this
course and we have made the introduction as painless as possible. There will be more
software tools introduced but the process builds on increments that help you gain confidence.

http://www.suncam.com/
http://iverilog.icarus.com/
http://bleyer.org/icarus
http://askubuntu.com/questions/217555/how-to-use-verilog-hdl-on-ubuntu

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 9 of 48

1.0.6 Icarus Verilog Compiler Tool Installation – In the Microsoft Windows environment,
from the list of installers at: http://bleyer.org/icarus, you should choose the latest setup.exe
installer version for your version of Windows. Usually, the 32-bit versions work as well as
64-bit versions, but there may be differences between Intel and AMD processor hardware,
particularly if you do choose 64-bit software. Occasionally there are also issues with the
PATHNAME variable in Windows that must be set for the program to be “found.” Follow
the recommendations of your Windows version and help files for setting the installation-
specific variables.

In a Linux environment, you should visit: http://iverilog.icarus.com and follow links to the
source code to compile, or you can use your software registry for Linux by executing the
“sudo apt-get iverilog install” instruction as the super-user and supplying your password.

1.0.7 Icarus Verilog Programming Example – We introduce the “Hello World” Program in
Windows as a simple example of program entry, compilation and execution. On your
desktop, right-click and select New-> folder, and name the folder Verilog, and open so that
you see the following window:

 Figure 1.3 - Verilog File Folder in Windows

In your Start list, select “notepad++” with a single-click, and the notepad++ window should
appear on your desktop looking like:

http://www.suncam.com/
http://bleyer.org/icarus
http://iverilog.icarus.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 10 of 48

 Figure 1.4 – Notepad++ Text Editor in Windows

In the window, type the following Verilog program-listing text:

module main; //This is a comment at the module definition line
 initial //This comment is at the start of a single-pass section
 begin
 $display("Hello, World"); //This comment at a “system task” for what is displayed
 $finish ; //This comment is at the “system task” to end a program
 end
endmodule //This comment is the endmodule for the end of the listing

Program Listing 1.0

If you are careful typing an pay close attention to punctuation (be careful about where the
semicolons are located), your text window should now appear with the program listing text
as:

 Figure 1.5 – Verilog Program in Notepad++ Text Editor in Windows

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 11 of 48

Using the text window File menus, select Save As, and use the “Save in” box to direct the
save to Desktop, and under that, the Verilog directory/folder that you just created, and it
should appear just as it was created. In the File name, type “hello” without the quotes, and in
the Save as type, scroll down to the Verilog file designation, and you should see:

 Figure 1.6 – Saving the Verilog Program in Notepad++ Text Editor in Windows

Press the “Save” button so the Verilog window should now appear as:

 Figure 1.7 – The Verilog “hello” program in the Verilog File Folder in Windows

Type the Windows-R key and you should get a DOS command window like:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 12 of 48

 Figure 1.8 – Obtaining a Command Dialog Box in Windows

Press OK, and you should get a command window like:

 Figure 1.9 – An Empty log-in Command Window in Windows

In this window, type cd Desktop/Verilog as shown below:

 Figure 1.10 – Linking the Command Window to the Verilog Folder in Windows

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 13 of 48

Type Enter, followed by “dir” and the window should reflect the view shown below:

 Figure 1.11 – Listing the Contents of the Verilog Folder in Windows

Note that the view shows the contents of the Verilog directory on your desktop, including the
hello.v file. Type: “iverilog –o hello hello.v” and after a few seconds, you should see:

 Figure 1.12 – Compiling the hello Program in the Verilog Folder in Windows

At this point, you have entered your Verilog program and saved it, and then compiled it,
although the result of the compilation doesn not become visible until you explicitly list the
folder contents.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 14 of 48

 Figure 1.13 –Program files in the Verilog Folder in Windows (Command View)

 Figure 1.14 –Program files in the Verilog Folder in Windows (GUI View)

These tools and procedure are recommended because notepad++ performs rudimentary
lexical analysis on your program and highlights keywords and the compiler performs syntax
checking and refers to a line number in notepad++ where it identifies problems.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 15 of 48

 Figure 1.15 – Program Entry Using nedit in the Verilog Folder in Xubuntu Linux

 Figure 1.16 – Saving the hello program in the Verilog Folder in Xubuntu Linux

Again, be aware that it is common to require several iterations, entering and editing the
program before all syntax issues are resolved. It is also a good strategy to write small

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 16 of 48

modules, name them uniquely, and compile them enough times to obtain syntactically correct
code. Later, cut and paste techniques can be used to construct combinations of modules.

