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1.0 Introduction - 
The availability of inexpensive microprocessor-based embedded controllers has allowed the use 
of digital control techniques in modern systems. Digital controllers do not exhibit the drift and 
temperature dependence of their analog counterparts. 
 

Despite certain advantages, there are still very high speed applications that cannot yet employ 
digital techniques. However, because the digital processing speed keeps improving, more 
applications become amenable to digital control. 
 

For systems that utilize analog control and are to be converted to digital control, the insertion of 
an Analog-to-Digital Converter (A2D) in the feedback loop can cause loop stability issues if the 
properties of the signal representation and conversion are not considered. 
 

2.0 Signal/System Classification- 
  

           Time Axis

Discrete Continuous

Digital

Analog

Discrete

Continuous

Magnitude Axis

 
 
Figure 2.0 - Signal/System Classification Matrix 
 
Analog signals exist at all instances of time and can take on a continuous range of magnitude 
values over some range of interest. Digital signals, however, have a finite set of discrete values 
that are used to describe the magnitudes and can only change those values at discrete time 
intervals. Analog systems that are converted to digital utilize the Analog-to-Digital Converter 
(A2D) with a clocking scheme to provide a digital approximation to the analog signal magnitude 
as it exists at a sampling instant defined by the sampling clock. 
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Relative to any signal that may exist as an analog value, the Analog-to-Digital Converter (A2D) 
can introduce errors in the conversion process in both the magnitude representation, as well as 
the timing of the resulting conversion. For control purposes, the magnitude errors are generally 
less of a problem than the timing errors. 
 

Another form of control that utilizes a combinations of continuous time with discrete magnitudes 
such as Pulse-Width-Modulation (PWM) control is employed in some systems and faces similar 
loop stability issues that are more complex than well-defined digital control. Likewise a control 
scheme with discrete times but continuous magnitudes is possible but usually involves 
inconvenient implementation issues and is seldom used. Digital control is becoming dominant 
for those applications that are suitable. 
 

3.0 Analog Signal Representation using Sinusoids- 
Classical Analog systems represent the signals as sinusoids for periodic steady-state analysis. 
The choice of representation of signals is associated with the use of Fourier and Laplace 
Transform techniques for System descriptions. 
 
 

            
 
Figure 3.0 – Two Sinusoid with the same Period and a Phase Difference 
 
In Figure 3.0, each sinusoid necessarily is at the same frequency (F) expressed in Hertz units and 
related to the Period (T) by F = 1/T.  
 



  
 Converting Feedback Systems from Analog to Digital Control 
 A SunCam online continuing education course 
 

 
www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page 4 of 42
 

In the illustration, each sinusoid is essentially identical except for the difference in the time when 
each waveform rises through a value of zero magnitude. That difference may be expressed as a 

Delay or time difference T, or more commonly as a proportional phase () difference in radians 

given by Radians = 2(T/T). The phase difference in radians can be converted to degrees by 

Degrees = (180/) x Radians  
 

Choosing one sinusoid as a reference for timing purposes allows the second sinusoid to be 
expressed as: 

   RadianspSine FtVV   2sin  [3.0] 
 

The peak level is used to denote the magnitude of the waveform and is the same for both 
sinusoids shown in the illustration, but may be different distinct values for each sinusoid in other 
cases. The sinusoid that is chosen as the “T = 0” timing reference may be expressed as: 
 

  tFVV SineSinepSine 000 2sin     [3.1] 
 

Note the distinction that the value for Radians is zero for the (0) reference signal. Similarly, the 
value of VSine-0 is often chosen to be some convenient value such as one unit (VSine-0 = 1) so that 
the effects of signal processing on magnitude and phase shifts is contained in the value of Vp and 

Radians of the sinusoid response. 
 

4.0 Analog System Response- 
 

  
  
  

Figure 4.0 – A System Diagram with Input and Output Denoted 
 

For the System in Figure 4.0 to be amenable to Classical Analog Control, that system must be 
causal and Linear, Time-Invariant (LTI) to a close approximation. Physical systems are causal in 
that the inputs always occur before the expected output results occur (i.e., there are no 
“predictors” in the system). Linearity is assured if the output is proportional to the input and a 
zero input implies a zero output (at least incrementally). Time-Invariance is assured if the 
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relationship between the output and input changes slowly enough to be inconsequential, such as 
is caused by drift and aging effects. 
 

Such a System is described by a “transfer function” H(f) that expresses the Output response as a 
function of the Input stimulus. Other necessary inputs, such as a source of power, are often 
ignored in simple models. 
 

