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1.0 Decision Making in Engineering Planning and Design Introduction 
This course illustrates the categories of decision making under conditions of Certainty, 
Uncertainty, and Risk and some tools as related to decision processes in engineering planning 
and design. Conditions of Certainty may be assumed as a reference or bench-mark for 
defining the best possible outcomes, but may also be used as a simplification often used to 
provide a first level of feasibility checking or for conditions with negligible risk. A first 
example of decision making under conditions of certainty is taken from the use of Linear 
Programming (LP) tools to optimize constrained resource allocation to optimize a monetary 
return. Both a graphical approach and the “Simplex Method” are introduced to illustrate how 
to identify an optimum. A second example is taken from the use of the Critical Path Method 
(CPM) as used in determining the planning of a project. Extensions of CPM to include 
elements of risk and the PERT Method in the decision making under conditions of Risk are 
deferred until that risk is discussed, but the CPM elements are used as a framework. A short 
discussion of decision making under conditions of Uncertainty is included with introduction 
of payoff tables and both optimistic and pessimistic approaches. Because the predominant 
form of decision making is under conditions of Risk, concepts of probability are discussed 
including conditional probability, Baye’s Theorem, expected values, the value of research 
and information, and the extensions of CPM to develop estimates in the PERT scheduling 
technique. Links are provided in several locations to free, open-source software tools 
associated with each topic. The tools and techniques are useful both during initial planning 
and as more information becomes available suggesting plan revision. The single most useful 
tool is a spreadsheet program and considerable patience to design custom solutions. 
 
2.0 Quantitative Decision Making in Engineering Design 
Engineering design may be defined as the Art of Applied Science. The term “Art” in 
Engineering brings qualitative elements of aesthetic principles and that which is appealing, 
beautiful, or of extraordinary significance. The use of “Science” refers to the systematically 
accumulated body of knowledge, principles, and laws based on hypotheses, experimentation, 
observation, and generalization that are the result of the scientific method as applied to the 
physical world. Much of that body of knowledge is encapsulated in the universal short-hand 
notation of Mathematics and/or the use of quantitative methods. Constraints are imposed on 
the design and the process by economic considerations. Quantitative methods are preferred in 
engineering, but qualitative decisions may also be needed in instances without appropriate 
quantitative measures. Still, we find it useful to convert qualitative considerations to 
quantitative considerations to make the decision process understandable and justifiable. 
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The engineer begins a design process by defining the qualitative and quantitative initial 
objectives to be achieved as a result of the design, typically in the form of a set of objectives 
definitions suitable for initial review for approval as well as for completion comparison to 
indicate success. Design objectives are met using material and labor resources both in target 
product or service objectives as well as during the initial design process and the required 
effort. The design process is evaluated in its “effectiveness” regarding the measure of the 
design in meeting the objectives and the “efficiency” of the design regarding the resources 
needs in the target design product or services, and also resources needed to produce a design.  
 
The evaluation of efficiency of the use of resources is a step in the design process both 
regarding the economics of the resulting outcome, as well as during the decision process of 
the design effort. The decision-making process can be quantified so that rational decisions 
are made prior to the expenditures and so that alternatives can be evaluated and optima 
identified prior to commitment. Much of the decision process is involved during the 
engineering planning phases but may also be required in stages during a project as 
information is produced by testing. 
 
Each decision is expressed in terms of the “payoff” consequences (usually either a gain or 
loss) of the decision and the interaction of 1) the decision itself, with 2) the outcome or event 
that results from the decision. 
 
3. Categories of Conditions of Decision Making 
Broadly, there are three categories of conditions of decision making defined as conditions of 
Certainty, Risk, and Uncertainty. In the following sections, the usage of all three categories 
are discussed and examples given. 
 
Decision making under conditions of Certainty imply that factors of the decision are known 
in advance; outcomes can be quantified in terms of the use of resources and the decision is a 
comparison and selection made by applying optimization criteria (usually monetary costs or 
scheduled time expensed) to the decision. Decisions made under implied conditions of 
Certainty are often used to determine the bounding costs associated with the decisions. 
 
Decision making under conditions of Risk imply that the factors of the decision can be 
assigned a probability; all outcomes can be quantified in terms of the use of resources and the 
decision is a comparison and selection made by applying optimization criteria (usually 
“expected value”) to the decision. The assignment of probabilities is generally the most 
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problematic issue in risk assessment, but experience can be used to make useful 
approximations and the quantitative process of using the probabilities is well understood. 
 
Decision making under conditions of Uncertainty imply that few or none of the factors of the 
decision are known in advance; outcomes can be quantified in terms of the use of resources 
but the decision is a comparison and selection made by applying different optimization 
criteria (usually monetary costs or scheduled time expensed) to the decision with respect to 
the expenditure bounds. Decisions made under implied conditions of Uncertainty are also 
often used to evaluate some of the bounding costs associated with the decisions. 
 
4. Decision making under conditions of Certainty 
Despite the possibilities of default by suppliers and personnel, contracted suppliers or 
services are often treated as if the outcomes are certain. For budgetary bounding purposes 
with appropriate contingency plans, such a treatment is reasonable. It may seem trivial to 
make decisions under conditions of certainty, but there are a few classical examples that 
demonstrate some complexities involved.  
 
4.1 Linear Programming (LP) for Optimizing Combinations - For illustration, we introduce a 
simple hypothetical scenario involving components for assembly of two products. We define 
the quantity of the first product produced as X and Y as the quantity of the second product 
produced. We can make no more than 4,000 of X and 6,000 of Y due to absolute capacity 
limits. We also need a critical component that is constrained by a service that can produce as 
many as 36,000 units, but 6 are required for each X produced and 4 are required for each Y 
produced. We earn $400 for each X produced and $300 for each Y produced. We know all 
the relationships with certainty, but we do not know what assignment of resources to X and 
Y production provides the maximum return. 
 
The constraints are: 
 ܺ  ൑ 4,000 [4.1] 
 
 ܻ  ൑ 6,000 [4.2] 
 
 6 כ ܺ ൅ 4 כ ܻ  ൑ 36,000 [4.3] 
 
݊ݎݑݐܴ݁  ൌ $400 כ ܺ ൅ $300 כ ܻ  [4.4] 
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We plot the relationships initially using the first two constraints to define a “feasible region” 
(grey) as follows: 

     
0 3 52 41

X

Y

Product in thousands

6

 
 Plot 4.1 – Initial Bounds on a Feasible Region of Solution 
 
We see that we can produce any combination of X up to 4,000 units and Y up to 6,000 units 
and thus we have made two upper bounds on a feasible solution. 
 

  
0 3 52 41

X

Y

Product in thousands

6

 
 Plot 4.2 – Initial Bounds plus Critical Component Feasible Region of Solution 
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We now show the upper bound imposed by the critical component. To achieve a formula to 
plot, we solve for Y in terms of X at the boundary as follows: 
 
 4 כ ܻ ൌ 36,000 െ 6 כ ܺ [4.5] 
 
 ܻ ൌ 9,000 െ 1.5 כ ܺ [4.6] 
 
We identify the two intercepts as X = 0, Y = 9,000 and X = 6,000, Y = 0 with the straight 
line of combinations between. 

   
0 3 52 41

X

Y

Product in thousands

6

$1.2M

Max $ Return

 
 Plot 4.3 –Feasible Region of Solution plus Plots of Returns of $1.2M and Maximum 
 
We next plot the equation for return, showing a case with $1,200 return from the intercepts at 
X = 0, Return = 4,000 * $300 = $1.2million, and at Y = 0, Return = 3,000 * $400 = 
$1.2million. We solve the return equation for the slope as follows: 
 
 $300 כ ܻ ൌ ݊ݎݑݐܴ݁ െ $400 כ ܺ  [4.7] 
 

 ܻ ൌ ோ௘௧௨௥௡

$ଷ଴଴
െ $ସ଴଴

$ଷ଴଴
ܺ ൌ ோ௘௧௨௥௡

$ଷ଴଴
െ 1.33 כ ܺ  [4.8] 

 
We do not yet know the solution for the maximum return, but we see that a return equation 
with the slope of negative 1.33 appears to be nearly parallel with the slope of negative 1.5 for 
the critical component constraint. We can identify the intersection between the maximum 
constraint on Y and the constraint on the critical component, substitute for Y, solve for X, 
and determine the best combination of resources for maximum return as follows: 
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 ௢ܻ௣௧௜௠௨௠ ൌ 9,000 െ 1.5 כ ܺ௢௣௧௜௠௨௠ ൌ 6,000 [4.9] 

 
 1.5 כ ܺ௢௣௧௜௠௨௠ ൌ 3,000 [4.10] 

 
 ܺ௢௣௧௜௠௨௠ ൌ 2,000 [4.11] 

 
௢௣௧௜௠௨௠݊ݎݑݐܴ݁  ൌ $400 כ ܺ௢௣௧௜௠௨௠ ൅ $300 כ ௢ܻ௣௧௜௠௨௠ [4.12] 

 
௢௣௧௜௠௨௠݊ݎݑݐܴ݁  ൌ $400 כ 2,000 ൅ $300 כ 6,000 [4.13] 

 
௢௣௧௜௠௨௠݊ݎݑݐܴ݁  ൌ $800,000 ൅ $1,800,000 ൌ $2,600,000 [4.14] 

 
The graphical approach shown above for solving such problems is useful for illustrating the 
principles, but it is impractical for larger sets of constraints. We will employ the “Simplex 
Method” for larger problems. 
 