The Verilog language has many syntactical requirements like any computer language. Many
universities employ Verilog as an integral part of their programs and support its use in their
laboratories. One such program at the University of Maryland, Baltimore, supplies a very
useful “help” index at:
https://www.csee.umbc.edu/portal/help/VHDL/verilog/summary.html#Top

As a language reference, purchase the IEEE standard:
http://ieeexplore.ieee.org/document/1620780/?reload=true&arnumber=1620780; or use the
on-line version provided by UC Berkeley to help fix syntax errors.
https://inst.eecs.berkeley.edu/~cs150/fa06/Labs/verilog-ieee.pdf

If you get more deeply involved with Verilog, you may want to secure “The Verilog
Hardware Description Language,” by Thomas and Moorby; the authors of this course have
found this book to be invaluable as a well-organized reference:
http://www.springer.com/us/book/9780387849300

After compilation, you should see two indications that it has compiled correctly with the
completion following the command above in the DOS command window (without error
messages), and with the change of the Verilog window to include both the source hello.v and
compiled program hello:

Once the hello program is compiled without errors, you must run the program by typing the
command “vvp hello” as below:

http://www.suncam.com/
https://www.csee.umbc.edu/portal/help/VHDL/verilog/summary.html#Top
http://ieeexplore.ieee.org/document/1620780/?reload=true&arnumber=1620780
https://inst.eecs.berkeley.edu/%7Ecs150/fa06/Labs/verilog-ieee.pdf
http://www.springer.com/us/book/9780387849300

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 17 of 48

 Figure 1.17 –Executing the hello Program in Windows (Command View)

 Figure 1.18– Compiling and Executing the hello Program in Xubuntu Linux

You see the “Hello, World” response in the command window indicating that the message is
a result of invoking the iverilog simulator to execute the hello program. Congratulations, you
have just entered, compiled, and executed a Verilog program.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 18 of 48

There are shortcut operations possible in Windows, but they essentially perform the same
operations. For example, if you hold the shift-key and right-click on the Verilog folder
containing the files on your desktop, you will be shown a list that includes the option to
“open command window here” bypassing the selection from the Windows-R key and DOS
command window as discussed above. Also, if repeated edits are needed to correct syntax
errors, the arrow keys can be used to repeat prior instructions and avoid extra typing.

1.0.8 Icarus Verilog Program Structure – The first line of the “hello” program shown
below in Listing 1.1, is the naming declaration for the entire program “module” and all
programs must be declared in this way with a “module” declaration and they must end with
the “endmodule” declaration. These are language “keywords” that identify the beginning
and end of the program. The “//” character pair denotes a comment from the pair to the end
of the line.

module main; //This is a comment at the module definition line
 initial //This comment is at the start of a single-pass section
 begin
 $display("Hello, World"); //This comment at a “system task” for what is displayed
 $finish ; //This comment is at the “system task” to end a program
 end
endmodule //This comment is the endmodule for the end of the listing

Program Listing 1.1

Next, we encounter an “initial” declaration that indicates a part of the program that executes
sequentially just once, and includes all statements between the “begin” and “end” keywords.

As you might guess, the “initial” declaration is mostly used to initialize variables and do the
program setup, but can be used, as we have, to execute the program one single time, in the
way we do here.

In the body of the “initial” portion between the “begin” and “end” keywords are two system
tasks $display and $finish that tell the system what to send to the display, and to end the
system instructions. There are more such system tasks and they all begin with the $ character.

As we shall see later, there are Integrated Development Environment (IDE) software tools
that simplify the program entry, compilation, and execution, but setting these tools up is itself
an involved process and deferred until the ideas of Verilog programming have become firmly
established.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 19 of 48

2.0 Verilog Logic Design Levels of Abstraction – The Verilog Language supports three
general levels of abstraction: Behavioral, RTL, and Structural Levels. Verilog programs can
employ these levels seamlessly but there are attributes to each level that are best employed to
each level’s advantage.

There are also tools available that can translate between levels of abstraction with differing
degrees of success. One such tool is a Verilog synthesis tool that produces an output file
describing the digital logic suitable for Field Programmable Gate Array (FPGA) or
Application Specific IC (ASIC) implementation. Synthesis is beyond the scope of this course
but the reader is encouraged to follow an interest deeper into the subject.

2.1 Verilog Logic Design Behavioral Level of Abstraction – Designs at the Behavioral
Level of abstraction support design-capture of system behavior, as the name states, but has
little or no implementation information. The Behavioral Level of abstraction is closest to a
general-purpose programming language and can be used to capture features without
bothering with detail. One such usage is the construction of Test-Bench programs that
provide simulation behaviors for external systems to determine how a more detailed design
will function.

