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1.0 Filters and Equalizers Introduction 
This course will define the notation for roots of polynomial expressions describing Linear-
Time Invariant (LTI) systems in the frequency domain, and relate the operator notation to the 
time-domain response using complex exponential notation. A single pole circuit will be 
introduced and responses analyzed in the frequency domain and time domain. An ideal delay 
will be introduced for comparison and to set a reference for step response behaviors. 
 

Polynomial root locations will be described in the complex s-plane and complex conjugate 
pairs plotted and described using (ω0, ζ) notation as well as (τ0, Q) notation. Phasor notation 
will be introduced for evaluation of steady-state sinusoidal excitation of transfer functions. 
Second-order, complex conjugate pole pairs are introduced and the asymptotic behaviors 
developed and contrasted to the single-pole behaviors in magnitude, phase, and group delay 
attributes. Straight-line approximations are produced and the errors of approximation 
discussed. 
 

Classical Butterworth, Chebyshev, and Bessel filters are introduced and the construction 
formulae developed. The Cauer filter is also illustrated, but mathematical development not 
included. Frequency domain and time domain responses are developed using a 4th design 
form as representative of even-order forms and a 5th order design as representative of odd-
order forms. Only the 5th order Bessel filter example will be synthesized from the equations. 
A 5th order equalizer will be developed for the 5th order Chebyshev and Cauer filter and 
shown to provide equivalent results. An additional pole pair will be added to the 5th order 
equalizer and the justification and improvements noted. Transformations will be discussed to 
convert low-pass prototype designs to high-pass and band-pass filters. 
 

The course is designed for a practicing engineer seeking a capability for designing and 
specifying filters and equalizers for frequency domain and time domain applications. 
 

2.0 Notation 
Following in the path of intellectual giants, we adopt the Laplace exponential and Fourier 
complex notations for describing the signals and the systems we employ. Using the notations, 
we can accurately represent signals in the time domain, as well as transform to the frequency 
domain for spectral analysis. We define a signal’s impulse response as: 
 

 ( ) st
xx eAtV =  [2.0] 
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Allowing the coefficient s to be a complex number permits the describing equation [2.0] to 
be representative of growing or declining exponential waveforms employing the real 
component, as well as periodic sinusoidal waveforms employing the imaginary component, 
both in the time and frequency domains. 
 

We employ the impulse response as a time-domain descriptor, but evaluate instead the 
integral of the impulse response or step response because of the difficulty in forming the 
infinite-magnitude/unit-area form of the impulse excitation. The unit step is more intuitive 
and easier to formulate for time-domain simulation. 
 

We describe Linear, Time-Invariant (LTI) systems using a rational polynomial descriptive 
equation of the form given in equation [2.1] below. 
 

 
( )
( ) ( ) ( )

( )sD
sNsH

sV
sV

in

out ==  [2.1] 

 

We adopt the classical approach to system description with the roots of N(s) = 0 defined as 
zeroes because the transfer function is zero at those root locations, and the roots of D(s) = 0 
defined as poles because the limit of the transfer function is infinite at those root locations 
and possibly because the magnitude resembles an infinite-height tent-pole under the “fabric” 
of the s domain magnitude surface around that location. The degree of N(s) is less than or 
equal to the degree of D(s) for a realizable system, and each can be factored into first or 
second order factors. 
 ( )σ+s  [2.2] 
 

A first-order factor in “s” transforms to the time domain with the exponential impulse 
response expressed in equation [2.0] above. The second order factor in “s” expressed in 
equation [2.3] below has three possible cases, depending on the solution of its quadratic 
equation. 
 ( )cbss ++2  [2.3] 
 

 
2

4
2

2 cbbs −
±−=  [2.4] 

 

In equation [2.4], the square root contains a term known as the discriminant. There are three 
cases for the value of that discriminant, including positive, zero, or negative values. If the 
discriminant is positive, the second-order term can be factored into two distinct first-order 
factors with unequal real roots. If the discriminant is zero, the second-order term can be 
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factored into two equal first-order factors with two identical repeated roots. If, however, the 
discriminant is negative, the solution requires a square root of a negative number with an 
imaginary solution; hence two complementary conjugate root locations. If 4c > b2, we have: 
 

 
2

4
2

2bcjbs −
±−=  [2.5] 

 

To cover all cases, we define every root to be of the form given in equation [2.6] below, with 
either the real σroot or ωroot, possibly zero. 
 

 rootrootroot js ϖσ +=  [2.6] 
 

Root locations contain information about the transfer function behavior in both time and 
frequency domains. To characterize the response of a system, we employ the “step” response 
of the system in the time domain and the magnitude-phase response of the Bode plot in the 
frequency domain. To illustrate, we utilize first a single pole resistor-capacitor (RC) system 
shown in figure 2.0 below, and contrast its behavior with an ideal delay. 
 

  
 

2.0 The Single-Pole RC Circuit Schematic 
 

For the circuit shown in figure 2.0 above, we analyze the response as a “voltage-divider” 
using the ratio of impedances as follows: 
 

 Ω•== 6101RZ R  [2.7] 
 

 Ω
•

== − sCs
ZC 6101

11  [2.8] 

 

 ( ) ( )
1

1
1

1
1

1

+
=

+
=

+
=

+
==

sRCs
Cs

R

Cs
ZZ

Z
sHs

V
V

RC

C

in

cap  [2.9] 
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The initial value theorem allows us to calculate: 
 

 ( ) 







+
•=+

∞→ 1
10

s
sLimV

scap  [2.10] 

 

Because the result is indeterminate in the ratio, we apply LHopital’s rule, as follows: 
 

 ( ) ( )
( ) ( )

0
1

1
1

1
1

0 22 =








+
=









+
−+

=







+∂
∂

=+
∞→∞→∞→ s

Lim
s

ssLim
s

s
s

LimV
ssscap  [2.10] 

 

To evaluate the step response, we use the integral of the impulse response and employ the 
final value theorem as follows. First, the time domain integral of the impulse response is 
found as follows: 

 ( ) [ ]ttt

x

t

x ededeAdV −=== ∫∫∫ −− 1
000

λλλλ λτ
λ

 [2.11] 

 
The s domain integral is found as follows: 

 ( ) ( )1
11
+

=
ss

sH
s

 [2.12] 

 

The final value theorem allows us to calculate: 
 

 ( ) ( ) ( ) 1
1

1
1

1
00

=







+

=







+

•=∞→
→→ s

Lim
ss

sLimtV
sscap  [2.13] 

 
We predict that the final value from both the time-domain and frequency domain will agree 
and be a value of unity. 
 

We show the time-domain step response behavior in the simulation of figure 2.1 below. 
 

  
 

2.1 The Single-Pole RC Circuit Step Response 
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For the steady-state AC response, we evaluate the transfer function with the s = jω 
substitution as follows: 

 ( ) ( )
ϖ

ϖϖ
j

jHj
V
V

in

cap

+
==

1
1  [2.14] 

 

We evaluate the magnitude and phase expressions as follows: 
 

 
( )21

1)(
ϖ

ϖ
+

=H  [2.15] 

 

 ( )ϖϖ 1tan)( −−=Φ H  [2.16] 
 
We show group-delay as the derivative of the phase expression as follows: 
 

 ( )
2

1

1
1tan)(
ϖϖ

ϖ
ϖ

ϖ
+

−=
∂

∂
−=

∂
Φ∂ −

H  [2.17] 

 
 

2.2 The Single-Pole RC Circuit Magnitude, Phase, and Group Delay Responses 
 

For contrast, we employ an ideal delay and show its time domain response as follows: 
 

  
 

2.3 The Ideal One Second Delay Time-Domain Step Response 
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2.4 The Ideal One Second Delay Magnitude, Phase, and Group Delay Responses 
 

From figure 2.4 above, we see that the ideal delay has a uniform magnitude, regardless of the 
frequency but the single pole shown in figure 2.2 has an asymptotic magnitude of unity only 
up to its pole frequency associated with the one-second time-constant. The ideal delay has a 
constant phase expression derivative or group-delay but the single pole has an asymptotic 
group delay of unity only up to its pole frequency. 
 