We use the same constraints from the example above, but employ the Simplex method to 
solve. As a first step, we introduce two “slack” variables in the quantities of each product 
produced to reduce the inequalities to equalities as follows: 
 
 ܺ ൅ ܵ௑ ൌ 4,000 [4.15] 
 
 ܻ  ൅ ܵ௒ ൌ 6,000 [4.16] 
 
The result is that both X and Y inequality equations are augmented with the new unknown 
slack quantities, SX and SY respectively to eliminate the inequalities. Likewise, we can 
modify the critical component constraint as follows: 
 
 6 כ ܺ ൅ 4 כ ܻ ൅ ܵ஼ ൌ 36,000 [4.17] 
 
This third “slack” variable SC represents the amount of unused critical components. 
 
We express the return without a slack variable as before and we wish to maximize return as 
follows: 
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݊ݎݑݐܴ݁  ൌ $400 כ ܺ ൅ $300 כ ܻ  [4.18] 
 
To illustrate the Simplex Method of solving Linear Programming problems, we construct an 
initial “tableau” from the linear equations including slack variables as follows: 
 

Tableau 1 X Y Sx Sy Sc Quantity Available 
Max X 1 0 1 0 0 = 4000  
Max Y 0 1 0 1 0 = 6000  
Critical 6 4 0 0 1 = 36000  

 400 300 0 0 0 = Return  
Coordinates 0 0 4000 6000 36000  

 
Each constraint equation is listed, and additionally the return equation. Zero entries are 
included wherever there is no contribution from a slack variable. No return is realized from 
any slack variable, so they are all zero contribution to returns. In addition, we list the 
“coordinates” of the solution to aid a sequence. 
 
The strategy of the Simplex method for maximization is following the successive evaluation 
of vertices of the feasible region. What makes the method efficient is that the search along 
vertices uses the marginal return of incremental improvements to direct the search in the 
direction of increasing returns. 
 
For our example, we can evaluate the tableau starting from the (X = 0, Y = 0) vertex 
coordinates (corresponds to the lower left corner in the graph) and evaluate the simultaneous 
equations for Sx = 4,000, Sy = 6,000, and Sc = 36,000 with a result that the return is zero 
(again, slack variables do not contribute to return). What we see from tableau 2, is that each 
incremental unit of X contributes $400 in returns, but each unit of Y only contributes $300 
and we are directed to increase X preferentially. 
 

Tableau 2 X Y Sx Sy Sc Quantity Available 
Max X 1 0 1 0 0 = 4000 4000 
Max Y 0 1 0 1 0 = 6000  
Critical 6 4 0 0 1 = 36000 6000 

 400 300 0 0 0 = Return  
Coordinates 0 0 4000 6000 36000 $0  
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Because incremental increases in X provide maximal increases in Return, we preferentially 
increase the coordinate X, but we do not yet know to what extent. To guide the effect of 
contribution, we add the “Available” units column to evaluate each row that increases with 
X, and the available number of units available. We see that the Max X row has 4000 units 
available and the Critical row has 6000 units available. For the Max X row, the relationship 
is obvious, but for the Critical row, we see that the column for X has a coefficient weighting 
of 6 and the total “Quantity” allows 6 * 6,000 = 36,000 total units. 
 
We proceed to the new vertex as shown below: 
 

Tableau 3 X Y Sx Sy Sc Quantity Available 
Max X 1 0 1 0 0 = 4000 0 
Max Y 0 1 0 1 0 = 6000 6000 
Critical 6 4 0 0 1 = 36000 3000 

 400 300 0 0 0 = Return  
Coordinates 4000 0 0 6000 12000 $1,600,000  

 
For convenience, we show this vertex on the graph at the lower right marked by a red circle. 
 

   
0 3 52 41

X

Y

Product in thousands

6

Max $ Return

 
 Plot 4.4 –Feasible Region, Plot of Maximum, and Tableau 3 Simplex Vertex 
 
We have traversed from the origin to the lower right vertex by following the maximum rate 
of return. 
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In tableau 3, we have slack in both Sy and Sc with at least 3000 units of Y available limited 
by the critical component availability. 
 
 We proceed to the new vertex as shown below: 
 

Tableau 4 X Y Sx Sy Sc Quantity Available 
Max X 1 0 1 0 0 = 4000 0 
Max Y 0 1 0 1 0 = 6000 3000 
Critical 6 4 0 0 1 = 36000 0 

 400 300 0 0 0 = Return  
Coordinates 4000 3000 0 3000 0 $2,500,000  

 
For convenience, we show the vertex for tableau 4 on the graph marked by a new red circle. 
 

  
0 3 52 41

X

Y

Product in thousands

6

Max $ Return

 
 Plot 4.5 –Feasible Region, Plot of Maximum, and Tableau 4 Simplex Vertex 
 
We have done well, but there is still room for improvement. At the new (X = 4000, Y = 
3000) vertex, there is still slack left in the Sy variable, but none in either Sx or Sc. We have 
3000 units of Y available and the question arises as to whether we can improve the return. If 
we decrease the slack in Y, we must increase the slack in X. The question we face is the 
relative benefit of trading one form of slack for the other, and do we generate a marginal 
increase in return.  
 
For this case, each unit of Y that we utilize (decreasing the available slack 3000 units of Y) 
generates an additional $300 in revenue. Each unit of X that we decrease (increasing the 
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slack 0 units of X) costs us $400 in revenue. However, keeping the slack in critical 
components to zero, we decrease 6 slack units of Y for every 4 slack units of X that we 
increase. Therefore, we can trade decreasing 3000 Y slack units and increasing 2000 X units. 
The trade is $300 * 3000 = $900,000 gain in Y returns for $400 * 2000 = $800,000 cost in X 
returns and a net benefit of $100,000 for the trade. 
 
We proceed to the new vertex as shown below: 
 

Tableau 5 X Y Sx Sy Sc Quantity Available 
Max X 1 0 1 0 0 = 4000 2000 
Max Y 0 1 0 1 0 = 6000 0 
Critical 6 4 0 0 1 = 36000 0 

 400 300 0 0 0 = Return  
Coordinates 2000 6000 0 0 0 $2,600,000  

 
There exists a matrix-manipulation method called “pivoting” that automates the goal-directed 
search amongst the vertices but it is far too complicated to include here. We have explored 
the nature of the Simplex Method, its algorithmic basis, and followed its search to find the 
same optimum presented using the graphical method. The Simplex Method can be used for 
problems that are too large fro the simple graphical approach. Free, Open-Source programs 
that utilize the Simplex Method are available and a link is provided here to obtain an example 
from the following website: http://www.gnu.org/software/glpk/ 
 
Another similar example of decisions under conditions of certainty includes the “Traveling 
Salesman” problem. With a number of intermediate destinations, the “salesman” is required 
to plan a route to the succession of destinations to cover each within scheduling constraints 
imposed but also to minimize travel costs. A mathematical method called “dynamic 
programming” is used to establish feasible solutions and the decision process is the selection 
of an optimum among alternative feasible solutions. The Simplex Method has been used also. 
In Computer Science, the problem is defined as NP-Hard because exact solutions are known 
but the computational effort grows quickly as the list of destinations increases. 
 