One price of the flexibility and generalized functionality of a Behavioral Level model is that
it is rarely “synthesizable” using a synthesis programming tool to convert the program to a
more detailed expression. Progress has been made in behavioral system synthesis, but
generally Behavioral Level cannot reliably be synthesized to an implementable level.

We will explore an example of a Behavioral Level model by generating a “Clock” waveform
and displaying the result using the GTKWave tool. We will expand that example, also as a
Behavioral Level model by generating other waveforms in a similar fashion.

A Behavioral Level program must still follow the syntax rules of the Verilog language and
have the module and endmodule declarations, as well as a module name. An example that
shows this minimum requirement is:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 20 of 48

 Figure 2.0 – Entering the behave Program in notepad++ in Windows

We follow the steps outlined above for program entry, compilation, and execution, and
obtain:

 Figure 2.1 – Entering, Compiling, and Executing behave in Windows (Command)

And in the Verilog folder, we have the files:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 21 of 48

 Figure 2.2 – Entering and Compiling behave in Windows Verilog (GUI)

But, following the “vvp behave” command, there is no message or apparent action because
our minimum correct program does nothing, as it was instructed to do (not do?).

We can add a message, just as we did in the “Hello, World” program with:

 Figure 2.3 – Editing the behave_2 Program in notepad++ in Windows

And obtain the expected result:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 22 of 48

 Figure 2.4 –Compiling and Executing behave_2 in Windows (Command)

We now have three Behavioral Level programs that have been successfully entered,
compiled, and executed and demonstrate the module and endmodule declarations, the initial
control construct declaration, the system tasks $display and $finish, and the practice of
punctuation with semicolons at the module declaration and the system tasks, but not at the
initial declaration or begin or end statements.

We recommend that you become familiar with the program entry using the notepad++ text
editor, and the iverilog compiler steps repetitively because they work together to perform a
first-level of syntax checking for you.

Some other constructs that can be employed in a Behavioral Level program include the
always control construct declaration. Always is distinguished from the initial control
construct declaration because its procedural body is expected to execute at least once but may
repeat indefinitely, whereas the initial control construct declaration executes its procedural
body (usually between begin & end delimiters) only once.

We could continue a discussion of the procedural uses of the always control construct
declaration but is cleared in a context with time-dependent waveforms and those are best left
until after the GTKWave viewer is introduced.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 23 of 48

The Behavioral Level program structures are often used to construct “Test Bench” programs
that invoke other modules. We use this approach to illustrate both RTL and Structural
Level programs in the following discussions.

2.2 Verilog Logic Design RTL Level of Abstraction – The RTL Level of Abstraction
takes its name from the use of data register declarations and the manipulations performed on
the contents of those registers.

With suitable restrictions on the data constructs and operations, the RTL programs can be
synthesizable to logic-level implementations. Some target implementations include discrete
devices at a board level, Field-Programmable Gate Array (FPGA) devices, Application-
Specific Integrated Circuit (ASIC) custom devices, embedded “C” programs in devices using
the Verilator (http://www.veripool.org/projects/verilator) translator, as well as other discrete
circuit applications that are possible.

Portability of designs is one very important consideration supported by RTL designs. It is
common, for example, to target the same design to several of the technologies mentioned, as
well as different generations of technologies. Some products are introduced to a market as an
FPGA for early introduction while a full-custom ASIC is being fabricated. The FPGA and
ASIC use the same program Verilog code despite the target implementation differences,
especially when early introduction has important time-to-market economic impacts.

For those designs that are implemented in logic gates, wires and transistors, a suitably more
detailed expression is the Structural Level of Abstraction. The higher level of abstraction
of RTL, combined with synthesis software, makes the design process more robust, more
compact, and easier for a human to read. Sometimes, a combination of RTL with a Structural
Level library of cell modules is used to support ASIC implementations.

2.3 Verilog Logic Design Structural Level of Abstraction – The Structural Level of
Abstraction takes its name from the logic structures supported by Verilog; the gates, devices,
and their interconnections. Structural level programs are offer less portable programs than
synthesizable RTL, but may be used for design capture for concepts that are best expressed at
the gate and transistor level. Detailed timing behaviors can be obtained from structural level
cell module circuits that must be estimated at higher levels. Those cell modules are
“characterized” for important power and delay parameters that are appended and available to
the RTL synthesis software for speed/power tradeoff decisions.

http://www.suncam.com/
http://www.veripool.org/projects/verilator

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 24 of 48

It is a common practice to design implementation-specific ASIC cell-libraries of logic gate
cells at the structural level and characterize their behavior as attachments to higher-level cell
descriptions. For instance, delays are often obtained from other environments (analog SPICE
simulation is common) and attached as “Standard Delay Format” (.sdf files) accessed by
synthesis tools. Re-targeting Verilog RTL designs from FPGA to an ASIC technology is
important, but also to support advances in IC technology between ASIC generations and
implementation foundry suppliers.