The ideal delay is represented as the multiplier e-sT for any positive time index. 
 

3.0 Root Locations 
The location of a pole (as well as a zero), in the complex s plane reveals information about its 
behavior in both time and frequency domains as we have demonstrated in the section above 
using a single-pole example.  
 

  
 

3.0 The Complex S Plane 
 
Real poles are located only on the “Real” axis, but we are mostly interested in poles with a 
real part that lie in the “Left Half-Plane (LHP),” because they describe the decaying 
exponentials found in physical systems. Similarly, complex conjugate pole pairs are most 
often found in the left half plane for practical systems, but some lossless ideal systems may 
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also include the imaginary axis with a real component of zero. We shall see later that the 
LHP restriction is not as stringent for the location of zeroes as it is for poles. 
 

We employ two of several conventions for describing the complex-conjugate pairs; following 
algebraic manipulation to the first canonic form: 
 

 







++ 1022

0 s
Q

s
τ

τ  [3.0] 

 

 2
0

2
0

2
00

2

4

τ

τ
ττ

−







±−

=
QQ

sroot  [3.1] 

 

 2
0

200

2

41

τ

ττ
Q

QQsroot

−±−
=  [3.2] 

 

 [ ]2

0

411
2

1 Q
Q

sroot −±−=
τ

 [3.3] 

 

 [ ]141
2

1 2

0

−±−= Qj
Q

sroot τ
 [3.4] 

 

We have a set of equivalence relations 2ζ = 1/Q, and τ0 = 1/ω0 for the alternate canonic form 
of equation [3.5] as follows: 
 

 







++ 12

0
2
0

2

ss
ϖ

ς
ϖ

 [3.5] 

 

With the alternate form, we have: 

 







−±−= 2

0 111 ς
ς

ςϖ jsroot  [3.6] 

 

 2
00 1 ςϖςϖ −±−= jsroot  [3.7] 
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We shall see that these two equivalent canonical forms may be used interchangeably, but one 
or the other may have some advantage for implementation issues. 
 

We show a complex conjugate pole-pair in the s-plane with each canonic representation as 
follows: 

  
 

3.1 Complex-Conjugate Pole-Pair in the Complex S Plane (Both Forms Shown) 
 

Note the indicated angle θ in figure 3.0 above is parameterized by the tan-1 relationships as 
follows: 

 














−
= −

14
1tan

2

1

Q
θ  [3.8] 

 

 














−
= −

2

1

1
tan

ς

ςθ  [3.9] 

 

We will find the θ angle useful in referring to root-pattern loci in filter designs. 
 

We will utilize a “phasor” approach to system behavior for frequency domain evaluation. It 
leads to a few intuitive tools for the classical system behaviors. 
 

In figure 3.2 below, we illustrate two “phasors” or phase-vectors denoted as p1 and p2 to 
represent the system response from the two roots shown caused by the excitation from the 
steady-state excitation locus on the imaginary axis designated as the jω point. 
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3.2 Phasor Response for a Complex-Conjugate Pair 
 

We represent an evaluation of the partial product shown in equation [3.8] below. 
 

 ( ) ( )( ) ( )( )pppp jsjssX ϖσϖσ −+++=  [3.8] 
 

The two root locations are: 
 pp js ϖσ +−=  [3.9] 
 

 pp js ϖσ −−=  [3.10] 

The two phasors are: 
 ( )pp jp ϖϖσ −+=1  [3.11] 

 
 ( )pp jp ϖϖσ ++=2  [3.12] 
 

We obtain the magnitudes as follows: 
 

 ( )22
1 ppp ϖϖσ −+=  [3.13] 

 

 ( )22
2 ppp ϖϖσ ++=  [3.14] 
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We obtain the phase contributions as follows: 
 

 








 −
=Φ −

p

p
p σ

ϖϖ
ϖ 1

1 tan)(  [3.15] 

 

 








 +
=Φ −

p

p
p σ

ϖϖ
ϖ 1

2 tan)(  [3.16] 

 
From this preliminary work, we see that: 
 

 ( ) 21 ppsX
js

•=
→ ϖ

 [3.17] 
 

 )()()( 21 ϖϖϖ ppX Φ+Φ=Φ  [3.18] 
 
If we convert the magnitudes to a logarithmic dependency, such as dB, equation [3.17] also 
becomes a summation. If the phasors describe pole roots, the magnitudes are inverted and 
result in “negative” or subtractive dB, whereas zeroes result in “positive” or additive dB. 
Similarly, poles subtract their phase contributions and zeroes add their phase contributions. 
 
4.0 Second-Order Pole Behaviors 
The locus of the complex-conjugate pole pairs with constant characteristic frequency and 
differing damping or “Q” presents insights into the placement of loci maps for filters and will 
be developed in the following sections.  

  
 

4.0 Complex-Conjugate Pole Pair with Q = 0.5, 1.0, and 2.0 Parameters (Concept) 
 

We have shown in figure 4.0 above a conceptual relationship for the pole locations of a 
complex-conjugate pole pair with three different “Q” values. The angles are for relative 
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direction only, but the loci are all on a circle of constant radius. We evaluate the location 
angles to find the respective values for θ as follows: 
 

 ( ) 















∞=















−
= −−−

=

−
= 15

1tan,
3

1tan,tan
14

1tan 111

0.2,0.1,5.0
2

1
0.2,0.1,5.0

Q

Q Q
θ  [4.0] 

 
 ooo

Q
5.14,30,90

0.2,0.1,5.0
=

=
θ  [4.1] 

 

In figure 4.0 above, we did not show the precise angles for the “Q” values indicated because 
the Q = 0.5 value is actually a repeated double-pole exactly on the real axis and difficult to 
resolve as a pole-pair. In figure 4.1 below, we show the magnitude, phase, and delay 
characteristics for the same pole-pair collection. 
 

  
 

4.1 Pole Pair Magnitude, Phase, and Group Delay with Q = 0.5, 1.0, and 2.0  
 
The transfer function description of the behaviors show in figure 4.1 above is given with 
equation [3.0] as the denominator of N(s)/D(s) and its roots as the solution of the D(s) 
polynomial and N(s) = 1 in the numerator as shown in equation [4.2] below. 
 