4.2 Scheduling and CPM - Another classical example is the assignment of productive efforts 
to personnel and equipment to satisfy the desired outcomes and minimize costs. The solution 
is well understood both for the case of certainty as well as risk. There are two general 
methods and both employ “graph theory” to determine a solution.  
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The first method, known as Critical Path Method (CPM), assumes that all tasks and durations 
are well known and the issue is purely one of scheduling. Each task is assigned a list of 
resources required and a set of precedent dependencies that must occur prior to that task 
initiation. A graph is prepared (or a data structure in a computer program) that determines the 
sequence of tasks from a beginning to an end. Beginning with tasks that have no precedent 
requirement, the graph is prepared between task beginning/end events from the start to finish 
with each task’s beginning following completion of precedent task’s completion. The graph 
is traversed twice, first beginning at the start and determining the earliest possible completion 
at each event between tasks, and second returning from the finish to determine the latest 
possible start at each event. Those events with the earliest completion and latest start are 
defined as being on the “Critical Path” through the graph. Tasks between events that are not 
on the “Critical Path” through the graph have a difference in earliest starts that defines the 
“slack” associated with scheduling that task. Other dependencies including the availability of 
resources are used to determine actual scheduled begin/end times for those tasks. 
 
Variations of CPM are often used to determine assignment of personnel to adjust work 
loading amongst personnel and to evaluate alternative approaches. Typically, the those tasks 
on the “Critical Path” through the graph are closely evaluated for alternate approaches to 
shorten the overall project duration as may be required to achieve critical dates. 
 
The similar Program Evaluation and Review Technique (PERT), provides for the assignment 
of probable minimum, maximum, and most-likely task durations and so makes decisions 
under conditions of Risk. In PERT, as well as CPM, the “Critical Path” through the graph is 
identified and managed most carefully because that sequence of tasks determines the 
completion date. We discuss PERT further later in decisions under conditions of Risk. 
 
4.2.1 Events and Tasks/Activities Lists - Events are denoted on the graph as a circle and are 
associated with dates. Tasks, or activities, are actions that consume resources and are 
associated with duration to execute. The CPM chart is a collection of Events (circles) 
connected by directed line segments representing the tasks or activities. 
 
For CPM, developed by DuPont in the 1950’s, the duration of each activity was assumed to 
be known in advance. For describing many projects, certainty is a reasonable assumption. For 
instance, the time associated with the “curing” of chemical reactions is reasonably well 
known as to be assumed to be certain. A construction project that requires concrete to harden 
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before forms are removed and/or a load is applied may be considered to require a certain 
minimum duration either from the specification on the concrete or applicable building codes. 
Likewise, brewing beer requires a certain minimum duration for fermentation reactions, and 
such examples are extensive. Projects with more or less uncertain durations may be estimated 
with a degree of risk and are better describe using PERT illustrated later. 
 
We illustrate by making an extensible list of tasks/activities in Table 4.1 enumerating each 
and its duration from which the chart is constructed. In addition, we construct an initial list of 
events that are expected. We illustrate using a patio construction project example as follows: 
 

Task Title: Patio Project Tasks Duration: Days 
1 Site engineering planning 3 
2 Materials purchase 4 
3 Site preparation 2 
4 Concrete pour, surface, & cure 28 
5 BBQ construction & cure 4 

 
 Table 4.1 – Initial List of Task/Activities for CPM Plan 
 
The following list of 9 events in Table 4.3 illustrates the iterative nature of the planning 
process because there must be at least eight tasks between nine distinguishable events, so we 
will construct the plan accordingly and modify as necessary. 
 

Event Title: Patio Project Events Earliest Latest 
Date Date 

A Customer design approval 
B Plans/permit approved 
C Site prepared 
D Site inspection 
E Slab concrete poured 
F Slab finished 
G Slab inspection 
H  BBQ constructed 
I Final inspection 

 
 Table 4.2 – Initial List of Events for CPM Plan 
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4.4.2 Events located on the Graph – We place all the events on the graph as follows: 
 

 
A IHGFEDCB

 
 Chart 4.1 – Initial CPM Chart with Arbitrary Event Placement 
 
4.2.3 Task/Activities located on the Graph – Using the list of tasks, we make a first attempt at 
connecting events with enumerated task/activities as directed line-segments between the 
events similar to the example of connectivity below: 
 

                                                          

X Y
#1 #3#2

 
 Chart 4.2 – CPM Chart Detail Showing Task/Activity for a Sequence 
 
Each task/activity starts with an event and ends with a different event. We map all the tasks 
to the graph of events with, in this case, insufficient task/activities to connect our 
understanding of the sequence. We remedy the need for additional task/activity designations 
by adding “dummy” task/activity arrows with neither title nor duration. 
 

1
A IHGFEDCB

3 4 5
2

  
 
 Chart 4.3 – Example CPM Chart Detail Showing Task/Activity Dependency Network 
 
In this case, we re-visit the table of tasks, adding columns to indicate start event and end 
event, and adding rows for the “dummy” task/activities we found necessary to add to the 
graph to complete a path from the beginning event to the ending event. Note, at this stage of 
graph construction, it is just as common to require extra “dummy” events to be added to 
make a coherent graph. 
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Task Title: Patio Project Tasks Start End  Time 

1 Site engineering planning A B 3 
2 Materials purchase B G 4 
3 Site preparation B C 2 
4 Concrete pour, surface, & cure E F 28 
5 BBQ construction & cure G H 4 
6 C D  
7 D E  
8 F G  
9 H I  

 
 Table 4.3 – Updated List of Task/Activities for CPM Plan with Terminating Events 
 
We have added four new task/activities to complete the graph. The first added task/activity is 
required to join event C to D or the site prepared event with the site inspection. In some 
jurisdictions, this requires a same-day call for a site inspection task and will be entered as 
zero duration. The second added task/activity is required to join event D to E for the slab 
inspected. Again, a same-day, zero duration call for concrete task is entered. The third added 
task/activity is required to join event F to G for the slab finished with a slab inspection. 
Again, a same-day inspection is entered as zero duration. The fourth added task/activity is 
required to join event H to I or the BBQ constructed and the zero duration final inspection.  
 
Task Title: Patio Project Tasks Start End  Time 

1 Site engineering planning A B 3 
2 Materials purchase B G 4 
3 Site preparation B C 2 
4 Concrete pour, surface, & cure E F 28 
5 BBQ construction & cure G H 4 
6 Call for inspection C D 0 
7 Call for concrete D E 0 
8 Call for inspection F G 0 
9 Call for inspection H I 0 

 
 Table 4.4 – Updated List of Named Task/Activities for CPM Plan 
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It is worthwhile to note that we have added several task/activities including the duration of 
calls for inspection. We can treat these calls as reminders that we may need to schedule 
inspections in some jurisdictions and therefore alter the plan accordingly. 
 
In addition, we note that we have designated task/activity 2 describing material purchase as 
4-day duration with an early start at event B, but a completion that is not required until the 
BBQ needs the materials. This task illustrates parallel task/activity paths through the graph. 
 
4.2.4 Earliest Start Analysis – We traverse the graph from start to finish twice. The first time 
through, we determine the earliest possible start date for each task/activity and denote the 
latest to the earliest time for an event. 
 

1
A IHGFEDCB

3 4 5
2

6 7 8 9

 
 
 Chart 4.4 – CPM Chart with Task/Activity Durations and Earliest Event Times 
 
We traverse the graph from the beginning event through each task/activity to the final event. 
For convenience, we annotate the task/activity duration numerals in green above each. The 
first or starting event is given a time reference of zero and is annotated in red above the 
event. Beginning with task/activity 1, we expend 3 days to reach event B. Because there is no 
other way to reach event B, that is its earliest possible date. Using the Task/Activity table 
below, we determine each event from its predecessors and the task/activity duration 
separating them. From each Start-Event we get the earliest start date for each task/activity 
and we add the duration to get the Earliest End date. For those events with only one 
predecessor task/activity, the event date is the earliest end from that predecessor. For the case 
of event G, however, there are two predecessor events and the time associated with G is the 
latest of the possible earliest end dates marked in blue of the predecessors, 33 days in this 
case. 
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Task Title: Patio Project Tasks Event  Time Earliest Latest 

Start End  Start End Start End 
1 Site engineering planning A B 3 0 3   
2 Materials purchase B G 4 3 7   
3 Site preparation B C 2 3 5   
4 Concrete pour, surface, & cure E F 28 5 33   
5 BBQ construction & cure G H 4 33 37   
6 Call for inspection C D 0 5 5   
7 Call for concrete D E 0 5 5   
8 Call for inspection F G 0 33 33   
9 Call for inspection H I 0 37 37   

 
 Table 4.5 –Named Task/Activities for CPM Plan with Start/End Dates 
 

Event Title: Patio Project Events Earliest Latest 
Date Date 

A Customer design approval 0 
B Plans/permit approved 3 
C Site prepared 5 
D Site inspection 5 
E Slab concrete poured 5 
F Slab finished 33 
G Slab inspection 33 
H  BBQ constructed 37 
I Final inspection 37 

 
 Table 4.6 –Events for CPM Plan with Earliest/Latest Dates 
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To complete the evaluation, we traverse the graph in the opposite direction: 
 

1
A IHGFEDCB

3 4 5
2

6 7 8 9

 
 
 Chart 4.5 – CPM Chart with Task/Activity Durations and Latest Event Times 
 
In the traversal from the end to the beginning, we evaluate the latest end as the date of the 
event at the end of the task/activity and find the latest start by subtracting the duration. 
 