Several means are commonly used to describe the transfer function, including the “Impulse or 
Step Response” to describe a response to an impulse or step input respectively. It is not common 
to design an analog system directly from such a time-domain response, but rather to design with 
steady-state sinusoidal excitation. To determine the analog system behavior one tool commonly 
used in the frequency-domain is the Bode plot: it shows the magnitude and phase of the output 
response with a sinusoidal excitation with a unit magnitude and a zero phase. 
 

5.0 An Analog System Response- 
In the following Bode plot, the horizontal frequency axis has the units of Hertz or cycles-per-
second, but could have easily been radians per second as well. The presentation utilizes a 
logarithmic scaling both for the horizontal frequency axis as well as the vertical response 
magnitude axis. The vertical axis for the Phase response, however, remains linear in 
presentation. The two plots are placed in relation to each other so that they can be thought to 
have a common horizontal axis and each magnitude and phase are related by the corresponding 
frequency location. 
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Figure 5.0 – Bode Plot of H(f) System Response 
 
A system is chosen for discussion that is represented by the Bode plot above in Figure 5.0, and 
has a salient point marked by the bold “+” symbols. For a steady-state sinusoidal stimulus, the 
system shows a response pair of magnitude and phase effects plotted versus the excitation 
frequency. The salient point marked by the bold “+” symbols indicates a “pole” in the response. 
Behaviors are significantly different at frequencies above and below the pole frequency.  
 
The frequency axis is plotted logarithmically (as is the Peak Magnitude) because the 
relationships appear as line segments asymptotically above and below the pole frequency. This 
system transfer function H(f) can be represented by the equation: 
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In equation 5.0 the behavior is described as a complex number with the frequency dependence 
ratio of FH = f/fpole-H providing the imaginary part. From the single complex number that 
provides the transfer function at each frequency, we derive the magnitude and phase as: 
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  [5.1] 

 

  HH FATANf )(  [5.2] 

 
We evaluate transfer function asymptote responses as the frequency approaches zero (FH << 1), 
infinity (FH >> 1), and also at the pole frequency itself (FH = 1).  
 
For the case of the stimulus frequency significantly less than the pole frequency: 
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The transfer function asymptotes agree with the Bode plot of figure 5.0 as the frequency 
approaches zero, or is significantly less that the pole frequency of 1Hertz, as marked by the bold 
“+” symbols on the Bode plot. 
 
 For the case of the stimulus frequency significantly greater than the pole frequency: 
 

 
 

0
1

1
)(

2





HF
fH  [5.5] 

 

   o

FH ATANf
H

90)( 


  [5.6] 

 
The transfer function asymptotes agree with the Bode plot of figure 5.0 as the frequency 
approaches infinity, or is significantly greater that the pole frequency of 1Hertz, as marked by 
the bold “+” symbols on the Bode plot. 
 
For the case of the stimulus frequency equal to the pole frequency: 
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Because the magnitude response depends on the ratio of FH = f/fpole-H and for FH >> 1, we can 
make the approximation: 
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The magnitude is inversely proportional to the frequency ratio FH = f/fpole-H and for every time 
the frequency increases by a decade (factor of 10), the magnitude decreases by a decade. On the 
Bode plot with logarithmic scales, this proportion is shown as the asymptotic straight line above 
the pole frequency, with a decrease of a decade in magnitude per decade of frequency increase, 
hence the reason for using the logarithmic axes for the Bode plot magnitude. 
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The phase response is somewhat different, with symmetrical results around the pole frequency. 
A series expansion of the ATAN function indicates that it is proportional to the ratio FH = f/fpole-H 
near the pole frequency value, so we simply evaluate the ATAN at frequencies a decade above 
and a decade below the pole frequency with the expectation that the errors will be about 10%: 
 

     o
HFH ATANFATANf

H
7.510)(
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The numerical result shows that the ATAN function has nearly reached its asymptotic limits of 
0o and -90o within the first decade above and below the pole frequency, with a nearly constant 
slope of -45o per decade around the pole frequency. 
 

6.0 Analog Feedback Control of the System Response- 
The pole frequency of the system discussed in Section 5.0 appeared at 1 Hertz, but we show that 
we can use an analog feedback control system to induce that system to produce a behavior with a 
pole frequency much higher and therefore provide faster response. Such might be the case if the 
system discussed in Section 5.0 was a mechanical system and faster response were required. 
 

We modify the system by the addition of two new blocks as follows: 
 

 
  
Figure 6.0 – Feedback System Diagram with Input and Output Denoted 
 

We have added the “G(f)” block and the “Sum” block with a feedback of the output signal into 
the “Sum” block “-“ input.  
 