 ( )
( ) 1

1
022

0 ++
=

s
Q

ssD
sN

τ
τ

 [4.2] 

 

For the example, τ0 = 1, which implies ω0 = 1, and because ω0 = 2πf, the characteristic 
frequency f in Hertz is 1/2π = 0.159 Hertz, as can be identified on the panels of figure 4.1 
above. We explore the asymptotic behaviors of figure 4.1 while referring to equation [3.19] 
to develop those asymptotes. We evaluate equation [4.3] below at frequencies below, at, and 
above the characteristic frequency in the following using the notation of Ω = ωτ0 as a 
normalizing parameter. 
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 ( )
( )

2
221

11








 Ω
+Ω−

=
Ω =

Q

D js ϖ

 [4.3] 

 

 







Ω−
Ω

−=ΩΦ −
2

1
/1 1

1tan)(
QD  [4.4] 

 

 ( )
ϖϖ ∂
Ω∂

Ω∂

















Ω−
Ω

∂

















Ω−
Ω

+

−=
∂

ΩΦ∂
=Ω

2

2

2

/1 1
1

1
11

1)( Q

Q

GD D  [4.5] 

 
 

 ( ) ( )
( )22

2

2

2

0

1
1

1
11

1
Ω−

Ω+

















Ω−
Ω

+

−=Ω

Q

Q
GD

τ  [4.6] 

 

 ( ) ( )
( )

2
22

2
0

1

1








 Ω
+Ω−

Ω+
−=Ω

Q

Q
GD

τ  [4.7] 

 

We evaluate the asymptotes and characteristic using the limits of Ω = 0, 1, and approaching 
infinity as follows: 

 ( ) 0,,11

,1,0

+++=
Ω ∞→Ω

Q
D

 [4.8] 

 

We observe from equation [4.4] above that in the region with values of Ω >> 1, we can 
reduce equation [4.4] to the approximation in equation [4.9] as follows: 
 

 ( ) 242
41

1111
Ω

≈
Ω

≈








 Ω
+Ω

≈
Ω >>Ω

Q

D
 [4.9] 

 

It is this exponential relationship that provides the asymptotic slope of two decades 
magnitude decrease for every decade of frequency increase and leads us to present figure 4.1 
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using the logarithmic frequency and magnitude scales. The ratio is the constant slope of 
negative two decades magnitude per frequency decade. In contrast, the single pole behavior 
shown in figure 2.2 produced a single decade per decade slope. In our normalized notation, 
we reproduce the single pole magnitude relationship with equation [4.10] as follows: 
 

 
( )21

1)(
Ω+

=ΩH  [4.10] 

 

The asymptote for Ω >> 1 produces the result: 

 
Ω

=
Ω

≈Ω
>>Ω

11)(
21

H  [4.11] 
 

We see that equation [4.11] algebraically confirms the single-pole asymptotic behavior 
previously shown in figure 2.2. 
 

We will use the characteristic of a one-decade magnitude decrease per decade frequency 
increase per pole to help define frequency selectivity of a collection of poles in a filter. 
 

For the Φ(Ω) phase response, we observe in figure 4.1, a relatively symmetrical slope with a 
nearly arithmetic dependence of phase per decade of frequency variation above and below 
the characteristic frequency, always with 90o for Ω = 1, independent of the Q value as 
indicated in equation [4.12] below. 
 

 oo
D 180,90,0)(

,1,0/1 −−=ΩΦ
∞→Ω

 [4.12] 
 

The group delay is determined by the phase slope in equation [4.7], and is evaluated over the 
range of frequencies in equation [4.13] below. 

 ( ) 0,2, 0
0

,1,0
τ

τ
Q

Q
GD −−=Ω

∞→Ω
 [4.13] 

 

We see that the phase slope is proportional to Q at Ω = 1, and the least slope appears for the 
real poles with the Q = 0.5 value. It is instructive to note that the single-pole behavior 
exhibits the same shape phase dependency as shown in figure 2.2 above, but with the 
asymptotes given by equation [4.14] below. 
 

 oo
Pole 90,45,0)(

,1,01 −−=ΩΦ
∞→Ω−  [4.14] 

 
We observe in both figure 2.2 and figure 4.1 with Q = 0.5, that the arithmetic phase slope can 
be approximated by a straight-line segment over a two-decade span. We restate equation 
[4.14] over those restricted limits in equation [4.14] below. 
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 ooo
Pole 3.84,45,7.5)(

10,1,
10
11 −−−=ΩΦ

→Ω−  [4.15] 

 
We are able to use the results of equation [4.15] to infer that a straight-line approximation 
with the asymptotic value of 0o for frequencies lower than one decade below a pole’s 
characteristic frequency, -90o for frequencies greater than one decade above that pole’s 
characteristic frequency, and -90o/decade slope within the two-decade range is a close 
approximation of each real-pole’s phase characteristic. Further, using the implications we 
inferred from equation [4.12], we extend the approximation to increase the slope to twice that 
of a single pole for the complex-conjugate pole pair, but with the slope increased by a 
multiple of “Q” times greater slope magnitude. 
 
We have reproduced the single-pole phase panel from figure 2.2 and the pole-pair phase 
panel from figure 4.1 into figure 4.2 below and superimposed the approximate straight-line 
segments in red for comparison. 
 

  
 
4.2 Single-Pole and Pole Pair Phase with Q = 0.5, 1.0, and 2.0 Approximations 
 

We have already discussed the asymptotic behaviors of the pole magnitude functions and 
present similar straight-line approximations for the magnitudes in figure 4.3 below. The left 
panel is the magnitude plot from figure 2.2 and the right panel is the magnitude plot from 
figure 4.1 and reproduced with the asymptotes from prior discussion. 
 

  
 

4.3 Single-Pole and Pole Pair Magnitudes with Q = 0.5, 1.0, and 2.0 Approximations 
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The approximations supported by the results presented in figure 4.1 and figure 4.2, are 
sufficiently accurate to permit construction of selectivity and phase approximations for 
complicated filter structures. 
 

In the time domain, we present the results for the complex pole-pair and reproduce the results 
from the prior figure 2.3 and figure 2.1 shown together in figure 4.4 below. 
 

  
 

4.4 Delay for Ideal, Single Pole, and Pole Pair with Q = 0.5, 1.0, and 2.0 
 

As shown in figure 4.4 above, the case with two real poles represented with Q = 0.5 presents 
twice the delay of the single pole reproduced in the center panel above. The resonant peaking 
and group delay associated with Q values of 1.0 and 2.0 presents a resonant overshoot and 
“ringing” of the step response that become important in dealing with digital signals in band-
limited filter structures. 
 

5.0 Some Classical Filter Forms 
The classical approach identifies the locus of pole positions according to some desired 
behavior required for the filter in the time or frequency domain. In this section, we will 
briefly introduce the Butterworth filter, Chebyshev filter, Inverse Chebyshev filter leading to 
the Cauer filter, and Bessel filter and show some behaviors in time and frequency domains. 
We begin with all-pole filters and introduce zeroes. We introduce the maximally flat delay 
filter and introduce the need for equalizers to obtain good performance in both time and 
frequency domains. 
 

The Nth order Butterworth filter [S. Butterworth, “On the theory of Filter Amplifiers,” 
Wireless Engineer, vol. 7, pp. 536-541, Oct., 1930] has a monotonically decreasing 
magnitude function as the frequency increases. The characteristic frequency and order, or 
number of poles parameterizes the lowpass Butterworth filter. A straight-line approximation 
as discussed in the prior section is usually employed to determine the required number of 
poles to reject some frequency component at a higher frequency than the characteristic. The 
ratio of the rejected frequency to the characteristic is calculated and the base-10 logarithm 
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obtained to determine the number of decades that separate the two frequencies. The required 
attenuation at the rejected frequency used to determine the requisite attenuation per decades 
of separation, and thus the minimum number of poles required. For example, we will 
calculate the order of a Butterworth filter required to provide attenuation by a factor of 1000 
at a frequency that is seven times the characteristic frequency. The frequency we must reject 
is 0.84 decades above the characteristic frequency (log10[7] = 0.84). The rejection factor of 
1000 represents three decades (log10[1000] = 3). We need a filter with 3 decades magnitude 
decrease for 0.84 decades frequency increase, so the minimum ratio is 3/0.84 = 3.57 poles. 
We do not have the option of fractional poles, so we require a 4th order Butterworth filter. 
 