Task Title: Patio Project Tasks Event  Time Earliest Latest 

Start End  Start End Start End 
1 Site engineering planning A B 3 0 3 0 3 
2 Materials purchase B G 4 3 7 29 33 
3 Site preparation B C 2 3 5 3 5 
4 Concrete pour, surface, & cure E F 28 5 33 5 33 
5 BBQ construction & cure G H 4 33 37 33 37 
6 Call for inspection C D 0 5 5 5 5 
7 Call for concrete D E 0 5 5 5 5 
8 Call for inspection F G 0 33 33 33 33 
9 Call for inspection H I 0 37 37 37 37 

 
 Table 4.7 –Task/Activities for CPM Plan with Critical Path Start/End Dates in RED 
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Event Title: Patio Project Events Earliest Latest 

Date Date 
A Customer design approval 0 0 
B Plans/permit approved 3 3 
C Site prepared 5 5 
D Site inspection 5 5 
E Slab concrete poured 5 5 
F Slab finished 33 33 
G Slab inspection 33 33 
H  BBQ constructed 37 37 
I Final inspection 37 37 

 
 Table 4.8–Events for CPM Plan with Critical Path Event Dates in RED 
 
Every event and task/activity with identical earliest and latest dates is designated as 
“critical.” All critical events and task/activities are on the “critical path” through the graph 
and define the ending date. Recall that all task/activities for the CPM method are considered 
to be known with certainty and therefore the planning decisions are made as decisions under 
conditions of certainty. 
 
5. Decision making under conditions of Uncertainty 
To develop the concepts of Decision making under conditions of Uncertainty, we introduce 
“Payoff Table 1” example for a product development decision. 
 

Table 1 Event 
Success Failure 

Decision 
Accept $100,000  ($30,000)
Reject ($1,000) ($1,000) 

  
 Table 5.1 - Payoff Table for Decision under Uncertainty 
 
The hypothetical decision involves accepting a project with a $100,000 fee on successful 
completion, but a $30,000 penalty on failure to complete. Regardless of the decision to 
submit the bid for the project, $1,000 costs are required in the bid proposal. 
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An optimist with no information would choose the decision to prepare the bid and assume 
that the payoff would be $100,000 without reservation. Such an optimistic decision, choosing 
the decision with the largest payoff regardless of the event is defined as the “maximax” rule.  
 
A true pessimist with no information would choose the decision to reject all such bids and 
fail to ever bid at all. Such a pessimistic decision, choosing the decision with the largest 
payoff with the worst-case event is defined as the “maximin” rule. The true pessimist under 
these conditions would never make any decision and thus eliminate even the cost of bid 
preparation. 
 
The value of preparing a decision table under conditions of Uncertainty is useful because it 
presents a clear presentation of all possibilities and the importance of the decision process. 
 
6. Decision making under conditions of Risk 
In some sense, Decision making under conditions of Risk is the predominant form of 
decision making because the event outcomes are neither completely known nor completely 
unknown. What differentiates the process of Decision making under conditions of Risk is the 
assignment of probabilities to events and evaluation of outcomes associated with those 
decisions. Key to the process is the concept of probability and its applications. There are 
three classical approaches to defining probability, as well as an approach that is entirely 
intuitive. The categories are the classical, relative frequency, and axiomatic approaches. 
 
6.1 Enumeration - One classical approach to probability is based on enumeration of possible 
outcomes with the implicit assumption that all outcomes are “equally likely.” For games of 
chance including dice games and some games with playing cards some reasonable estimates 
are made this way. For example, a pair of “fair” dice can each have one of six possible 
outcomes in a “fair” toss, shown with the associated sum of spots enumerated below: 
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Fair 
Dice  1 2 3 4 5 6 

1 2 3 4 5 6 7 
2 3 4 5 6 7 8 
3 4 5 6 7 8 9 
4 5 6 7 8 9 10 
5 6 7 8 9 10 11 
6 7 8 9 10 11 12 

 
 Table 6.1 -  Enumeration of Possible Sums of Events with Two Dice  
 
There are 36 possible outcomes with one outcome each having the values of 2 or 12 and the 
consequent probability assigned of 1/36 for either of those cases. There are two outcomes 
with the value of 3 or 11 and the consequent probability assigned of 2/36 for either of those 
cases. There are three outcomes with the value of 4 or 10 and the consequent probability 
assigned of 3/36 for either of those cases. There are four outcomes with the value of 5 or 9 
and the consequent probability assigned of 4/36 for either of those cases. There are five 
outcomes with the value of 6 or 8 and the consequent probability assigned of 5/36 for either 
of those cases. Finally, there are six outcomes with the value of 7 and the consequent 
probability assigned of 6/36 for that case. 
 
A similar exercise can be used to enumerate all the possible “hands” of a card game and 
define the probability of events such as improving the value of the hand by making 
appropriate decisions. 
 
The primary objection by the mathematics community concerning this classical definition of 
probability is the relatively “circular” dependency of probability or likelihood on the 
assumption of equal-probability outcomes of each number on the face of each die. That 
objection is overcome by the later development of the axiomatic approach to the definition of 
probability. 
 
6.2 Polling - In a similar fashion to enumeration, there is a classical concept of probability 
obtained by polling or voting amongst a community of participants. Such a community 
process is useful for reaching a consensus for group decisions and has shown surprisingly 
good results in numerous cases. One such refinement gives rise to the Delphi-Technique with 
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several rounds of blind polling and distribution of intermediate results to all. The distribution 
of estimates tends to become more of a consensus value with a narrower range of estimation 
as successive polls are taken. The idea is that the participants who are less certain adjust their 
estimates closer to the mean in successive rounds. Underlying the process is the idea that the 
experience base of the group provides some sense of history with greater weight given to 
participants who are personally more certain, but avoids an element of argumentation to sway 
opinion. 
 
This consensus approach including the Delphi Technique, however, has not had wide 
acceptance in engineering decision-making except in forensic examinations of engineering 
failures and as such is more associated with the polling of recognized experts in court cases. 
Use of this form of “probability” for defining outcomes gives a result that may be 
manipulated as if the decision were made under conditions of risk, but is truly more closely 
related to decision under uncertainty. The Delphi Technique however has value when 
associated with developing task probability estimates for the PERT Chart and building a 
useful consensus among team members responsible for estimating tasks. 
 
6.3 Relative Frequency approach to definition of probability - The relative frequency 
approach to defining probability is experimentally based. It consists of running numerous 
trials and tabulating outcomes.  
 
For instance, the “Coin Toss” or “flip of a coin” gives rise to the production of the two 
mutually-exclusive results of either “heads” or “tails.” Using the classical approach, the two 
outcomes would be assigned equal probabilities of ½ with no experimentation required. In an 
experiment, such an experiment might assign the “a-priori” (before the fact) estimate of 
exactly those probabilities, but clearly, the first trial can have only one result. Running 
multiple trials and accumulating results provides a history with accumulated occurrences of 
each result. As the number of trials increases, the distribution of results tends to approach the 
values of ½ for each outcome, but multiple trials are not expected to be duplicates. 
 
The history of trial result outcomes defines a test “population” that can be described using 
well-defined descriptive “parameter” measures such as the mean, median, mode, standard-
deviation, and others. A more precise definition would describe the parameters as describing 
some known collection of test instances and the term “statistic” would describe the same 
quantitative measures as applied to a sub-set of the population drawn as a sample from the 
population. 
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The collection of measures, however, is termed “Descriptive Statistics” whether applied to 
the entire population or to only a sample. In instances of large numbers of independent 
samples drawn from a population, the “statistics” tend to approach the “parameters” in what 
is known as a “Law-of-Large-Numbers” fashion. Such is the case with the example of the 
“Coin Toss” with the result of outcome probability estimates approaching ½ over large 
sample sizes. 
 