We write: 

       OutputInputfGfHOutput   
 

            OutputfGfHInputfGfHOutput   
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            InputfGfHOutputfGfHOutput   
 

    
 

   
   fGfH

fGfH

Input

Output
fT





1

 [6.0] 

 
Addition of the G(f) block with feedback has allowed the freedom to make the resultant transfer 
function T(f) nearly unity for all cases with the H(f)*G(f) >>1. We choose a typical “Operational 
Amplifier” as a candidate for the G(f) requirement and show its Bode plot as Figure 6.1 below. 
 
 

  
 
Figure 6.1 – Bode Plot of G(f) of the Operational Amplifier Response 
 
The Operational Amplifier has its own pole frequency fpole-G, near 200 Hertz and considerable 
“Gain” of ~10,000 (104) for low frequencies. It is chosen for this high value so that G(f)*H(f) >> 
1, at least for lower frequencies. The Operational Amplifier does not reach unity gain until the 
frequency approaches ~2,000,000 Hertz (2MHz), as denoted by the bold “x” marks on the Bode 
plot. The algebraic relationship, for FG = f/fpole-G that defines the “Operational amplifier Bode 
plot is given by: 
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  GFj
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The Operational Amplifier has two differential input terminals and also serves also as the “Sum” 
block in the feedback system diagram. The negative terminal is used as the feedback input so 
that the G(f)*H(f)  product can be evaluated with the difference (“-“ sign), already in the 
feedback loop. The magnitude and phase of G(f) are respectively given by: 
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7.0 The Open Loop System - 
Each block in the path around the feedback loop contributes to the response as a product of the 
transfer functions G(f)*H(f), and the product is known as the “Open Loop” gain: 
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Figure 7.0 – Bode Plot of the “Open Loop” or G(f)*H(f) Response 
 
The “Open Loop” combination has its own combined characteristic as shown in Bode plot of 
Figure 7.0 above, and given by equation [7.0], below: 
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The “Open Loop” produces a composite magnitude from that product: 
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The asymptotic low frequency magnitude is obtained from the product of magnitudes with the 
value 104 contributed mostly by the |G(f)| “Operational Amplifier, ” and only unity from the 
|H(f)| of the original system. As the frequency increases to exceed the pole frequency fpole-H = 1 
Hertz, the magnitude decreases at the rate of one decade decrease per decade of frequency 
increase. However, with further frequency increases to exceed the pole frequency fpole-G = 100 
Hertz, the magnitude decreases at the rate of two decades decrease per decade of frequency 
increase. 
 

Note that the greater rate of decrease of Open Loop magnitude reduces the unity-gain of the 
combination to near 1000 Hertz as denoted by the bold “x” marks on the Bode plot; much less 
than that of the Operational Amplifier unity-gain frequency. 
 

The “Open Loop” also produces a composite phase from the product of transfer functions that is 
the sum of angles: 
 

          HGHGHG FATANFATANfff  )()()(   [7.2] 
 

The asymptote low frequency phase is obtained from the sum of phase angles 0G + 0H and is 
dominated by the 180o 0G phase shift of the Operational Amplifier. As the frequency increases to 
1/10 of the pole frequency fpole-H = 1/10 Hertz, the phase decreases at approximately –45o per 
decade up to 10 times the pole frequency fpole-H = 10 Hertz, bringing the phase from 180o to 90o 

and also the beginning of the effect of 1/10 frequency of pole at fpole-G = 10 Hertz. The phase 
continues to decrease at approximately –45o per decade up to 10 times the pole frequency fpole-G  
= 100 Hertz, and approaches the asymptotic value of zero. 
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8.0 The Open Loop System and Closed Loop Stability - 
Because the “Closed Loop” response with feedback was shown previously in equation [6.0], and 
repeated here for convenience, to be: 

      
   fGfH

fGfH
fT





1

 [6.0] 

  

We note that the “Closed Loop” response is the ratio of the “Open Loop” to the augmented (1 + 
“Open Loop”) characteristics, and used the justification for the approach based on the idea that 
the “Open Loop” characteristic is much greater than unity. However, we have also shown that 
the “Open Loop” unity-gain frequency is much less than the “Operational Amplifier” and 
denoted the location on the Bode plot with the “x” character. Comparing the “Open Loop” low 
frequency asymptote with its gain of 104 and phase of 180o to the unity-gain frequency with a 
magnitude of 1 and a phase nearly zero, we conclude that the feedback has undergone a phase 
reversal as the frequency increases. What started as a positive sign has become a difference and 
the denominator of T(f) approaches a magnitude of zero resulting in infinite gain attributed to the 
second-order pole nature of the open-loop. An uncompensated second-order system is only 
conditionally stable and results in unfavorable behavior in the closed-loop. We seek to avoid the 
case of phase reversal at the “Open Loop” unity-gain frequency. 
 