The Butterworth function is defined as: 

 ( ) NNB 21
1
Ω+

=Ω  [5.0] 
 
The Butterworth function is used to define the squared-magnitude of a Butterworth filter. 
 

 ( ) ( ) NNB BjH
N 2

2

1
1
Ω+

=Ω=Ω  [5.1] 
 
The definition used in equation [5.1] is obtained indirectly from geometrical constructions in 
the complex s-plane. We are using the entire s-plane, and express the magnitude function 
with right-half-plane (RHP), and mirrored left-half-plane (LHP) factors for construction as 
follows: 

 ( ) 2
2

000

Ω=







=








−









→

jHsjHsHsH
NN BB

js

NN ϖϖϖ
ϖ

 [5.2] 

 

 NNN
s

sHsH 2
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00
1

1
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=







−









ϖ

ϖϖ
 [5.3] 

 
The pole locations are defined as the denominator roots: 
 

 01
2

0

=







+

N
s

ϖ
 [5.4] 

 

 ( )π

ϖ
12

2

0

1 −=−=






 kj
N

es  [5.5] 
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The key to Butterworth’s derivation is the expression of the higher-order roots of (-1) as an 
exponential. The exponent of 2N describes the total collection of poles in both the RHP and 
LHP. We construct the mirror image distribution and use only the stable LHP poles for the 
filter. The location of poles must consist of a single real pole for N an odd number, or 
complex conjugate pole-pairs for N an even number, due to the nature of poles themselves. 
The physical realization imposes symmetry on the s-plane locations. The unit magnitude of 
the exponential in equation [5.5] imposes a locus of a unit circle. We can construct the s-
plane map from the information above. We show pole location examples for 4th order and 5th 
order Butterworth filters in figure 5.0 below. 

  
 

5.0 Butterworth Pole Locations for 4th and 5th Order Filters 
 

From the geometry of the poles on a unit circle, the normalized pole locations are calculated 
for the LHP locations only. The “Q” for each complex conjugate pole pair can be pre-
calculated and the radius of the circle is the characteristic ω0 frequency. 
 

Starting from the pole with the highest Q factor in each diagram, we see that the incremental 
angle is always bisected by the imaginary axis. That angle can be deduced to always be π/2N 
radians. We increment by π/N radians until we reach or exceed π/2 radians and cease 
calculations without using the last result. 
 

From figure 3.1, we see that a ratio can be used to identify the Q factor for a complex 
conjugate pole pair: 

 ( )
( ) ( )14

1
214

21
tan

2
0

2

0

−
=

−
=

QQQ

Q

τ

τ
θ  [5.6] 
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 ( ) ( )

2
2

tan
114 








=−

θ
Q  [5.7] 

 

 ( ) 1
tan

1
2
1

2

+







=

θ
Q  [5.8] 

 
We calculate the Q values for the two sets of complex conjugate pole-pairs in table 5.0 below 
using equation [5.8] above. 
 

Table 5.0 - Butterworth Pole Q factors 
   
4th Order  5th Order 
Angle Radians Q  Angle Radians Q 

0.392699082 1.306563  0.314159265 1.618034 
1.178097245 0.541196  0.942477796 0.618034 

 
We use the same implementation for the Butterworth filters that we employed for the 
complex conjugate pole-pair characterization but using two instances. We parameterize two 
sets, one set for the 4th order filter, and the other set for the 5th order filter. We introduce a 
single pole into the set for the 5th order filter. We then produce the expected results below 
and obtain the same characteristic frequency as prior examples. 
 

 
 

5.1 Magnitude, Phase, and Group Delay for 4th Order Butterworth Filter 
 

 
 

http://www.suncam.com/


  
 Filters and Equalizers 
 A SunCam online continuing education course 
 

www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page  20
  

 

5.2 Magnitude, Phase, and Group Delay for 5th Order Butterworth Filter 
 

In contrast, the 5th order filter achieves a five-decade magnitude decrease per decade of 
frequency increase where the 4th order filter achieves a four-decade magnitude decrease per 
decade of frequency increase. That four-decade decrease is sufficient to meet the example 
requirement of a filter with 3 decades magnitude decrease for 0.84 decades frequency 
increase. Both the 4th order filter and 5th order filter appear to provide the “maximally-flat” 
response magnitude of a Butterworth filter. 
 

  
 

5.3 Step Response for 4th and 5th Order Butterworth Filters 
 

As shown in figure 5.3 above, both the 4th order filter and 5th order filter exhibit the expected 
resonant peaking and group delay associated with the Q employed. The resonant overshoot 
and “ringing” of the step response must be considered in dealing with digital signals in band-
limited filter structures. 
 

The Butterworth filter has a monotonically decreasing magnitude function as the frequency 
increases. It is “maximally flat” in the sense that all derivatives tend to zero as the frequency 
tends to zero. In contrast, the Chebyshev filter constructs the “passband” from zero to the 
characteristic frequency with an “equiripple” magnitude by employing Chebyshev 
polynomials. The ripple, as well as the characteristic frequency and order are parameters of 
the lowpass Chebyshev filter. 
 
We shall develop a 5th order Chebyshev filter and contrast its behavior with the Butterworth 
filter above. The Chebyshev polynomial is defined as: 
 

 ( ) ( )( )Ω=Ω −1coscos NTN  [5.9] 
 
The polynomial is difficult to evaluated directly, but is attacked using a recursive relationship 
developed from trigonometric identities. First, for N = 0, and N = 1, we see: 
 

 ( ) ( ) 10cos0 ==ΩT  [5.10] 
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 ( ) ( )( ) Ω=Ω=Ω −1
1 coscosT  [5.11] 

 
Then, by use of the recursive trigonometric identity: 
 
 ( )( ) ( ) ( ) ( )( )xnxnxxn 1coscoscos21cos −−=+  [5.12] 
 
The higher order polynomials can be defined recursively by: 
 

 ( ) ( ) ( )Ω−ΩΩ=Ω −+ 11 2 NNN TTT  [5.13] 
 
The polynomials are employed much like the Butterworth case, over the entire s-plane using 
the magnitude-squared function. 