In a sense, the synthesis tool substitutes the structural level information into a higher level
expression to obtain timing and power dissipation estimates at that higher level. Substitutions
and variations in the synthesis operations support optimization of designs in a target
technology. One common approach offers a trade-off of speed performance for power
performance while retaining common core functionality for technology comparisons.

3.0 Introduction to Verilog Logic Design Waveform Viewing – To enter a Verilog
program, and compile it to obtain the executable form, we have used the notepad++ text
editor and the Iverilog compiler. For viewing digital design results, we add another tool that
displays time-domain digital waveform information produced by the executable Verilog files.

When you installed your Icarus Verilog, the GTKWave program may have been included in
the installer. You can test to see if it is present by opening the command window and typing
the “gtkwave” command:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 25 of 48

 Figure 3.0 – Invoking GTKWave in Windows (Command Window Test)

The command window above shows that GTKWave is installed and opens its interface as
shown below:

 Figure 3.1 – GTKWave Waveform Viewer GUI in Windows

If the tool is not already installed, an installer can be obtained at: http://gtkwave.soft112.com/

http://www.suncam.com/
http://gtkwave.soft112.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 26 of 48

 Figure 3.2 – GTKWave Waveform Viewer GUI in Xubuntu Linux

3.1 Verilog Logic Design Waveform Viewing Example – You can find a detailed “GTK
Wave User’s Guide at: http://gtkwave.sourceforge.net/gtkwave.pdf for additional reference,
and we present a behavioral level program then showing the clock waveform in GTKWave.

We begin by defining the program module tester_1 as follows:

http://www.suncam.com/
http://gtkwave.sourceforge.net/gtkwave.pdf

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 27 of 48

 Figure 3.3 – Editing the tester_1 Program in notepad++ in Windows

Note: we included lines in the always block near the end of the module to define operation of
the periodic Clk signal, and we have also modified the initial section. At the top, we have a
new module name “tester,” and we will save under the filename tester_1 to help distinguish
the file from its contents.

The module tester has an output terminal defined by the “tester(Clk);”, the “output (Clk);”
and the “reg Clk;” declarations. We have associated the Clk with tester, defined it as an
output signal, and retained its value in a single-bit “Clk” register.

To retain the simulation waveform data, we use a system command “$dmpfile(“Clk.vcd);”
to tell the compiler which file to use for the data, and then “$dumpvars;” to actually write
the simulation results into that file.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 28 of 48

After we issue the command to write to the file, we use the “#500 $finish;” instructions to
delay, then finish the program. The delay is added so that the program executes for the non-
zero duration of 500 arbitrary unit-delay time steps. We will see the result on the GTKWave
display.

We use a similar delay in the “#10 Clk = !Clk;” so that the Clk signal is delayed 10 units
and then complemented to its logic inverse. The implication from this structure is that we
should see a clock with a period of 20 units (10 high = 1, and 10 low = 0) repeating until we
reach 500 units (500/20 = 25 clock cycles).

 Figure 3.4 –Compiling and Executing tester_1 in Windows (Command)

Again, we compile and execute the program with the vvp command so that the Clk.vcd file
is written, and invoke the GTKWave program as follows:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 29 of 48

 Figure 3.5 – Invoking GTKWave in Windows (Command Window Test)

The gtkwave window opens and we get an empty screen because the program does not yet
have any data loaded:

 Figure 3.6 – Empty GTKWave Waveform Viewer GUI in Windows

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 30 of 48

Under the File header, we select the Open New Tab, get the wave selection from the list as
Clk.vcd:

 Figure 3.7 – Opening New Tab GTKWave Waveform Viewer GUI in Windows

After we select OK, we now have another selection with the data from the tester_1 program
module loaded. We see that the time at the top is from 0 sec to 500 sec, as we expected. :

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 31 of 48

 Figure 3.8 – Open tester data in GTKWave Waveform Viewer GUI in Windows

 Figure 3.9 – Clock waveform data in GTKWave GUI in Windows

We select the waveforms by clicking on “tester” and drag the signal “Clk” onto the Time
pane. At first, the waveform appears blank, but clicking on the “Time Zoom Out” several
times, we get the display above.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 32 of 48

 Figure 3.10 – Clock waveform full data in GTKWave GUI in Windows

Time “Zoom Full” produces the entire 500 second interval of 25 cycles.