  
 
Figure 8.0 – Feedback System Diagram with PZ Compensation Denoted  
 

To avoid the phase reversal of the “Open Loop” characteristic as we approach the unity-gain 
frequency, we modify the “Operational Amplifier” behavior by introducing a feedback around 
that stage alone. We intentionally introduce another denominator pole as well as a numerator 
“zero” into the “Operational Amplifier” transfer function to perform a PZ (pole-zero) 
compensation: 
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As shown in Figure 8.0 below, we place the pole fpole-P at 0.1 Hertz and the denominator zero 
fzero-Z at ~2 Hertz. The pole behavior is similar to those encountered before and the higher 
frequency zero behavior is likewise similar, but the magnitude increases at a one decade per 
decade frequency increase, cancels the pole effects after a little more than one decade of 
influence. The phase effect is likewise similar, but with a reversal of sign to provide the 
composite compensator transfer function Bode plot. 
 

  
 

Figure 8.0 – Bode Plot of the Operational Amplifier Response with PZ Compensator 
 
The PZ compensator initiates a magnitude decrease at the pole frequency fpole-P of 0.1 Hz (as 
indicated by the “+” symbol in the Figure 8.0 Bode plot), for little more than one decade until the 
zero frequency fzero-Z of ~2 Hz (as indicated by the “x” symbol in the Figure 8.0 Bode plot), 
decreasing the effective gain at the rate of one decade decrease per decade of frequency over the 
one decade (a net effect before the zero of one decade gain decrease), and a return to a resultant 
constant gain of ~103 as frequency increases. 
 

From the zero frequency fzero-Z of ~2 Hz the gain remains ~103 as frequency increases until the 
asymptote intercepts the original behavior of the “Operational Amplifier” at about 2,000 Hertz., 
as shown in the prior Figure 6.1 of the “Operational Amplifier” itself. 
 
The intercept of asymptotes is illustrated in Figure 8.0 by the “o” symbol on the Bode plot. 
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The phase response of the compensated “Operational Amplifier” is also altered by the PZ 
structure, with a phase at fpole-P of 0.1 Hz near 150o and decreasing, but returning to near 150o at 
fzero-Z of ~2 Hz and increasing. The 150o phase shift is not encountered again until the frequency 
rises to near the 2,000 Hertz intercept point. 
 
Contrast the range of phase values introduced by the compensated “Operational Amplifier” of 
Figure 8.0 with the uncompensated “Operational Amplifier” of Figure 6.1 over the range of ~2 
Hertz to 2,000 Hertz. 
 
Application of the PZ compensation to the “Operational Amplifier” has modified the transfer 
function GPZ(f) to become: 
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The magnitude of GPZ(f) is given by: 
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The phase of GPZ(f) is given by: 
 

        GPZPZG FATANFATANFATANf  )(  [8.3] 
 

9.0 The PZ Compensated Open Loop System- 
Application of the PZ compensation to the “Operational Amplifier” has modified the “Open 
Loop” transfer function GPZ(f)*H(f) to become: 
 

 
 
     HGP

Z
PZ FjFjFj

Fj
fHfG











1

1

1

1

1

1
10)()( 4  [9.1] 

 



  
 Converting Feedback Systems from Analog to Digital Control 
 A SunCam online continuing education course 
 

 
www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page 15 of 42
 

  
 

Figure 9.0 – Bode Plot of the PZ Compensated “Open Loop” or GPZ(f)*H(f) Response 
 
The magnitude of GPZ(f)*H(f) is given by: 
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The phase of GPZ(f)*H(f) is given by: 
 

          HGPZHPZG FATANFATANFATANFATANf  )(  [9.3] 

 
From the Bode plot, we note that the phase associated with the unity-gain frequency (denoted by the 
“+” character) is ~75o, and indicates that the “Closed Loop” system will be stable with this “Phase 
Margin” of ~75o. 
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10.0 The PZ Compensated Closed Loop System- 
The PZ Compensated “Open Loop” system has sufficient phase margin to connect in a “Closed 
Loop” without oscillation and the Bode plot for the “Closed Loop” T(f) is shown in Figure 10.0 
as follows. 

  
 
Figure 10.0 – Bode Plot of the PZ Compensated “Closed Loop” T(f) Response 
 
We note that “Closed Loop” behavior T(f) produces a similar response to the original H(f) both 
in asymptotic low-frequency magnitude and phase. As the frequency increases, however, there is 
no substantial magnitude decrease until the frequency approaches the “Open Loop” GPZ(f)*H(f) 
unity-gain frequency at ~1000 Hertz. Above that frequency, the magnitude drops by two decades 
for every decade of frequency increase indicating that two poles are involved in setting the 
asymptote. 
 