 ( ) ( )Ω+
=Ω 22

2

1
1

N
T T

jH
N ε

 [5.14] 

 

The ε parameter provides the ripple scaling value, and depends on the peak-to-peak ripple 
allowed. For a ripple value AMax expressed in dB (the common measure), we have: 
 

 ( ) 110 10 −= MaxAε  [5.15] 
 

We will develop a 5th order filter with 1dB ripple to contrast with the Butterworth example 
previously explored. First, we find the ε parameter using equation [5.15] as follows: 
 

 ( ) 5088.02589.012589.1110 101
1 ==−=−=dBε  [5.16] 

 

We require the 5th order Chebyshev polynomial, so we invoke the recursive definition to 
extend from the lower orders we have: 
 

 ( ) ( ) ( ) 122 2
012 −Ω=Ω−ΩΩ=Ω TTT  [5.17] 

 

 ( ) ( ) ( ) ( ) Ω−Ω=Ω−−ΩΩ=Ω−ΩΩ=Ω 341222 32
123 TTT  [5.18] 

 

 ( ) ( ) ( ) ( ) ( )123422 23
234 −Ω−Ω−ΩΩ=Ω−ΩΩ=Ω TTT  [5.19] 

 

 ( ) ( ) ( ) ( )1881268 24224
4 +Ω−Ω=−Ω−Ω−Ω=ΩT  [5.20] 

 
From equation [5.20] and equation [5.14] we have: 
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 ( )
( ) ( )2242242

2

1882589.01
1

1881
1

+Ω−Ω+
=

+Ω−Ω+
=Ω

ε
jH

NT  [5.21] 

 

Armed with equation [5.21], we can find the poles for this 5th order Chebyshev filter, but we 
do not have a great insight from a numerical solution. As an alternative, we re-visit the 
geometry of the s-plane pole locations from a different, but still algebraic direction. We 
proceed by making a substitution from equation [5.9] that defines the Chebyshev polynomial 
into equation [5.14] that defines the filter magnitude with the result in equation [5.22] that 
follows. 

 ( ) ( ) ( )( )[ ]Ω+
=

Ω+
=Ω −12222

2

coscos1
1

1
1

NT
jH

N
TN εε

 [5.22] 

 

We know that the Laplace operator “s” becomes the Fourier operator “jω” in the steady-state 
AC analysis, but we are using the normalized Ω = ω/ω0 substitution. We can make the 
definition: 
 0ϖΩ≡ js  [5.23] 
We solve for the relationship: 

 s
j
0ϖ

=Ω  [5.24] 

We define a complex number ξ as an intermediate variable, but retain the relationship to the 
roots that define s = σp + jωp as a location in the s- plane: 
 

 ( )Ω=







≡+= −− 101 coscos s

j
j

ϖ
βαξ  [5.25] 

 

Inverting the defined relationship in equation [5.25], we can produce: 
 

 ( )βα
ϖ

js
j

+= cos0  [5.26] 

 

 ( ) ( )βαϖσ
ϖ

jj
j pp +=+ cos0  [5.27] 

 

 ( )βα
ϖ

ϖσ jjj pp +=+ cos1

0

 [5.28] 
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Using equation [5.28], we can solve for the pole locations in the s-plane using an identity to 
provide the needed relationship: 

 ( )
2

cos
jxjx eex

−+
=  [5.29] 

 

 ( )
( ) ( )

222
cos

αβαββαβα

βα
jjjjjj eeeeeej

−−+−+

+=
+

=+  [5.30] 

 

 ( ) ( )( )
2

sincossinhcoshcos ααβββα jj +−
=+  

 ( )( )
2

sincossinhcosh ααββ j−+
+  [5.31] 

 

 ( ) ( ) ( )
2

sinhcoshsinsinhcoshcoscos ββαββαβα −+−
=+

jj  

 ( ) ( )
2

sinhcoshsinsinhcoshcos ββαββα +−+
+

j  [5.32] 

 

 ( ) ( ) ( )
2

sinhcoshcossinhcoshcoscos ββαββαβα ++−
=+ j  

 ( ) ( )
2

sinhcoshsinsinhcoshsin ββαββα +−−
+

jj  [5.33] 

 

 ( )
2

sinhsinsinhsin
2

coshcoscoshcoscos βαβαβαβαβα jjj −−
+

+
=+  [5.34] 

 

 ( ) βαβαβα sinhsincoshcoscos jj −=+  [5.35] 
 
We can substitute the relationship derived in equation [5.35] into the prior equation [5.28] to 
obtain equation [5.36] below. 

 ( ) [ ]βαβα
ϖ

βα
ϖ

ϖσ sinhsincoshcos1cos1

00

jjjjj pp −=+=+  [5.36] 

 

 
00

coshcossinhsin
ϖ

βα
ϖ

βαϖσ jj pp +=+  [5.37] 

 

We equate the components as follows: 
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0

sinhsin
ϖ

βασ =p  [5.38] 

 

 
0

coshcos
ϖ

βαϖ =p  [5.39] 

 

From equation [5.38] and equation [5.39], we can locate the poles in the s-plane, given the 
corresponding α and β values. 
 

 ( ) ( )( )[ ] ( )[ ]ξεε NN
jH

NT 22122

2

cos1
1

coscos1
1

+
=

Ω+
=Ω −  [5.40] 

 
From equation [5.40], we identify the poles of the magnitude-squared as: 
 

 ( )[ ] 0cos1 22 =+ ξε N  [5.41] 
 

We factor equation [5.41] as follows: 
 

 ( )( ) ( )( ) ( ) 0cos1cos1cos1 =±=−+ ξεξεξε NjNjNj  [5.42] 
 
We solve equation [5.42] as follows: 
 

 ( ) ( )βα
ε

ξ jN
j

N +=±= cos1cos  [5.43] 

 

We again employ equation [5.35] as follows: 
 

 ( )
ε

βαβαξ
j

NNjNNN 1sinhsincoshcoscos ±=−=  [5.44] 

 

We equate real and imaginary parts as follows: 
 

 0coshcos =βα NN  [5.45] 
 

 
ε

βα 1sinhsin ±=NN  [5.46] 

 

We solve equation [5.45] by noting that cos(x) = 0 for x =  +/-π/2 and points with increments 
of π added. We simplify as follows: 
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 0cos
2

=






 +±= π

π
α

α
kN

N  [5.47] 

 

 ( )
2

12 πα −±= kN  [5.48] 

 

 ( )πα
N

k
2

12 −
±=  [5.49] 

 

Because we have imposed the cos(Nα) = 0 condition, we know that sin(Nα) = 1 and we are 
able to solve equation [5.46] as: 

 
ε

β 1sinh ±=N  [5.50] 

 

 





±= −

ε
β 1sinh 1N  [5.50] 

 

 





±= −

ε
β 1sinh1 1

N
 [5.51] 

We return to equation [5.38], and equation [5.39] with the values of “a” identified in equation 
[5.49] above and b identified in equation [5.51] above and produce the LHP pole location 
equations as follows: 

 

( )

0

1

0

1sinh1sinh
2

12sin
sinhsin

ϖ
ε

π

ϖ
βασ























 −

−=−=

−

NN
k

p  [5.52] 

 

 

( )

0

1

0

1sinh1cosh
2

12cos
coshcos

ϖ
ε

π

ϖ
βαϖ























 −

==

−

NN
k

p  [5.53] 

 

We are enabled to synthesize a Chebyshev filter as needed. We use equation [5.52] and 
equation [5.53] above because we have a closed form algebraic expression for the pole 
locations for all values of the possible parameters.  
 

We can also manipulate the two equations into a slightly different form, as follows: 
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p=  [5.55] 

Using the following identity, we have: 
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Equation [5.57] expresses the locus of an ellipse in the s-plane with a semi-minor axis given 
by equation [5.58] below, and a semi-major axis given by equation [5.59] below:  
  

 













= −

ε
ω 1sinh1sinh 1

0 N
a  [5.58] 

 

 













= −

ε
ω 1sinh1cosh 1

0 N
b  [5.59] 

 

Algebraic manipulation allows equation [5.58] and equation [5.59] above to be redefined as 
follows 
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The definitions above permit the construction in the s-plane of the Chebyshev filter from two 
Butterworth circles with radii equal to the semi-axes given and shown in figure 5.4 below. 
 