The relative frequency approach to defining probability is used extensively in engineering to 
find an “a-posteriori” or “after-the fact” estimate of probable outcomes involved in 
production testing. Design of a product with “a-priori” estimates of design parameters can be 
verified by comparing with “a-posteriori” measurements from test and measurement or 
quality-control activities.  
 
6.4 Axiomatic definition of probability - A purely mathematical approach to the definition of 
probability, is made by defining three fundamental mathematical axioms and deriving all 
other relationships from those definitions. 
 
The three fundamental axioms used to define probability are: 
I. The probability of an event is assigned a number between zero and one inclusive, 
II. The probability of occurrence of mutually exclusive events is the sum of individual 
probabilities, and 
III. The sum all possible mutually exclusive events is unity. 
 
We re-iterate: 
 i. <0, p(A), 1>, for event A 
 ii. p(A υ B) = p(A) + p(B) 

 ii. S = (p(Ai)) = 1, for the exhaustive mutually exclusive set of events Ai 
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6.4.1 Venn Diagram - The Venn Diagram is a useful tool for visualization of probability 
concepts as shown below: 

 

U

 
 
 Diagram 6.1 – Venn Diagram of the Universal Set U 
 
The rectangular area designated as U is used to represent the set of all possible outcomes. 
Because U represents the set of all possible outcomes, it is assigned p(U) = 1. 
 

  

U

A

A\

 
 
 Diagram 6.2 – Venn Diagram of Set A and Complement A\ in the Universal Set U 
 
The circular area A within U is used to represent a sub-set of U for some possible set of 
outcomes. The remaining area A\ inside U, but outside A is used to represent exhaustive 
mutually-exclusive subsets. We note that: p(A) + p(A\) = p(U) = 1. 
 
6.4.2 Intersection and Union of Sets - 
 

 

U
A B

 
 
 Diagram 6.2 – Venn Diagram of Intersecting Sets A and B in the Universal Set U 
 
The Venn Diagram can be used to illustrate more complicated relationships. We illustrate 
two possible sub-sets of U with outcomes A and B that are not mutually exclusive. We 
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enumerate the Intersection of sets A  B as all events that are only in both A and B.  We 
define the Union of sets A  B as all events that are in either A or B, but we do not count the 
elements in the Intersection twice. Much as we did with the enumeration of the values 
associated with the roll of two dice, we assign a probability to an event within a set of events. 
 
6.4.3 Bayes’ Theorem and Conditional Probability - An important tool for decision making 
under conditions of Risk is Bayes’ Theorem. The theorem is developed using two possible 
sub-sets of U with outcomes A and B that are not mutually exclusive as in Diagram 6.2, and 
the A ת B Intersection of the sets. 
 
Bayes’ Theorem is introduced using a sequence approach to the sub-sets A and B that are not 
mutually exclusive. We define “conditional probabilities” as either the probability of an 
event belonging to set B given that the event has already been identified as being in set A. In 
short-hand notation we define the probability of B given that A has already occurred. Each is 
evaluated as a ratio of the probability of the event space of Intersection of sets p(A  B) to 
either the probability of one of the event spaces. For the two sets, we define p(B|A), 
probability of B given A, and p(A|B), probability of A given B. We can also show the 
conditional probability relationships  
 

ሻܣ|ܤሺ݌  ൌ ௣ሺ஻ת஺ሻ

௣ሺ஺ሻ
 [6.1] 

 

ሻܤ|ܣሺ݌  ൌ ௣ሺ஻ת஺ሻ

௣ሺ஻ሻ
 [6.2] 

 
From the two “conditional probabilities” and with some manipulation, we see: 
 
ሻܣሺ݌ሻܣ|ܤሺ݌   ൌ B)݌ A)ൌ  ሻ [6.3]ܤሺ݌ሻܤ|ܣሺ݌
 
Thus, we can infer one conditional probability from the other and a ratio, as follows: 
 

ሻܣ|ܤሺ݌  ൌ ሻܤ|ܣሺ݌ ௣
ሺ஻ሻ

௣ሺ஺ሻ
 [6.4] 

 
Likewise, we can define several other conditional probabilities as follows: 
 

ሻ\ܣ|ܤሺ݌  ൌ ௣ሺ஻ת஺\ሻ

௣ሺ஺\ሻ
 [6.5] 
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ሻܣ|\ܤሺ݌  ൌ ௣ሺ஻\ת஺ሻ

௣ሺ஺ሻ
 [6.6] 

 

ሻ\ܣ|\ܤሺ݌  ൌ ௣ሺ஻\ת஺\ሻ

௣ሺ஺\ሻ
 [6.7] 

 

ሻ\ܤ|ܣሺ݌  ൌ ௣ሺ஻\ת஺ሻ

௣ሺ஻\ሻ
 [6.8] 

 

ሻܤ|\ܣሺ݌  ൌ ௣ሺ஻ת஺\ሻ

௣ሺ஻ሻ
 [6.9] 

 

ሻ\ܤ|\ܣሺ݌  ൌ ௣ሺ஻\ת஺\ሻ

௣ሺ஻\ሻ
 [6.10] 

 
We can also combine conditional probabilities to derive other probabilities that are not 
known directly. For example: 
 
ሻܤሺ݌  ൌ ܤሺ݌ ת ሻܣ ൅ ܤሺ݌ ת ሻ\ܣ ൌ ሻܣሺ݌ሻܣ|ܤሺ݌ ൅  ሻ [6.11]\ܣሺ݌ሻ\ܣ|ܤሺ݌
 
ሻܣሺ݌  ൌ ܤሺ݌ ת ሻܣ ൅ ת\ܤሺ݌ ሻܣ ൌ ሻܤሺ݌ሻܤ|ܣሺ݌ ൅  ሻ [6.12]\ܤሺ݌ሻ\ܤ|ܣሺ݌
 
We can also derive the forms for the complements, but it is usually simpler to derive the 
complement as a sum with unity.   
 

 

Fail

p(A)

p(A\)

p(B|A)

p(B\|A\l)

p(B|A\)

p(B\|A)

p(A)*p(B|A)

p(A)*p(B\|A)

p(A\)*p(B|A\)

p(A\)*p(B\|A\l)  
 
 Diagram 6.3 – Conditional Probability Outcome Tree Diagram 
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To illustrate the use of Bayes’ Theorem, we introduce a medical example and assume that we 
have a stable population in a city with some occurrences of the disease tuberculosis. We 
choose a person (possibly ourselves) from the population for testing. We have available a test 
for the disease but it is imperfect showing both false positives and false negatives. We 
assume extensive testing with the result from prior testing that a person with tuberculosis will 
have a positive test with a probability of 0.98, but also the probability is 0.05 that a person 
without the disease will test positive. 
 
Let us also assume that the probability that a randomly selected person in the city has the 
disease is 0.01 from the ongoing medical records of diagnoses for the infection rate. We 
assign p(A) to the probability of the person tested actually having tuberculosis. 
 
ሻܣሺ݌  ൌ 0.01  [6.13] 
 
ሻ\ܣሺ݌  ൌ 0.99  [6.14] 
 
We ask the question concerning a personal test. If an individual tests positive for the disease, 
what is the probability that they actually are infected, or are disease free? What are the 
probabilities that if the person tests negative for the disease that they actually are infected, or 
are disease free? 
 
We assign p(B) to the probability of any random test being positive for tuberculosis. 
 