The phase change asymptote is ~90o per decade and also indicates that the “Closed Loop” has a 
double pole. The high-frequency asymptote is 180o further indicating that two poles are involved 
in setting that asymptote. We know: 
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We expand: 
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We have expanded the expression for the “Closed Loop” T(f) to show that the denominator has a 
much more complex function than the “Open Loop” product of GPZ(f)*H(f) and that while it is 
possible to solve for the roots algebraically, it is a daunting task left better to graphical or 
numerical methods. 
 

11.0 The Justification for the Detailed Analog System Development- 
We have shown that there is much careful consideration of the behaviors of the system 
components in a compensated Analog Control System. We will now proceed to convert 
components of the Analog System to a Digital representation. We will assume that the initial 
Analog System described by H(f) remains and digital components will be utilized to replace G(f) 
and the PZ compensator, as well as any other components. 
 

12.0 Sampling Analog Signals to Begin Digital Representation- 
Analog signals are continuous in both time and magnitude, whereas Digital signals are discrete 
in both time and magnitude. We first convert the Analog signals to a discrete-time representation 
by sampling and retain the magnitudes as continuous. We then convert the continuous 
magnitudes to discrete values in a subsequent process.  
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Figure 12.0 – Sampling a Continuous-Time Signal 
 
We perform sampling using a stream of unit magnitude pulses in the time domain in Figure 12.0, 
as follows: 

  
Figure 12.1 – Unit Magnitude Periodic Sampling Waveform 
 
As a “practical” discussion matter, we choose a sampling period TS to be 10x smaller than the 
period T of the highest frequency “SineWave” of interest (i.e., the sampling rate is 10x greater 
than the highest frequency of interest). 
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Figure 12.2 – Example “SineWave” and Sampled Output 
 
Each pulse in the sequence is of a finite duration, but sufficiently long enough duration to obtain 
the sample with accuracy. 
 
 

  
 

Figure 12.3 – A Single Pulse from the Periodic Sampling Waveform 
 

We show in Figure 12.3 a single representative pulse with width tp taken from the sequence of 
Sampler pulses. The pulse should be as short a duration as can be obtained without sacrificing 
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accuracy. The pulse is shown with a finite rise and fall time to be consistent with a practical 
sampler device. 
 

  
Figure 12.4 – A Pair of Adjacent Pulses from the Periodic Sample Waveform 
 
Two adjacent pulses from the periodic Sampler Waveform are shown in Figure 12.4 to illustrate 
the uniform spacing such that TS = (tn+1 – tn) for every adjacent interval in the Sampler 
Waveform. 
 

  
 

Figure 12.5 – A Pair of Adjacent Spectral Lines from the Periodic Sampler Spectrum 
 
As shown in Figure 12.5, the periodic Sampler Waveform exhibits adjacent spectral lines with a 
frequency spacing FS related to the sampler period TS by the relationship FS = 1/ TS. The initial 
spectral line at FS = 0 indicates that the Periodic Sampler can represent DC values correctly. 
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Figure 12.5 – Broad Spectral Lines from the Periodic Sampler Spectrum 
 
As illustrated in Figure 12.5, the periodic Sampler Waveform exhibits spectral null behaviors in 
the frequency domain with spacing FNull as relates to the sampler pulse width and is defined by 
FNull = 1/ tp. The spectral line envelope follows a sinx/x form with the peak of unity at DC. In 
other applications, sampling can be used to modulate information to multiple different spectral 
lines, but the behavior is more of a nuisance for control applications. 
 

13.0 Sampled Analog “SineWave” Signals- 
The frequency spectrum of the “SineWave” input shows a single spectral line in Figure 13.0 at 
the frequency of FSineWave : 
 
 

  
 

Figure 13.0 – Single Spectral Line from the “SineWave” Source 
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Figure 13.1 – Multiple Spectral Lines from the Sampled “SineWave” Source 
 
The sampled “SineWave” signal consisting of the pulse Output sequence shown in Figure 12.2 
with the timing of the sampler but the amplitudes of the “SineWave” at the sampling instants is 
shown in the frequency domain in Figure 13.1; it contrasts with the single “SineWave” source 
spectrum in Figure 13.0 previously shown as the single line. The Sampling waveform 
“convolves” the “SineWave” single line spectrum into spectral line pairs around each multiple of 
the sampling frequency FS.  
 