  
 

5.4 Pole Locations for 5th Order Chebyshev Filter 
 

We note that the poles on the ellipse are entirely within the ω0 circle. We find the un-
normalized pole position as ωeff as follows: 
  

 22
0 ppeff ωσϖϖ +=  [5.62] 

 

From the characteristics of a complex-conjugate pole-pair, we find the Q factor from the ratio 
of σp/ωp as follows: 

 ( )
( )14

1tan
2 −

==
Qp

p

ϖ
σ

θ  [5.63] 

 

 ( )
2

2 14 









=−

p

pQ
σ
ϖ

 [5.64] 

 

 1
2
1

2

+









=

p

pQ
σ
ϖ

 [5.65] 

 

Table 5.1 below summarizes the pole locations for the 5th order Chebyshev filter with 1dB 
ripple.  

Table 5.1 - 5th Order Chebyshev Poles 
σp -0.08946 -0.23421 -0.289493341 
ωp 0.990107 0.61192 6.37727E-17 
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ωeffective 0.99414 0.655208 0.289493341 
Q 5.556441 1.398792 0.5 

 

 
 

5.5 Magnitude, Phase, and Group Delay for 5th Order Chebyshev Filter 
 

In figure 5.5 above, we show the magnitude, phase, and group delay responses for the 4th 
order Chebyshev filter, and in figure 5.6 below, we show its step response. 
 

  
 

5.6 Step Response for 5th Order Chebyshev Filter 
 

To enable comparison of the 5th order Chebyshev magnitude response with the 5th order 
Butterworth, we present the results in the same panel as shown in figure 5.7 below. We see 
that the Chebyshev filter with 1 dB of ripple below its characteristic frequency is nearly a 
decade better in attenuation above a common characteristic frequency in comparison to the 
Butterworth filter. The Chebyshev design is used where the ripple can be tolerated and 
improved selectivity near the characteristic frequency is needed. 
 

  
 

5.7 Magnitude Comparison for 5th Order Butterworth and Chebyshev Filter 
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To enable comparison of the 5th order Chebyshev step response with the 5th order 
Butterworth, we present the results in the same panel as shown in figure 5.8 below. 
 

  
 

5.8 Step Response for 5th Order Butterworth and Chebyshev Filter 
 

We see that greater group delay of the Chebyshev does not severely alter the overshoot, but 
the ringing of the higher Q factor poles makes its ringing much longer duration. 
 

The inverse Chebyshev filter can be constructed following the same derivation path for the 
Chebyshev filter itself, but using the magnitude-squared definition in equation [5.66] below: 
 

  ( )
( )

( )
( )( )[ ]Ω

+
=

Ω+
Ω=Ω

− 1coscos
11

1
11

1

122

22

22
2

N
T

T
jH

N

N
TN

ε
ε

ε
 [5.66] 

 

The Inverse Chebyshev filter is maximally flat in the pass-band, much like the Butterworth, 
but equal-ripple in its stop-band rejection. The notion of the inverse relationship extends to 
the pole and zero locations. The poles of equation [5.56] are derived as we have already done 
for the Chebyshev itself, but with the argument inverse. The poles of equation [5.56] are 
obtained by inverting the poles of the original Chebyshev filter in polar notation and each 
location. The poles are expressed as a magnitude and angle the inverse retains the angle but 
the magnitude is inverted. With the angle retained, the Q factor is invariant, but the ωeff 
transforms to outside the enclosing semi-major axis circle. 
 

The zeroes occur at frequencies determined by the numerator equation with the roots at: 
 

 ( ) ( )
2

121cos 1 π
−±=Ω

− kN  [5.67] 

 

 ( )




 −

=Ω
2

12sec π
N

k  [5.68] 
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Table 5.2 - 5th Order Inverse Chebyshev Roots 
ωeffective 1.005894 1.526232 3.454310886 
Q 5.556441 1.398792 0.5 
ωz 1.051462 1.701302 1.63246E+16 

 
We plot the results for the Inverse-Chebyshev design based on the prior 5th order Chebyshev 
pole locations in figure 5.9 below. 

  
 

5.9 Magnitude Response for 5th Order Inverse Chebyshev Filter 
 

The inverse Chebyshev filter is discussed here because it is the first design to introduce 
zeroes, but it is not used widely. The characteristic frequency defines the edge of the stop-
band, rather than the pass-band. Also, the ripple factor for an inverse Chebyshev design must 
be pre-calculated from the desired stop-band characteristic and used in the predecessor 
prototype Chebyshev prior to inversion. The Inverse Chebyshev has a rejection in the stop-
band bounded by the value given in equation [5.69] below. 
 

 

11

1
2

+







=

ε

Atten  [5.69] 

 
for attenuation of 60dB = .001, we solve for ε as follows: 

 

11

1
2

−







=

Atten

ε  [5.70] 

We see that ε is a small number and the prototype predecessor Chebyshev filter is much 
different from the example we have explored. Also, for N an odd order, the attenuation tends 
to a single pole roll-off, and to a constant for N an even order. There are much better filters 
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for selectivity than the Inverse Chebyshev, but they, too, are based on elliptic loci in the s-
plane. The best selectivity of a pole-zero design can be obtained using a Cauer filter. 
Unfortunately, the derivation of the pole locations is even more involved than that for a 
Chebyshev design and will not be included here. Instead, we show that we can use a 
synthesized Cauer filter and show that we can approach much of its behavior as similar to the 
Chebyshev design. 

 
 

5.10 Magnitude, Phase, and Group Delay for 5th Order Cauer Filter 
 

The Cauer design uses Elliptic functions to determine the pole positions in the pass-band, as 
well as in the stop-band. More parameters are required to determine the two dependent ripple 
behaviors. The 5th order design permits two zero pairs in the stop band, as well as the zero at 
infinity that produces the residual single-pole asymptote at the high end of the stop-band. The 
discontinuities in the phase response and group delay are artifacts of the plotting routine that 
is unable to interpret the rapid phase slopes through infinite-Q zeroes. Phase response, as 
well as group delay in the stop-band should be interpreted as continuous. 
 

  
 

5.11 Step Response for 5th Order Cauer Filter 
 

The step response for the 5th order Cauer filter design resembles that for the 5th order 
Chebyshev filter to which it is related. In figure 5.12 below, we show the magnitude response 
for each of the 5th order filters we have discussed (except the Inverse Chebyshev), alongside 
a detail panel. 
 

http://www.suncam.com/


  
 Filters and Equalizers 
 A SunCam online continuing education course 
 

www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page  32
  

 

         
 

5.12 Magnitude Responses for 5th Order Butterworth, Chebyshev, and Cauer Filters 
 

In figure 5.12 above, we see that the Butterworth filter has a monotonically decreasing 
magnitude function and tends to a 5-decade magnitude decrease per decade of frequency 
increase as expected in a 5th order design. In the detail, we see that the Butterworth filter is 
truly maximally flat prior to its characteristic frequency. The Chebyshev filter, also has a 
similar asymptotic rate, but near the characteristic frequency, it drops to a greater attenuation 
for every frequency above the same characteristic frequency as the Butterworth does. In the 
detail, it is also clear that the Chebyshev filter fluctuates between unity and a 0.9 magnitude, 
a value that translates to a 1 dB relative attenuation. We see in the detail in figure 5.12 above 
that the Cauer filter has a magnitude fluctuation over the same span and with nearly identical 
response, in comparison to the Chebyshev filter. In the first decade of frequency increase 
above the characteristic frequency, though, the Cauer filter has a magnitude that decreases at 
a faster rate than the Chebyshev filter, reaching the equal ripple level caused by the Cauer 
filter zero pattern before the Chebyshev filter. The Chebyshev filter continues with the 
constant 5-decade magnitude decrease per decade of frequency increase as expected in a 5th 
order design, but the Cauer filter provides its equal ripple level, ultimately returning to a 
single-pole 1-decade magnitude decrease per decade of frequency increase. 
 