We note that we already know p(A) from the infection rate in the city. However, we do not 
know p(B), which increases as tests are administered in populations with higher rates of 
infection, but we do know from the prior testing that true positives will be: 
 
ሻܣ|ܤሺ݌  ൌ 0.98  [6.15] 
 
ሻܣ|\ܤሺ݌  ൌ 0.02  [6.16] 
 
And, it follows that the probability of false positives will be: 
 
ሻ\ܣ|ܤሺ݌  ൌ 0.05 [6.17] 
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ሻ\ܣ|\ܤሺ݌  ൌ 0.95 [6.18] 
 
As for p(B), we can calculate that: 
 
ሻܤሺ݌  ൌ ܤሺ݌ ת ሻܣ ൅ ܤሺ݌ ת ሻ\ܣ ൌ ሻܣሺ݌ሻܣ|ܤሺ݌ ൅  ሻ [6.19]\ܣሺ݌ሻ\ܣ|ܤሺ݌
 
ሻܤሺ݌  ൌ 0.98 כ 0.01 ൅ 0.05 כ 0.99 ൌ 0.0593  [6.20] 
 
So we can substitute: 

ሻܤ|ܣሺ݌  ൌ ௣ሺ஻ת஺ሻ

௣ሺ஻ሻ
ൌ ௣ሺ஻|஺ሻ௣ሺ஺ሻ

௣ሺ஻|஺ሻ௣ሺ஺ሻା௣ሺ஻|஺\ሻ௣ሺ஺\ሻ
 [6.21] 

 
We evaluate the expression to obtain: 
 

ሻܤ|ܣሺ݌  ൌ ௣ሺ஻|஺ሻ௣ሺ஺ሻ

௣ሺ஻|஺ሻ௣ሺ஺ሻା௣ሺ஻|஺\ሻ௣ሺ஺\ሻ
ൌ ଴.ଽ଼כ଴.଴ଵ

଴.଴ହଽଷ
ൌ 0.165 [6.22] 

 
The conclusion we make about the result of a positive test is that the probability of infection 
is 16.5% and far greater than the infection rate of 1%, but it does not indicate with certainty 
the presence of tuberculosis. Those managing the spread of the disease would probably re-
test the individual, and preferably with a different, possibly more expensive and more 
accurate, test to confirm the diagnosis. 
 
We can further utilize the example to evaluate the probability of the absence of the disease 
despite the positive test result as follows: 
 

ሻܤ|\ܣሺ݌  ൌ
௣ሺ஻|஺\ሻ௣ሺ஺\ሻ

௣ሺ஻|஺\ሻ௣ሺ஺\ሻା௣ሺ஻|஺ሻ௣ሺ஺ሻ
ൌ

଴.଴ହכ଴.ଽଽ

଴.଴ହଽଷ
ൌ 0.835 [6.23] 

 
From this result, the individual can take hope because the probability that the disease is not 
present is 83.5% due to the history of false positives. However, this is less than the 99% 
probability in the general population. Again, further testing would probably be 
recommended. 
 
We might wonder about the sense of security the individual may feel in case of negative test 
results. To determine the probability that the disease is present despite a negative result, we 
evaluate: 
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ሻ\ܤሺ݌  ൌ 1 െ ሻܤሺ݌ ൌ 0. .9407  [6.24] 
 

ሻ\ܤ|ܣሺ݌  ൌ
௣ሺ஻\|஺ሻ௣ሺ஺ሻ

௣ሺ஻\|஺ሻ௣ሺ஺ሻା௣ሺ஻\|஺\ሻ௣ሺ஺\ሻ
ൌ

଴.଴ଶכ଴.଴ଵ

଴.ଽସ଴଻
ൌ 0.0002 [6.25] 

 
Finally, to be complete, we evaluate the probability that the disease is not present given a 
negative test result as: 

ሻ\ܤ|\ܣሺ݌  ൌ
௣ሺ஻\|஺\ሻ௣ሺ஺\ሻ

௣ሺ஻\|஺\ሻ௣ሺ஺\ሻା௣ሺ஻\|஺ሻ௣ሺ஺ሻ
ൌ

଴.ଽହכ଴.ଽଽ

଴.ଽସ଴଻
ൌ .9998 [6.26] 

 
By calculation, we have verified the intuitive result that the conditional probabilities can be 
paired as complement for either positive or negative results, but the actual probabilities for 
one of the pair must be calculated. We will return to the use of Bayes’ theorem and its 
applications in an engineering setting after we introduce a discussion of probability and 
expected values for outcomes. 
 
7. Expected Value 
In decision making under conditions of Risk, the values associated with the decisions are not 
certain, nor are they entirely uncertain. Instead, we adopt a discount associated with the risk. 
In this way, a monetary value associated with an outcome having a probability of 100% is 
taken at full value, an outcome with probability of 0% is taken at no value, and an outcome 
with probability p% is taken at p% value. This discounted value is defined as the expected 
value. 
݁ݑ݈ܸܽ  ൌ ݁݉݋ܿݐݑ݋$  כ  ሻ [7.1]݁݉݋ܿݐݑ݋ሺ݌
 
Human nature, however, does not always present behavior that exhibits this proportional 
relationship. A person buying a lottery ticket for $1 with a payoff of $1million but a 
probability of winning of 1 in 20 million is not acting purely rationally concerning the 
expected value. The expected value of the lottery ticket is: 
 

݁ݑ݈ܸܽ  ൌ   $ଵ,଴଴଴,଴଴଴
ଶ଴,଴଴଴,଴଴଴

ൌ $0.05 [7.2] 

 
This person is trading $1 for a ticket with $0.05 expected value. This non-rational behavior 
can be “explained” using the concept that the value to the player of $1 is much less than the 
expected “nickel” value of $1million payoff. Psychologists assume that another 
proportionality factor related to utility of the amounts is included in this expectation of value. 
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That is, the utility of a “dollar-in-hand” is perceived as having much less utility than the 
$1million payoff, should it occur. In that sense, behavior is similar to an engineering start-up 
that offers a risky funding opportunity to investors. For this discussion, however, we ignore 
this psychological behavior and ignore the “utility” of the monetary amounts and decide on 
expected values using monetary values and outcome probabilities alone. 
 
Let us return to the example presented in the prior Table 5.1 example, but assign probabilities 
to the outcomes and define Table 7.1, as follows: 
 

Table 1 Event 
Success Failure 

Probability p(S) p(F) 

Decision 
Accept $100,000 ($30,000)
Reject ($1,000) ($1,000) 

 
 Table 7.1 - Payoff Table for Decision under Risk 
 
We evaluate the expected value of an outcome using the expected value of the decision as 
follows: 
 

Table 1  Event 
Success Failure Expected Value 

Probability p(S) p(F) 

Decision 
Accept $100,000 ($30,000) p(S)*$100k-p(F)*$30k 
Reject ($1,000) ($1,000) -p(S)*$1k-p(F)*$1k 

 
 Table 7.2 - Payoff Table for Decision under Risk with Expected Values 
 
The expected value of a decision is the payoff of a success weighted by the probability of 
success plus the payoff of failure weighted by probability of failure. The expected value of a 
decision to accept the project is given by: 
 
ሺܵሻ݌  כ $100݇ െ ሻܨሺ݌ כ $30݇ ൌ  ሻ [7.3]ݐ݌݁ܿܿܣሺܸܧ
 
Because the success/failure alternatives are mutually exclusive and exhaustive, we express 
both in terms of the probability of success: 
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ሻܨሺ݌  ൅ ሺܵሻ݌ ൌ 1 [7.4] 
 
ሻܨሺ݌  ൌ 1 െ  ሺܵሻ [7.5]݌
 

ሻݐ݌݁ܿܿܣሺܸܧ  ൌ ሺܵሻ݌ כ $100݇ െ ൫1 െ ሺܵሻ൯݌ כ $30݇ [7.6] 

 
ሻݐ݌݁ܿܿܣሺܸܧ  ൌ ሺܵሻ݌ כ $70݇ െ $30݇ [7.7] 
 
Similarly, the expected value of a decision to reject the project is given by: 
 
ሺܵሻ݌  כ ሺെ$1݇ሻ ൅ ሻܨሺ݌ כ ሺെ$1݇ሻ ൌ ሻݐሺܴ݆ܸ݁݁ܿܧ ൌ െ$1݇ [7.8] 
 
A pertinent question to ask is: “What must p(S) be to make the outcomes equal?” 
So we solve for p(S): 
 
ሻݐ݌݁ܿܿܣሺܸܧ  ൌ ሺܵሻ݌ כ $70݇ െ $30݇ ൌ ሻݐሺܴ݆ܸ݁݁ܿܧ ൌ െ$1݇ [7.9] 
 
ሺܵሻ݌  כ $70݇ ൌ $29݇ [7.10] 
 

ሺܵሻ݌  ൌ $ଶଽ௞

$଻଴௞
ൌ .414 ൌ 41.4% [7.11] 

 
There are indications from historical reports that only 5% of industrial products are a market 
success, but the reports are over 50 years old and suspect in today’s marketplace. However, if 
we use the 5% p(S) estimate as a benchmark, we would never engage in such projects. 
 
If instead, we insert that probability of success and assume the same costs to prepare for the 
decision, as well as the same cost of failure, we can ask the question: “What would the 
payoff need to be for a p(S) = 5% to break-even?” 
 