3.2 Another Verilog Logic Design Waveform Viewing Example – We note that the first
example defines a simple Behavioral Level repetitive clock waveform. We expand the single
clock signal by adding three more clock definitions; Clk1, Clk2, and Clk3 in similar fashion
to the existing definitions, each as an output, and each as a “reg” variable..

We rename the module text-file as tester_3B, as well as the module name, too. As the
program listing continues on the next page, you will see that we have re-named the
“dumpfile,” also as "Clk_3B.vcd", then added event related sections to the “always” that
relate to the “posedge” transitions on each preceding clock signal.

module tester_3B(Clk, Clk1, Clk2, Clk3); //Tester module generates multiple periodic clock signals

 output Clk, Clk1, Clk2, Clk3;
 reg Clk, Clk1, Clk2, Clk3;

 initial //Run the test once
 begin
 Clk = 'b0;
 Clk1 = 'b0;
 Clk2 = 'b0;
 Clk3 = 'b0;
 $dumpfile("Clk_3B.vcd"); //Dump results of the simulation to Clk_3B.vcd
 $dumpvars;

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 33 of 48

 # 500 $finish;
 end

 always //Generate the original periodic clock signal
 begin
 #10 Clk = !Clk;
 end

 always @(posedge Clk) // Generate event related periodic clocking
 begin
 #2 Clk1 = !Clk1;
 end
 always @(posedge Clk1)
 begin
 #2 Clk2 = !Clk2;
 end
 always @(posedge Clk2)
 begin
 #2 Clk3 = !Clk3;
 end
endmodule

Program Listing 3.0

After the text-file is saved, we open the command window, show the files listed, noting that
the “tester_3B.v” file is present, compile the file to the “tester_3B” file, and issue the “vvp
tester_3B” to obtain the “Clk_3B.vcd” results file. We ensure that they are all present by
obtaining another “dir” listing and then invoke the viewer using the “gtkwave” command.

You will see the results below, followed by the GTKWave window after the file is opened as
a new tab, the tester_3B project is “clicked,” and the reg type signals Clk, Clk1, Clk2, and
Clk3 are “dragged” into the signals Time pane. As before, you will need to Zoom Full to see
the entire duration as it appears in the illustration below.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 34 of 48

 Figure 3.11 –Compiling and Executing tester_3B in Windows (Command)

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 35 of 48

 Figure 3.12 – Clock waveform full data in GTKWave GUI tester_3B in Windows

We note that we have the original clock signal and three other signals derived from it. All the
signals are Behavioral Level representations and cannot be converted to an implementation
using synthesis software tools.

We next build an RTL model with three similar clocking signals derived from the timing
reference that provides similar results but is amenable to using synthesis software tools.

3.2 An RTL Verilog Logic Design Waveform Viewing Example – We note that we added
the three clock waveforms in three “always” constructs. We revisit that program listing and
modify its structure using a single register variable with three binary bits. We make that
variable count over the range of zero to seven in binary fashion with the result that each
register bit is equivalent to one of the prior clock signals.

Use the text editor to enter and save the following file under the “tester_3B_RTL” name.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 36 of 48

//Tester module generates multiple periodic clock signals
module tester_3B_RTL(Clk);
 output Clk

 reg Clk;
 reg [2:0] temp;

 //Run the test once
 initial
 begin
 Clk = 'b0;
 temp = 3'b0;

 //Dump results of the simulation to Clk.vcd
 $dumpfile("Clk_3B_RTL.vcd");
 $dumpvars;
 # 500 $finish;
 end

 //Generate the original periodic clock signal
 always
 begin
 #10 Clk = !Clk;
 end
 // Event related periodic RTL register clocking
 always @(posedge Clk)
 begin
 #2 temp = temp + 1;
 end
endmodule

Program Listing 3.1

As before, we get similar results from the listings, compile, vvp, and listings again before the
gtkwave command to invoke the viewer:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 37 of 48

 Figure 3.13 –Compiling and Executing tester_3B_RTL in Windows (Command)

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 38 of 48

 Figure 3.14 – Clock waveform in GTKWave GUI tester_3B_RTL in Windows

With GTKWave opened, the “Clk_3B_RTL.vcd” file loaded, the tester_3B_RTL project
module selected, and both signals dragged to the Time pane, you will see traces, but you
should select the temp[2:0] signal with the right mouse button and make the data format
binary. You will see all three bits each with their waveforms changing following the rising
edge of the Clk variable. Temp[0] is equivalent to the prior Behavioral Clk1 signal,
Temp[1] is equivalent to the prior Behavioral Clk2 signal, and Temp[2] is equivalent to the
prior Behavioral Clk3 signal, without the additional delays. We could make explicit
assignments with delays if we wish. The major point of this exercise is the procedure
similarity of the tool use and the changes to generate the RTL Level portion of the program.