The convolution occurs for every spectral line at all multiples of FS and maintains the sinx/x 
envelope characteristic of the Sampler including the higher frequency parts of the spectrum as 
Figure 13.2 illustrates: 
 

  
 

Figure 13.2 – Broad Spectral Lines from the Sampled “SineWave” Spectrum 
 

An exact reconstruction of the original “SineWave” signal is theoretically possible from the 
sequence of samples, but that possibility is of little practical use for control purposes because the 
filter required for reconstruction requires a sinx/x impulse response which is non-causal and 
cannot be realized using an LTI filter. 
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14.0 Minimum Sampling Frequency for Analog “SineWave” Signals- 
To accurately reproduce a “SineWave” Signal, each period of the “SineWave” Waveform must 
be represented by at least two samples. That means the sampling rate must be higher than twice 
the highest “SineWave” Signal frequency. One simple way to justify this requirement is to revisit 
Figure 13.1 and note the spectral line pair around FS in relation to the spectral line FSineWave from 
the “SineWave” Waveform itself. 
 

In that part of the spectrum between DC and FS, two spectral lines appear one at FSineWave, and 
one at (FS - FSineWave). We see that as FSineWave approaches 1/2FS, the two spectral lines meet 
midway and are indistinguishable from behaviors with FSineWave above 1/2FS. The frequency of  
1/2FS is called the Nyquist frequency and the effect of sampling at less than twice that frequency 
is called “Aliasing.”  FS is usually chosen to be significantly higher than the Nyquist rate for any 
frequencies of interest to avoid Aliasing effects. 
  

15.0 Approximate Sampled Analog “SineWave” Signals- 
If the value of each sample is maintained until the next sample is taken, a “stairstep” 
approximation of the “SineWave” signal results as shown in Figure 15.0 and is labeled as a Zero-
Order-Hold (ZOH) response: 
 

  
Figure 15.0 – Sampled “SineWave” with a Zero-Order-Hold Filter Waveform 
 
The Zero-Order-Hold (ZOH) is equivalent to a filter with a pulse response of unit height and 
pulse width of one sample period TS, resulting in a causal filter. Unfortunately the causality also 
introduces a delay of ½ the pulse width or TS /2 for the entire spectrum. 
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Figure 15.1 – Sampler with Zero-Order-Hold Filter System 
 

We show the spectrum in Figure 15.2 of the discrete-time sampled “SineWave” signal of Figure 
15.01 with the higher-order spectral lines greatly reduced by the ZOH filter. 
 

  
 
Figure 15.2 – Spectrum of the Sampled “SineWave” with a Zero-Order-Hold Filter 
 

For the system described by H(f), the single pole asymptotic high frequency behavior is likely to 
reduce response near FS  caused by the ZOH at the H(f) input to negligible levels.  
 

16.0 Excess Phase introduced in by ZOH action- 
Delay of a signal by a half the TS period by the pulse response necessarily introduces that delay 
into the “Open Loop” response. We saw in Figure 3.0 that delay can be expressed as phase. A 
full cycle of delay is 360o, and a half-cycle delay is equivalent to 180o phase shift. The ZOH 
delay produces a 180o phase shift at the Nyquist frequency of FS /2. The delay produces a 
proportional phase shift at lower frequencies as given by: 
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We see that choosing FS = 10fMax still implies that 36o phase shift will be introduced into a 
carefully designed Analog Control Loop by the ZOH in the Analog to Digital conversion 
process. 
 

For the PZ Compensated “Open Loop” of Figure 9.0, we had a unity-gain frequency of ~1,000 
Hertz and ~75o phase margin. If we allow a ZOH to introduce no more than 10o phase shift, we 
must ensure that the sampling frequency exceeds a minimum: 
 

 000,36
1000

36010)000,1(  S
s

oo
ZOH F

F
  [16.1] 

Clearly, then, we need more than 36 samples per cycle of the highest frequency just to maintain 
reasonable stability. A higher sampling rate would be preferred if possible. 
 

17.0 D2A Phase introduced in the GPZ(f)*H(f) “Open Loop” by ZOH action- 
For the PZ Compensated “Open Loop,” if we also employ a Digital to Analog (D2A) converter 
at the input of the H(f) Analog System, we will encounter a second ZOH to convert the digital 
control signal back into an Analog Signal. That ZOH, too, will introduce a phase shift of its own 
and require consideration of its effect on stability. 
 

18.0 Digital Control of H(f) - 
Armed with the well-understood Analog Control System shown in Figure 8.0, we introduce A2D 
and D2A System Blocks and proceed with converting the design. 
 

  
Figure 18.0 – Digital Control System for the H(f) Analog Block 
 
The insertion of the Analog to Digital (A2D) Block and the Digital to Analog (D2A) Block has 
been discussed in the context of the loop stability issues caused by the delays of those new 
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blocks in the signal paths. Delay introduced in a feedback control system is the most important 
issue, but it is not the only issue for conversion of functionality. 
 