ܸܧ  ൌ .05 כ ݂݂݋ݕܽܲ െ .95 כ $30݇ ൌ െ$1݇ [7.12] 
 

݂݂݋ݕܽܲ  ൌ .ଽହכ$ଷ଴௞ି$ଵ௞

.଴ହ
ൌ $550݇ [7.13] 
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This example illustrates that, with a historical probability of success of 5% of projects, and 
the costs & penalties shown, no project should be undertaken for less than $550k to ensure a 
favorable expected value. 
 
Although these examples are hypothetical, they illustrate the use of expected values in 
Decision making under conditions of Risk. 
 
 
8.0 Applying Bayes’ Theorem to Decision making under conditions of Risk – 
Bayes’ Theorem has wide application in problems of decision making under conditions of 
Risk. We show a few of the applications to encapsulate the concepts of conditional 
probability as it modifies the decision process, as well as derivative concepts related to the 
value of information. 
 
8.1 Research and Testing in Project Decision Evaluation - In the example project that we 
have been developing in Table 7.1 and its derivations, let us assume that there exists some 
test or research effort that could be expended to provide revised probability estimates much 
like the test for tuberculosis in the prior example. For the sake of convenience, let us assume 
that the probabilities associated with the test are those used in the prior example, We assume 
that the test shows a 5% false-positive rate, as well as a 2% false-negative rate. We use these 
rates to be similar to the prior medical example. For the sake of discussion, let us assume that 
the test costs $0.5k to administer in the Table 8.1 project selection example. 
 
First, let us revisit Table 1 with the presumption that the probability of success p(S) is the 5% 
from historical experience: 
 

Table 1 - P(S)=5% Event 
Success Failure Expected Value 

Probability p(S)=.05 p(F)=.95 

Decision 
Accept $100,000 ($30,000) .05*$100k-.95*$30k=-$23.5k (loss) 
Reject ($1,000) ($1,000) -.05*$1k-.95*$1k=-$1k (loss) 

 
 Table 8.1 - Payoff Table for Decision under Risk with p(Success) = 5% 
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We see that both decision outcomes provide a loss but the decision to “Reject” the project is 
less and would lead us to always reject these proposals. Let us now examine what the 
decision might be if we have available the test introduced above. 
 
We define p(F) as p(S\) so that we can use the prior formulations. We also introduce the test 
as p(T) and its complement p(T\) to describe the four conditional probabilities. From the 
prior testing experience, we define: 
ሺܶ|ܵሻ݌  ൌ 0.98  [8.1] 
 
ሺܶ\|ܵሻ݌  ൌ 0.02  [8.2] 
 
So we assume the test is 98% correct in identifying projects that will be a success, but has a 
2% false-negative indication. 
 
Likewise, from the history of the test’s indication of probability of false positives we have: 
 
ሺܶ|ܵ\ሻ݌  ൌ 0.05 [8.3] 
 
ሺܶ\|ܵ\ሻ݌  ൌ 0.95 [8.4] 
 
Therefore, we can evaluate the conditional probabilities of testing for projects with a 5% 
historical proportion of success without testing as: 
 

ሺܵ|ܶሻ݌  ൌ ௣ሺ்|ௌሻ௣ሺௌሻ

௣ሺ்|ௌሻ௣ሺௌሻା௣ሺ்|ௌ\ሻ௣ሺௌ\ሻ
ൌ .ଽ଼כ.଴ହ

.ଽ଼כ.଴ହା.଴ହכ.ଽହ
ൌ .508 [8.5] 

 
We will find it useful to identify the denominator in the equation above as: 
 
ሺܵሻ݌ሺܶ|ܵሻ݌  ൅ ሺܵ\ሻ݌ሺܶ|ܵ\ሻ݌ ൌ ሺܶሻ݌ ൌ .98 כ .05 ൅ .05 כ .95 ൌ .0965 [8.6] 
 
And we can also derive the conditional probability complement:  
 
ሺܵ\|ܶሻ݌  ൌ 1 െ .508 ൌ .492 [8.7] 
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In the event of a negative test result, we derive: 
 

ሺܵ|ܶ\ሻ݌  ൌ ௣ሺ்\|ௌሻ௣ሺௌሻ

௣ሺ்\|ௌሻ௣ሺௌሻା௣ሺ்\|ௌ\ሻ௣ሺௌ\ሻ
ൌ ଴.଴ଶכ଴.଴ହ

଴.଴ଶכ଴.଴ହା଴.ଽହכ଴.ଽହ
ൌ 0.0011 [8.8] 

 
We will find it useful to identify the denominator in the equation above as: 
 
ሺܵሻ݌ሺܶ\|ܵሻ݌  ൅ ሺܵ\ሻ݌ሺܶ\|ܵ\ሻ݌ ൌ ሺܶ\ሻ݌ ൌ .02 כ .05 ൅ .95 כ .95 ൌ .9035  [8.9] 
 
And we can derive as the conditional probability complement:  
 
ሺܵ\|ܶ\ሻ݌  ൌ 1 െ .0011 ൌ .999 [8.10] 
 
We are now prepared to evaluate expected values using the test prior to making a decision 
about pursuing the project. 

 

Test Result Project Result

Project Success

Project FailurePass

Fail

p(Pass)

p(Fail)

p(Success|Pass)

p(Failure|Fail)

p(Success|Fail)

p(Failure|Pass)

Project Success

Project Failure

p(Pass)*p(Success|Pass)

p(Pass)*p(Failure|Pass)

p(Fail)*p(Success|Fail)

p(Fail)*p(Failure|Fail)  
 

 Diagram 8.1 – Conditional Probability Project Outcome Tree Diagram 
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p(T)=0.0965

p(T\)=0.9035

p(S|T)=0.508

p(S\|T\)=0.9989

p(S|T\)=0.0011

p(S\|T)=0.492

p(T)*p(S|T)=0.049022

p(T)*p(S\|T)=0.047478

p(T\)*p(S|T\)=0.000994

p(T\)*p(S\|T\)=0.902506  
 

 Diagram 8.2 – Project Conditional Probability Tree Diagram 
 
If we administer the test and the result is positive, we have the expected payoff table: 
 

Table 1 , Test = Pos Event 
Success Failure Expected Value 

Probability p(S)=.508 p(F)=.492

Decision 
Accept $100,000 ($30,000) .508*$100k-.492*$30k=$36.4k (gain) 
Reject ($1,000) ($1,000) -.508*$1k-.492*$1k=-$1k (loss) 

 
 Table 8.2 - Payoff Table for Decision under Risk after Positive Test 
 
Therefore, we would choose to accept the project with the expected value of $36.4k.  
 
If we administer the test and the result is negative, we have the expected payoff table: 
 

Table 1 , T = Neg Event 
Success Failure Expected Value 

Probability p(S)=.001 p(F)=.999

Decision 
Accept $100,000 ($30,000) .001*$100k-.999*$30k=$29.9k (loss) 
Reject ($1,000) ($1,000) -.001*$1k-.999*$1k= -$1k (loss) 

 
 Table 8.3 - Payoff Table for Decision under Risk after Negative Test 
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Therefore, we would choose to reject the project with the resulting cost of $1k, clearly a loss, 
but the minimum loss.  
 
Finally, we have calculated that the test is expected to be positive in only 9.65% of instances 
and negative in 90.35% of instances, so that from the expected values, we will result in: 
 
ሻݐ݆ܿ݁݋ݎሺܸܲܧ  ൌ .0965 כ $36.4݇ െ .9035 כ $1݇ ൌ $2.6091݇ [8.11] 
 
We incur the cost of $0.5k to administer the test for all cases and thus we reduce the expected 
value to $2.1081k a far better result than with no test information.  
 
We see from the result above that we can make use of testing to revise the probability of 
success sufficiently that we will decide to accept 9.65% of such projects and generate an 
average of over $2k/project for a collection of projects. Note, that we are still generating the 
$100k payoff but not on every project accepted. Further, the project requires an investment in 
testing of $0.5k prior to making a decision to proceed. This becomes an interesting problem 
to attempt to represent on a Critical Path Chart. 
 
8.2 The Value of Information - We will calculate expected values of outcomes under 
differing assumptions; perfect information, no information, and with the testing providing 
conditional probabilities. We then compare to the expected values to establish the values of 
the information. 
 