3.3 A Structural Verilog Logic Design Waveform Viewing Example – We note the
similarity of forming three related clock waveforms using Behavioral Level and RTL Level
approaches. Next, we contrast a Structural Level approach using three flip-flops to perform
the counting achieved with an increment in the RTL example. We maintain portions of the
prior module definitions to employ as a Test-Bench module. We also construct other modules
with differing uses developed and introduced as needed.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 39 of 48

To achieve a counter structure using flip-flops to perform the counting, we introduce a
synthesizable model of a “D” flip-flop. Structural elements are introduced by connecting
these flip-flops modules to perform the counting.

A text description of the flip-flop nodule follows:

module dff(q, d, ck); //D flip-flop with d, & ck inputs for q output
 output q;
 input d, ck;
 reg q;

 always @(posedge ck) // Positive edge clocking
 q <= d; // Transfer d value to q register

endmodule

Program Listing 3.2

The only thing new in this description id the use of the “<=” defined as a “non-blocking
assignment.” This particular assignment means that the event completion is not entirely
instantaneous, but is scheduled for the end of the current time step. We plan to use three dff
modules and want them all to change state on a common clock signal. The non-blocking
assignment causes all three to synchronize during one time step but change at the next step.

Because we need to initialize the dff module, we define another version with a reset input “r”
defined with a reset “r” input as follows:

module dffr(q, d, r, ck); //D flip-flop with d, r, & ck inputs for q output
 output q;
 input d, r, ck;
 reg q;

 always @(posedge ck or negedge r) begin // Positive edge clocking and Negative edge reset
 if(~r) // After Negative edge reset, r is binary false
 q <= 0; // Reset implies q goes to binary false or “0”
 else // Remaining test must be posedge ck
 q <= d; // Transfer d value to q register
 end

endmodule

Program Listing 3.3

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 40 of 48

You can save your module definition as “dffr.v” and follow the procedure for compiling to
the “dffr” file without running the procedure using the “vvp” command. The save and
compile supports syntax checking and debug and is recommended prior to the next steps.

In our next steps, we form a counter module constructed by “wiring” three dffr modules into
a counter:

 module counter(R, C); //Construct a counter - Collection of DFFR modules
 input R, C; // Reset and Clock inputs from the Test Benck
 reg [2:0] value; //Define the Counter Value
 initial
 begin
 value = 3'b0; //Initialize the Counter Value
 end

 dffr Y1(q1, !value[0], R, C); //Wire the LSB Counter Bit to Reset & Clock input
 dffr Y2(q2, !value[1], R, q1); //Wire the Next bit to Reset and LSB as its Clock
 dffr Y3(q3, !value[2], R, q2); //Wire the MSB to the Reset and Prior Bit

 always #1 // Use the value as a Buffered Copy of the Counter Bits
 begin
 value[2] <= q3;
 value[1] <= q2;
 value[0] <= q1;
 end
 endmodule

 module dffr(q, d, r, ck); //Definition of DFFR D-Flip/Flop with Reset
 output q;
 input d, r, ck;
 reg q;

 always @(posedge ck or negedge r) begin
 if(~r)
 q <= 0;
 else
 q <= d;
 end
 endmodule

Program Listing 3.4

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 41 of 48

You should be able to enter this text into notepad ++ and compile until the syntax is correct.
Note that the modules three instances of the dffr modules employ the Y1, Y2, and Y3
reference designators. The wiring between these instances is indicated by the position of the
signal designators in the relative module lists.

Add to your notepad ++ file (above the prior module definitions), the following text:

module tester_3B_counter; //Module test-bench generates counted signals
 reg Clk;
 reg Rst;
 reg [2:0] temp;

 initial // The single sequence below generates a Reset Pulse
 begin
 Rst = 'b1;
 #1 Rst = !Rst;
 #1 Rst = !Rst;
 end

 initial //Run the test once
 begin
 Clk = 'b0;
 temp = 3'b0;
 $dumpfile("Clk_3B_Count.vcd"); //Dump results of the simulation to Count.vcd
 $dumpvars;
 # 200 $finish;
 end

 always //Generate the periodic clock signal
 begin
 #10 Clk = !Clk;
 end
 counter X1(Rst, Clk); //Invoke the counter within the Test-Bench
 endmodule