It is not common to design digital signal processing systems in the frequency domain, but rather 
in the time domain. We will employ the “Bilinear Transform” to convert the GPZ(f) to an 
equivalent GPZ(n) for digital implementation. We will also show that noise introduction into the 
loop is the major consideration associated with converting the magnitudes to discrete values. 
 

19.0 Delay Introduced in the Input Path by an additional ZOH action- 
For the PZ Compensated “Closed Loop” of Figure 18.0, if we also employ a Digital to Analog 
(D2A) converter at the input of the Digital System, we will encounter another ZOH to convert an 
analog control signal into a digital counterpart. That ZOH, too, will introduce a delay of its own 
but will have no direct effect on stability of this system. 
 
If, however, this system is employed in the context of other “outer” control loops, the delay may 
contribute to stability issues elsewhere. 
 

20.0 Approach to Convert GPZ(f) to GPZ(n)- 
There exists a direct, formal, algebraic method of converting a system such as that described by 
equation 8.1 (repeated here for convenience) to a digital form using the “Bilinear Transform,” as 
well as a clear indirect method. We explore the indirect method but retain the favorable stability 
behaviors guaranteed by the use of the “Bilinear Transform.” 
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21.0 System Diagram Forms- 
We show a methodology for representing systems that is simple to understand and utilize. Refer 
to Figure 21.0 for a “First-Order System” Diagram. 
 

  
 

 
Figure 21.0 – First-Order PZ System Diagram 
 
We construct a set of describing equations as follows: 
 

 110 wbXw PZ  [21.0] 

 

 110 wawY PZ  [21.1] 

 
The block labeled 1/s is an integrator in analog systems, or a unit delay in discrete-time systems.  
 

 01

1
w

s
w   [21.2] 

 

 10 sww   [21.3] 

 
We substitute equation 21.3 into equation 21.0: 
 

 111 wbXsw PZ  [21.4] 

 

   Xwbs PZ  11  [21.5] 

 



  
 Converting Feedback Systems from Analog to Digital Control 
 A SunCam online continuing education course 
 

 
www.SunCam.com Copyright 2010 Raymond L. Barrett, Jr. Page 28 of 42
 

  PZbsX

w

1

1 1


  [21.6] 

 

  PZbs

s

X

w

1

0


  [21.7] 

 

     X
bs

a
X

bs

s
wawY

PZ

PZ

PZ
PZ

1

1

1
110 




  [21.8] 

 

 
 
  X

bs

as
Y

PZ

PZ

1

1




  [21.9] 

 

    
 PZ

PZ

bs

as

X

Y
sPZ

1

1




  [21.10] 

 

    
 PZ

PZ
fjs bfj

afj
sPZ

1

1
2 2

2





 




 [21.11] 

 
We note that this is the required form for the PZ compensator, knowing that the 1/s block 
describes a realizable LTI Integrator. 
 
We rearrange the equation, add a scaling constant KPZ, set the coefficients, and solve: 
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We justify the “Real” coefficients in the numerator and denominator: 
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Because the PZ compensator has unity gain in GPZ(f), we know: 
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22.0 Operational Amplifier System Diagram Coefficients- 
In the same way that we constructed the “Analog Open Loop” using a cascade of G(f)*H(f), we 
construct another first-order model for the Operational Amplifier, but we will simply solve again 
for a new set of coefficients as follows: 
 

  
 
Figure 22.0 – First-Order Single-Pole System Diagram 
 
As before, we construct a set of describing equations as follows: 
 

 110 wbXw G  [22.0] 
 

 11 waY G  [22.1] 
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 10 sww   [22.3] 
 

We substitute equation 22.3 into equation 22.0: 
 

 111 wbXsw G  [22.4] 

 

   Xwbs G  11  [22.5] 
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Because the Operational Amplifier gain in G(f) is 10,000 (104), we know: 
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23.0 PZ Compensated Operational Amplifier System Diagram – 
 

  
 
Figure 23.0 – GPZ(f) First-Order Single-Pole System Cascade 
 
We have developed a System-Level Model for our Analog Control System, but it is still an 
analog version, primarily because we employ the continuous-time integrators denoted as 1/s 
System Blocks. 
 

24.0 Discrete-Time Integrator using the Bilinear Transform – 
We will now replace analog integrator Blocks with discrete-time Bilinear-Transform equivalent 
Integrators. We employ the Bilinear Transform Blocks because the result of transforming a 
stable Analog System will always produce a stable Digital System. 
 