Despite the differences in performance at frequencies above the characteristic frequency, the 
5th order Chebyshev filter and 5th order Cauer filter provide an excellent match in the pass-
band and also the time domain responses as shown in the step response shown in figure 5.13 
below. 
 

  
 

5.13 Step Response for 5th Order Chebyshev, and Cauer Filters 
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The excellent domain step responses shown in figure 5.13 above are related to the close 
match in group delay responses shown in figure 5.14 below. 
 

  
 

5.14 Group Delay for 5th Order Chebyshev, and Cauer Filters 
 

We will use the closely matched group delay responses to use the Chebyshev filter behavior 
as a template for group delay equalization of the Cauer filter. 
 
Each of the filter designs we have discussed thus far have increased the discrimination 
between the pass-band and the stop-band and improved selectivity. As each improvement 
was made, the group delay, overshoot and time-domain response got worse. If we approach 
the frequency separation issue between the pass-band and stop-band with the intent of 
keeping the group delay as constant as possible, we see there is another family of filter 
designs. We first introduced the ideal delay, represented as the multiplier e-sT for any positive 
time index and showed the result in figure 2.4 for the one-second delay. We repeat that 
illustration here as figure 5.15 below for convenience.. 
 

 
 

5.15 The Ideal One Second Delay Magnitude, Phase, and Group Delay Responses 
 
If we start from the definition of the delay function, we can express a transfer function as: 
 

 ( ) ( ) ( )00 sinhcosh
11

00 sTsTe
sH sTT +

==  [5.71] 
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In equation [5.71] above, we have the entire transfer function, not the magnitude-squared 
function that we have employed in prior derivations. Thus, we can find the poles of equation 
[5.71] above by setting the denominator to zero and solving the resulting D(s) = 0 equation as 
follows. 
 ( ) ( ) 0sinhcosh 00 =+ sTsT  [5.72] 
 

We form a series expansion of the hyperbolic functions and perform a continued fraction 
expansion of the series at the degree we require. 
 

 ( ) ( ) ( ) ( ) ( ) ( )
++++++=

!10!8!6!4!2
1cosh

10
0

8
0

6
0

4
0

2
0

0
sTsTsTsTsT

sT  [5.73] 
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00
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We illustrate by forming an approximation by expanding the denominator using a continued 
fraction expansion to the 5th order. To employ the method, we form the ratio with the greater 
degree polynomial in the denominator and perform long division. We begin the process with 
equation [5.75] below. 
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After the series of transformations above, we are left with a remainder with the greater 
degree polynomial in the numerator, so we invert the fraction as follows, and iterate the same 
steps as above, adding terms from the original series as needed. 
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We continue the fraction expansion as: 
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We choose a 5th order solution, so we truncate and solve: 
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Therefore, we sum the cosh(sT0) and sinh(sT0) polynomials to obtain the poles: 
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The transfer function in equation [5.89] above defines a 5th order Bessel filter. We find the 
roots numerically and present the results in table 5.3 below. 
 

Table 5.3 - 5th Order Bessel Roots  
σp 2.324674 3.351956399 3.646738595 
ωp 3.571023 1.742661416  
    
ωeffective 4.261023 3.777893661 3.646738595 
Q 0.916477 0.563535621 0.5 

 

 
 

5.16 Magnitude, Phase (Log and Lin), and Group Delay for 5th Order Bessel Filter 
 

We see in figure 5.16 above that the Bessel filter has a monotonic decrease in magnitude as 
the frequency increases and asymptotic 5th order decrease associated with a five-pole 
behavior. For frequencies below its characteristic frequency at ~0.7Hz for the 1-second 
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delay, the magnitude is not as flat as the 5th order Butterworth, and certainly not as selective 
as the Chebyshev or Cauer filters. The Bessel filter, however, does exhibit the flat group 
delay characteristic that the design objective set. The flat group delay is shown in the far 
right panel and the relationship to the linear phase is seen in the panel adjacent to the group 
delay. The result of the flat delay characteristic is to obtain the step response shown in figure 
5.17 below.  

  
 

5.17 Step Response for 5th Order Bessel Filter with Ideal for Reference 
 

We see in figure 5.17 above that the response curve passes the 50% magnitude very near the 
1-second delay as promised by the design objective. The response is obtained with nearly no 
over-shoot as expected from all frequency components experiencing the same delay. The 
Bessel filter may offer sufficient selectivity for some applications, but for those applications 
requiring both good frequency domain selectivity and time domain response, the solution 
may require adding a delay equalizer to a filter with the requisite selectivity. 
 

6.0 Delay Equalizers 
Delay equalizers are constructed from the class of All-Pass filters. All pass filters are 
constructed with a frequency-dependent phase behavior, but a unity-magnitude transfer 
function. To achieve the behavior, the all pass filter employs poles in the LHP and zeroes in 
the RHP at mirror image locations as shown in figure 6.0 below. 
 

In figure 6.0 below we show the pole-zero plot in the s-plane with the poles taken from the 
Butterworth 4th and 5th order filter example. We have added RHP zeros in mirror image 
locations and shown the phasors for the highest frequency Pole-Zero (PZ) pair for discussion 
in each panel.  
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6.0 All Pass Filter 4th Order and 5th Order Pole Locations with Phasors for 2 PZ Pairs 
 

Because the poles are the roots of the denominator D(s) polynomial and the zeroes are the 
roots of the numerator N(s) polynomial, we can construct phasor pairs for each PZ pair in the 
all pass filter. Each phasor must have the same magnitude or length from the mirror image 
location to the jω excitation locus on the imaginary axis. Therefore, the magnitude ratio for 
mirror image PZ pairs is unity for all pairs. We see also that the phasor angles are 
complement to each other. We equate θp = -θz for the phasor pairs, but note that the 
contribution from the numerator of a transfer function adds angles and from the denominator 
of subtracts angles. The result is a transfer function with unity magnitude and twice the phase 
contribution from the LHP poles alone. 
 

 
 

6.1 All Pass Filter 4th Order Magnitude, Phase, and Group Delay 
 

We see in figure 6.1 above that the magnitude is indeed unity across the entire frequency 
span for the 4th order all pass filter. We see also that the center panel of figure 6.1 above 
indicates twice the phase angles as the 4th order Butterworth filter with the same pole 
locations as indicated in figure 5.1 in the previous section. Likewise, the consequent group 
delay is twice that of the 4th order Butterworth filter also as shown in the similar rightmost 
panels of the figures for each implementation. 
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6.2 All Pass Filter 5th Order Magnitude, Phase, and Group Delay 
 

We see in figure 6.2 above that the magnitude is also unity across the entire frequency span 
for the 5th order all pass filter, too. We see also that the center panel of figure 6.2 above 
indicates twice the phase angles as the 5th order Butterworth filter with the same pole 
locations as indicated in figure 5.2 in the previous section. Likewise, the consequent group 
delay is twice that of the 5th order Butterworth filter also as shown in the similar rightmost 
panels of the figures for each implementation. 
 