Program Listing 3.5

To debug the Test-Bench, you can use a “//” comment designation at the beginning of the
next-to-last line that invokes the ”counter X1(Rst, Clk)” to temporarily deactivate it, and get
the GTKWave test waveforms to verify the Test Bench as shown below:

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 42 of 48

 Figure 3.15 – Clock waveform in GTKWave GUI tester_3B_counter in Windows

Remove the temporary comment designator and you invoke the entire structure with the
counter and dffr modules to get (See notes below, though):

 Figure 3.16 – Clock waveform in GTKWave GUI tester_3B_counter in Windows

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 43 of 48

Note that the waveform for value[2:0] is internal to the instance counter X1 (Rst, Clk) with
the consequence that it is only visible within that scope. You must “click” on the hierarchy
symbol at X1 to make its signals visible. Drag value[2:0] to the Time pane and you will see
the entire trace above. Further, if you sequentially click on the hierarchy symbols for Y1. Y2,
and Y3, below X1, you can plot the traces associated with the “q” values in each dffr
structure as below:

 Figure 3.17 – Clock waveforms in GTKWave GUI tester_3B_counter in Windows

With this program, we have added a Structural Level representation of three clocking signals
derived from the behavioral test-bench clock to the prior RTL Level, and the simpler
Behavioral Level examples.

4.0 A Structural Verilog Logic Transistor-Level Design – The Test-Bench Modules we
have been using all assume a Behavioral Level clocking signal. We now introduce a
Structural Level example using all NMOS transistors to achieve a clock signal. This
Structural Level example illustrates an old NMOS technology that is rarely used today, but
serves to show the principles of Structural Level design using semiconductor switching

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 44 of 48

devices. Although it is still a discrete-event digital design, it is also very close to the level
that would usually require an analog simulation environment.

4.1 An NMOS Ring Oscillator Example - The “Osc.v” module below shows a 5-stage Ring
Oscillator implemented in NMOS logic.

module Osc;
 supply0 gnd;
 supply1 vdd;
 reg Rst; //Define the Reset to initialize the Ring
 tri w1, w2, w3, w4, w5; //Define five Tri-state internal wires
 pullup (w1), (w2), (w3), (w4), (w5); //Define Depletion-Load pullup on the wires

 initial
 begin
 Rst = 'b1; //Cycle the Reset
 #5 Rst = !Rst;
 end

 initial
 begin
 $dumpfile("Osc.vcd"); //Dump results of the simulation to Osc.vcd
 $dumpvars;
 #200 $finish ;
 end

 nmos #1 //Define five NMOS Ring Pull-Down NMOS
 a1 (w1, gnd, w2),
 a2 (w2, gnd, w3),
 a3 (w3, gnd, w4),
 a4 (w4, gnd, w5),
 a5 (w5, gnd, w1),
 a6 (w1, gnd, Rst), //Define two NMOS Reset Pull-Down NMOS
 a7 (w4, gnd, Rst);
endmodule

 Program Listing 4.0

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 45 of 48

 Figure 4.0 – Clock waveforms in GTKWave GUI Osc in Windows

For our example of the five-stage Ring Oscillator, “nmos” devices a1, a2, a3, a4, and a5,
form NMOS inverters with their outputs respectively at “tri” wires w1, w2, w3, w4, and w5.
They form a ring with the connection of the inverter gate inputs at adjacent outputs.

The addition of “nmos” devices a6 and a7, with their inverter gate inputs at the “Rst” reset
input serves to hold at “tri” wires w1, and w4 at a “0” level while the “Rst” reset is high at
its “1” level.

Removal of the “Rst” reset sets all stages to assume an inverter output after the “#1” delay
associated with the activation of the “nmos” devices a1, a2, a3, a4, and a5, forming the
oscillation from the initialized state.

http://www.suncam.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 46 of 48

The use of Structural Verilog Logic Transistor-Level Design tends to be rather specialized
and primarily employed to verify specialized digital logic topologies. It, too, can be
intermixed with Behavioral and RTL Levels, just as other Structural Level modules can.

The example, using “tri” wires, though, is often used to provide an interface on shared-bus
designs, particularly at the “board-level” to interconnect disparate technologies.

5.0 Other Software with Verilog Support – The software tool suite we have introduced
above is FOSS and a reasonable environment for investing the time to learn about Verilog in
an affordable environment. There are several alternative environments built around other tool
suites, some of which are also FOSS, or minimal cost. As a practicing Professional Engineer,
you may find yourself delivering work-product in any number of such environments. We list
and briefly describe below several of these alternatives.