8.2.1 The Value of a Project with Perfect Information - If we assume in Table I we are able 
to always identify a project’s success or failure, we would always accept projects that will be 
a success and always reject projects that will fail. 
 
The expected value of the payoff of $100k on 5% of projects that will be a success and 
paying the cost of $1k on the remaining 95% of projects that will fail provides the expected 
value of: 
 

ܸܧ  ቀܲݐ݆ܿ݁݋ݎ ௪

௉௘௥௙௘௖௧
ቁ݊݋݅ݐܽ݉ݎ݋݂݊ܫ ൌ .05 כ $100݇ െ .95 כ $1݇  [8.12] 

 
ሻ݊݋݅ݐܽ݉ݎ݋݂݊ܫ ݐ݂ܿ݁ݎ݁ܲ/ݓ ݐ݆ܿ݁݋ݎሺܸܲܧ  ൌ $4.05݇ [8.13] 
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On average, this is the best that we can do in this regard and is the expected value of a project 
with perfect information. 
 
8.2.2 The Value of a Project with No Information - If we assume in Table 7.1 we are not able 
to identify a project’s success or failure, we would always reject projects but that may cost 
$1k regardless. 
 

ܸܧ  ቀܲݐ݆ܿ݁݋ݎ ௪

ே௢
ቁ݊݋݅ݐܽ݉ݎ݋݂݊ܫ ൌ െ.05 כ $1݇ െ .95 כ $1݇ ൌ െ$1݇   [8.14] 

 
This seems ridiculous to spend the money knowing we will always reject all projects, but in 
many cases the resulting expected value does not always provide a clear indication that we 
should avoid making any decision. We use these results to make a point with the expected 
values but we could still argue that we would avoid making any decision and thus incur zero 
costs. 
 
8.2.3 The Value of a Project with Test Information – We have already investigated the 
expected value of a project using testing. The expected value before we incur the cost of the 
testing is $2.6091k, from which we reduce the expected value by the costs of the test 
incurred. In this regard, the $2.1091k expected value of a project with the available testing 
represents the value of the project with the imperfect information.  
 
The difference between the expected value of the outcome with test information and the prior 
expected value of the outcome with the imperfect information provided by testing is the 
“value of perfect information.” 
 
 ܸሺܲ݁݊݋݅ݐܽ݉ݎ݋݂݊ܫ ݐ݂ܿ݁ݎሻ ൌ $4.05݇ െ $2.11݇ ൌ $1.94݇ [8.15] 
 
The value of perfect information is a bit misleading in comparison to the case we have 
outlined because we have already paid the cost of testing for the example. What is left is the 
incremental value of perfect information remaining to the decision maker.  
 
8.2.4 The Value of Test Information – We see that if we exclude the results of testing, 
returning instead to the original premises, the expected value of a project is actually always a 
loss of $1k but we would never accept any projects.  
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With reference to the case with no information, the expected value of perfect information 
would be: 
 ܸሺܲ݁݊݋݅ݐܽ݉ݎ݋݂݊ܫ ݐ݂ܿ݁ݎሻ ൌ $4.05݇ െ ሺെ$1݇ሻ ൌ $5.05݇ [8.16] 
 
We have chosen to spend $0.5k for an imperfect test reducing the value of perfect 
information from $5.05k to $1.94k and thus gaining some imperfect information in the 
process. The reduction in the value of the perfect information remaining is the gain we have 
produced by the testing. 
 
 ܸሺܶ݁݊݋݅ݐܽ݉ݎ݋݂݊ܫ ݐݏሻ ൌ $5.05݇ െ $1.94݇ ൌ $3.11݇ [8.17] 
 
9. PERT as CPM with Task/Activity Risk Estimates 
In projects with estimates for task/activity duration rather that assuming values with 
certainty, the PERT Technique has provided a tool for using the estimates to provide an 
estimate for the project duration as well as a measure of the uncertainty of that estimate. 
 
9.1 Positive Task/Activity Durations - Each task/activity can be any positive duration, 
including zero, but they cannot provide negative time durations. Probability density functions 
that have this characteristic are considered “one-sided” and PERT uses a class belong to the 
of “Beta” distributions.  
 
9.2 Beta distribution parameters – For use in the PERT charts, each task/activity requires 
three parameter estimates for:  
 1) “a,” the minimum duration estimate,  
 2) “c,” the maximum duration estimate, and  
 3) “b,” the most-likely duration estimate.  
 
From the three estimated parameters, two pertinent statistics are derived, the mean and the 
standard deviation of the task/activity duration estimate as follows. 
 
The mean is calculated as: 

ሻ݊݋݅ݐܽݎݑሺ݀ߤ  ൌ ௔ାସ௕ା௖

଺
 [9.1] 
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The standard deviation is calculated as: 
 

ሻ݊݋݅ݐܽݎݑሺ݀ߪ  ൌ ௖ି௔

଺
 [9.2] 

 
The Critical Path in PERT is evaluated the same way that it is in the CPM Method outlined in 
section 4 above, but the task/activity calculated mean values are used instead of the assumed 
or even most-likely values. In addition, the standard deviation of the entire project duration is 
calculated using the task/activity standard deviation values. 
 
We illustrate using the same project as in section 4 above, but with entirely new time 
estimates. 
 
Task Title: Patio Project Tasks Start End Time   

  Min Mode Max Mean 
1 Site engineering planning A B 2 3 5 3.167 0.5 
2 Materials purchase B G 1 4 5 3.667 0.667 
3 Site preparation B C 1 2 4 2.167 0.5 
4 Concrete pour, surface, & cure E F 27 28 29 28 0.333 
5 BBQ construction & cure G H 3 4 5 4 0.333 

6 Call for inspection C D 0 1 2 1 0.333 

7 Call for concrete D E 0 1 2 1 0.333 

8 Call for inspection F G 0 1 2 1 0.333 

9 Call for inspection H I 0 1 2 1 0.333 

 
 Table 9.4 –List of Task/Activities for PERT Plan 
 
9.3 Completion Date Using PERT - We calculate the estimated completion date as the sum of 
task/activity mean values on the critical path. We have already established that the critical 
path for this project includes all task/activities except the materials purchase of 3.667 days. 
The summation of mean values evaluates to 41.3 days, but we note that we have introduced a 
one-day effort for four of the formerly zero-effort tasks. The CPM method provided a 37 day 
total with four zero-effort tasks, so we are not actually very different. The primary reason 
that we are nearly the same is that both are dominated by task/activity 2 and that is nearly 
deterministic based on curing concrete. 
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9.4 Completion Date Standard Deviation Using PERT – From each task/activity standard 
deviation, we calculate its variance as the square of the standard deviation. The variances are 
summed and the sum is the variance of the task completion date. For our example, the sum-
of-squares of the standard deviations is 1.1667 and the square-root of that variance 1.08 is the 
standard deviation of the critical path. 
 
It should be mentioned that the combination of the variances from multiple independent beta 
distributions (as is the case with essentially any set of independent distributions) is nearly a 
Gaussian or “Standard Normal” distribution. This result is a consequence of the “Central 
Limit Theorem” and proves quite useful in this case. 
 
We can construct bounds on the estimated completion date knowing that in 95% of cases, the 
actual completion will fall at the estimate +/- 2 standard deviations, or essentially +/- 2 days 
for this project. 
 
10.0 Summary and Conclusions 
This course illustrates the categories of decision making under conditions of Certainty, 
Uncertainty, and Risk and some tools as related to decision processes in engineering planning 
and design. Conditions of Certainty were assumed as a reference or bench-mark for defining 
the best possible outcomes, and also were used as a simplification to provide a first level of 
feasibility checking. A first example of decision making under conditions of certainty was 
shown using Linear Programming (LP) tools to optimize constrained resource allocation to 
optimize a monetary return. Both a graphical approach and the “Simplex Method” were 
introduced to illustrate how to identify an optimum. A second example of decision making 
under conditions of certainty was introduced using the Critical Path Method (CPM) to plan a 
project. A short discussion of decision making under conditions of Uncertainty was included 
to introduce  payoff tables and both optimistic and pessimistic extremes. Because the 
predominant form of decision making is under conditions of Risk, concepts of probability 
were discussed in depth including conditional probability, Bayes’ Theorem, expected values, 
the value of research and information, and the PERT scheduling technique. Links are 
provided in several locations to free, open-source software tools associated with each topic. 
The tools and techniques are useful both during initial planning and as more information 
becomes available to suggest plan revision. The single most useful tool is a spreadsheet 
program and considerable patience to design custom solutions. 
 