  
 

6.3 All Pass Filter 4th and 5th Order Step Response 
 

The step responses of the 4th and 5th order all pass filters are shown for completeness in 
figure 6.3 above. For these realizations there is no apparent use for this behavior. 
 

We use a goal-seeking algorithm to produce an equal ripple approximation to a flat delay 
characteristic for the 5th order Chebyshev and Cauer filter designs we have explored in the 
previous section. 
 

The goal seeking algorithm produced the set of 5th order equalizer poles shown in table 6.0 
below, along with an additional pole pair for a 7th order equalizer. The goal for the 5th order 
equalizer was set to produce an equal ripple delay up to and including the delay for the 5th 
order Chebyshev and Cauer filters. The goal for the additional pole pair was to include its 
delay at a frequency higher than the combined prior effects. 
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Table 6.0 - 5th & 7th Order Equalizer  
Pole # 1 2 3 4 
ωeffective 0.833 0.320 0.752 1.25 
Q 0.5 0.68 1.8 5 

 
We show the results for the 5th order sections\ group delay contributions in figure 6.4 below. 
 

 
 

6.4 All Pass Filter Section Group Delay Plot for Table 6.0 – Pole 1, Pole 2, and Pole 3  
 

We combine a cascade of the sections found in figure 6.4 above to produce the 5th order 
equalizer shown in figure 6.5 below. 

 
 

6.5 All Pass 5th Order Equalizer Magnitude, Phase, and Group Delay  
 

The 5th order equalizer group delay we found does not have an intuitive delay dependency in 
figure 6.5 above, until we add the delay to the group delay for the 5th order Chebyshev or 
Cauer filter to produce the magnitude and group delay results in figure 6.6 below. 
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6.6 All Pass 5th Order Equalizer Applied to Chebyshev, and Cauer Filters  
 

The 5th order equalizer group delay we found complements the filter delay to make the sum 
nearly constant, as shown in figure 6.6 above, and in detail in figure 6.7 below. 
 

  
 

6.7 All Pass 5th Order Equalized Detail for Chebyshev, and Cauer Filters  
 

  
 

6.8 Group Delay for 5th Order Chebyshev, and Cauer Filters without the Equalizer 
 

We see in figure 6.8 above that both the Chebyshev and Cauer filters exhibit a group delay 
variation that spans from about 4 seconds to about 13 seconds, or a 9 second difference. The 
5th order equalizer has increased the total group delay by adding delay at low frequencies in a 
pattern that makes the sum more nearly constant. The variation is reduced to near a 2 second 
delay difference in the pass band, or a reduction to about 4 times smaller variation. Higher 
order equalizers can achieve flatter results with less variation than the 5th order example 
above. With the equalizer, and without it, we show the step response behaviors in figure 6.9 
below. 

  
 

6.9 Step Responses for 5th Order Chebyshev, and Cauer Filters 
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We see in figure 6.9 above that both the Chebyshev and Cauer filters exhibit less overshoot 
and reduced ringing after the transition than the results without equalization. The Chebyshev 
result is on the left and the Cauer is on the right, but the difference is nearly 
indistinguishable. The 5th order equalization utilizes the group delay of the highest frequency 
pole of the filter, adding delay at lower frequencies to flatten the composite delay. Because 
the highest frequency pole of the original filter has its highest Q factor also, it contributes the 
peak delay to the summation. Unfortunately, the filter bandwidth extends to higher 
frequencies than that peak group delay and the lower group delay at higher frequencies 
allows high frequency components to arrive with less delay than lower frequency 
components. The lack of group delay above the highest frequency pole is the cause of the 
under-shoot and ringing before the equalized transition occurs. We have added another ple 
pair all pass section, making the equalizer a 7th order solution. That pole is listed as pole 
number 4 in table 6.0 and occurs at a higher frequency than the peak group delay of the 
original 5th order filters. In figure 6.10 below we show the group delay contribution for this 
new pole pair. 

  
 

6.10 All Pass Section Group Delay for 7th Order Equalizer Augmentation  
 

  
 

6.11 Group Delay of All Pass 7th Order Equalizer Applied to Cauer Filter  
 
We see in figure 6.11 above that the additional group delay adds another peak to the response 
at a higher frequency and above the highest prior peak delay frequency. The effect of the 
additional delay bandwidth is a slight improvement in both the undershoot and ringing as 
shown in figure 6.12 below. 
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6.12 Step Response for 5th Order Cauer Filter with 5th and 7th Order Equalizers 
 

We see in figure 6.12 above in the plot in green dots that the extra equalization improves the 
under-shoot prior to the response transition, but more equalization is apparently required to 
flatten the response even more. 
 

7.0 Frequency Domain Transformations 
In prior sections we have explored low-pass filter designs. We have not included high-pass 
and band pass examples because there are effective transformations to convert a low-pass 
filter to high-pass and band-pass designs. To transform a prototype low-pass design to a 
high-pass function, each occurrence of the s-plane operator in the low-pass transfer function 
is replaced by the substitution of (ω0/s) in the equation. For example, the single pole low-pass 
is transformed in equation 7.0 below. 
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To transform a prototype low-pass design to a band-pass function, each occurrence of the s-
plane operator has its occurrence replaced by the substitution of: 
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For example, the single pole low-pass is transformed in equation 7.2 below. 
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Other circuit-level transformations are possible for low-pass to band-pass using a Weaver 
modulator, but that is beyond the scope of this course. 
 

8.0 Summary and Conclusions 
This course has defined the notation for roots of polynomial expressions describing Linear-
Time Invariant (LTI) systems  in the frequency domain, and related the operator notation to 
the time-domain response using complex exponential notation. A single pole circuit was 
introduced and responses analyzed in the frequency domain and time domain. An ideal delay 
was introduced for comparison and to set a reference for step response behaviors. 
 

Polynomial root locations were described in the complex s-plane and complex conjugate 
pairs plotted and described using (ω0, ζ) notation as well as (τ0, Q) notation. Phasor notation 
was introduced for evaluation of steady-state sinusoidal excitation of transfer functions. 
Second-order, complex conjugate pole pairs were introduced and the asymptotic behaviors 
developed and contrasted to the single-pole behaviors in magnitude, phase, and group delay 
attributes. Straight-line approximations were produced and the errors of approximation 
discussed. 
 

Classical Butterworth, Chebyshev, and Bessel filters were introduced and the construction 
formulae developed. The Cauer filter was also illustrated, but mathematical development not 
included. Frequency domain and time domain responses were developed using a 4th order 
form as representative of even-order forms and a 5th order design as representative of odd-
order forms. Only the 5th order Bessel filter example was synthesized from the equations. A 
5th order equalizer was developed for the 5th order Chebyshev and Cauer filter and shown to 
provide equivalent results. An additional pole pair was added to the 5th order equalizer and 
the justification and improvements noted. Transformations were discussed to convert low-
pass prototype designs to high-pass and band-pass filters. 
 

http://www.suncam.com/

	Filters and Equalizers(
	Algebraic manipulation allows equation [5.58] and equation [5.59] above to be redefined as follows
	The step response for the 5th order Cauer filter design resembles that for the 5th order Chebyshev filter to which it is related. In figure 5.12 below, we show the magnitude response for each of the 5th order filters we have discussed (except the Inve...
	The excellent domain step responses shown in figure 5.13 above are related to the close match in group delay responses shown in figure 5.14 below.
	We will use the closely matched group delay responses to use the Chebyshev filter behavior as a template for group delay equalization of the Cauer filter.
	Pole #