5.1 The Eclipse IDE – Eclipse https://eclipse.org/ is a FOSS general-purpose software
Integrated Development Environment (IDE) that supports a large number of languages,
including Verilog. Eclipse can be obtained from an installer location:
https://www.eclipse.org/downloads/eclipse-packages/

During installation of Eclipse, you will be asked to select an OS environment, including
32/64 bit versions, a default set of packages including C/C++ or Java support. You will
probably be required to install several other packages including Java.

After a successful installation of the Eclipse IDE, you can obtain Verilog support from the
site below and “drag: it into the installation to install:
https://marketplace.eclipse.org/category/free-tagging/verilog

5.2 ModelSim Software – ModelSim https://en.wikipedia.org/wiki/ModelSim is a
development environment from Mentor Graphics that has been “bundled” into other
environments to support varying digital design products. One version can be obtained for free
from Intel: https://www.altera.com/products/design-software/model---simulation/modelsim-
altera-software.html as part of the starter edition obtained in the Intel acquisition of Altera.
Both Linux and Windows versions are available. There are restrictions on the “free” license,
but the tools are excellent in support of Altera/Intel FPGA designs.

http://www.suncam.com/
https://eclipse.org/
https://www.eclipse.org/downloads/eclipse-packages/
https://marketplace.eclipse.org/category/free-tagging/verilog
https://en.wikipedia.org/wiki/ModelSim
https://www.altera.com/products/design-software/model---simulation/modelsim-altera-software.html
https://www.altera.com/products/design-software/model---simulation/modelsim-altera-software.html

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 47 of 48

5.3 Verilator Software – Verilator is a Verilog compiler that produces C/C++/Systemc
outputs. http://www.veripool.org/projects/verilator/wiki/Installing

5.4 Verilog-AMS Software – Verilog-AMS is a super-set of Verilog and is used extensively
in ASIC design environments including tools from Cadence https://www.cadence.com/ and
Synopsys https://www.synopsys.com among others. Generally, these are high-end
environments requiring large annual licensing fees.

6.0 FOSS Verilog Projects – There a number of FOSS repositories of Verilog code
available, as well as a few restricted, but accessible repositories. Each project is managed
according to the repository rules and are often collections provided by individual
contributors. There are varying levels of quality between and among contributors so it is
advised that the projects be used first as learning templates before committing the examples
to a deliverable product.

6.1 GitHub Verilog Projects – The GitHub https://github.com/trending/verilog repository
contains another wide range of projects that can be accessed and used with differing
constraints, Numerous microprocessor and peripherals projects are available, including the
32 bit MIPS http://g-karthik.github.io/32BitMIPSProcessor/ processor..

6.2 SourceForge Verilog Projects – The SourceForge repository is vast and has a section
with Verilog project https://sourceforge.net/directory/language:vhdl_verilog/os:windows/
support, as well as other HDL languages.

6.3 OpenCircuitsDesign Projects – The OpenCircuitsDesign site is focused primarily on
VLSI design. Tim Edwards http://opencircuitdesign.com/verilog/ maintains tools and links to
s large number of specialized tools to support all phases of IC design, including a digital
design flow. Using the tools at this site, both FPGA and ASIC projects can be produced. By
also establishing an account at MOSIS https://www.mosis.com/ , custom ASIC designs can
be fabricated on a low-volume, shared-cost basis, or full production runs as the needs require.

7.0 Verilog for Digital Design: Summary and Conclusions – We have introduced the
Verilog language in the context of Digital Design, introduced text editors, the iVerilog
compiler, and the GTKWave waveform viewer. We have illustrated and contrasted the use of
these Free Open-Source Software (FOSS) tools in both a Windows and Xubuntu Linux
environment. We have introduced examples of Behavioral, RTL, and Structural Level

http://www.suncam.com/
http://www.veripool.org/projects/verilator/wiki/Installing
https://www.cadence.com/
https://www.synopsys.com/
https://github.com/trending/verilog
http://g-karthik.github.io/32BitMIPSProcessor/
https://sourceforge.net/directory/language:vhdl_verilog/os:windows/
http://opencircuitdesign.com/verilog/
https://www.mosis.com/

 Verilog for Digital Design
 A SunCam online continuing education course

www.SunCam.com Copyright 2016, Raymond L. Barrett, Jr.&

Raymond L. Barrett, III
Page 48 of 48

programs with some discussion of the similarities and differences between the levels. This
course is not exhaustive on the topic but makes a case for the value and usage of Verilog in
Digital Design.

http://www.suncam.com/

	Verilog for Digital Design(
	Verilog for Digital Design(