The same general first-order Block Diagram applies to achieve the Bilinear Transform, with the 
notable exception that the Laplace 1/s integrator Block is replaced by a z-1 Delay Block, as 
illustrated in figure 24.0 as follows: 
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Figure 24.0 – Bilinear Transform Integrator System Block Diagram 
 
The Bilinear Transform is a relatively simple mapping from the s-domain to the z-domain. It is 
invertible and defined by the following substitution relationships: 
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The Bilinear Transform is based on a trapezoidal integration and is calculated by the System 
represented by the Block Diagram of figure 24.0 as follows: 
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 10 wwY   [24.3] 
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 10 zww   [24.5] 

 
We substitute equation 24.5 into equation 24.2: 
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We have constructed a model for the discrete-time integrator and will next substitute it for the 
continuous-time integrator. 

 
25.0 PZ Compensated Digital System Diagram – 
 

  
 
Figure 25.0 – GPZ(z) First-Order Single-Pole Digital System Cascade  
 
Figure 25.0 above shows the System Block Diagram for the discrete-time version of the Analog 
Control Blocks. Each coefficient has already been developed, except the KGPZ = KPZ * KG to 
avoid duplication. 
 

26.0 PZ Compensated Digital System Implementation – 
The Digital System described above can be implemented using several techniques including a 
custom Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array 
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(FPGA), the new Programmable System on a Chip (PSoC), or as a program in a MicroController 
Unit (MCU) such as a TI OMAP family processor or a  MicroChip PIC family unit. 
 
For an ASIC or FPGA design, the Block Diagram could be expressed as an electrical schematic 
or as a textual description in a Digital Synthesis language such as VHDL or Verilog. An ASIC 
design requires a longer development time, including mask specification and fabrication by an IC 
foundry. The FPGA allows a similar design process except the synthesis results in a connection 
map for logic on the FPGA device selected. In both cases, the result involves reduction of the 
design to a logic gate level from the higher level of abstraction that the System Bloch Diagram 
represents. ASIC designs are favored in highest volume, long-running cases because the unit cost 
is lowest although the Non-Recurring Engineering (NRE) and tooling costs are high. The FPGA 
designs are favored in lower volume and market study cases because the higher unit cost is offset 
by lower tooling costs and considerably less time and cost in retooling for design changes. 
 
For a MCU implementation, the A2D and D2A Blocks are resources that are already included as 
options in the MCU selection process. The Block Diagram is translated to a program for the 
MCU unit selected. The MCU is considerably more complex than an FPGA, may include the 
conversion resources and has higher unit costs than either an ASIC or FPGA implementation but 
offers the most implementation flexibility. 
 
The PSoC device is somewhat of a hybrid, and allows continuous magnitude samples to be 
processed without conversion to discrete magnitudes. In that regard, it is not a truly Digital 
implementation, but offers some advantages for the skilled designer. 
 

26.0 Bilinear Transform Integrator Logic Schematic Example – 
A logic-level implementation is a relatively simple translation of the Block Diagram. The 
Bilinear Transform Integrator is used as an example as follows: 
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Figure 26.0 – Register-Level Bilinear Transform Logic Implementation 
 
The signal paths are multi-bit digital quantities that are implementation specific. A discussion of 
the requirements for selection of the number of bits resolution is deferred until later, but note that 
the sum of two digital words generates an extra bit of width in the “carry” signal. The system 
implementation must be designed for the worst-case dynamic range to prevent overflow 
truncation of the digital signals. 
 
The TS Clock input synchronizes the block with the rest of the blocks and the Reset input 
initializes the Register on start-up. Generally, other blocks are needed to deal with the power-
on/off sequencing, power supply checking, Enable inputs and other “Supervisory Functions” that 
are application specific. 
 
Scaling-factor and gain blocks are implemented as combinational logic and can be judiciously 
inserted into the signal paths above to implement each other block of the digital controller. 
 
A Register-Level ASIC or FPGA solution would be implemented for economic reasons or in 
applications needing very high TS Clock rates. 
 

27.0 Bilinear Transform Integrator Verilog RTL Example – 
Modern Digital Logic Synthesis practice permits the use of a high-level Hardware Design 
Language (HDL), including VHDL and Verilog to describe an implementation without drawing 
a schematic diagram. The code is compiled to produce a “Netlist” with objects mapped from a 
library of logic gates or FPGA programmable block descriptions. 
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The following is a Register Transfer Level (RTL) description of the Bilinear Transform 
Integrator Block written in Verilog: 
 
/*********************************************************/ 
// MODULE:  Bilinear Transform Integrator 
// 
// FILE NAME: bti_rtl.v 
// VERSION:  1.0 
// DATE:  February 31, 2020 
// AUTHOR:  Raymond L. Barrett, Jr. 
//  
// CODE TYPE: Register Transfer Level 
// 
// DESCRIPTION: This Module Implements an Unscaled Bilinear  
// Transform Integrator Core 
// 
/*********************************************************/ 
 
// DEFINES 
`define DEL 1  // Clock-to-output delay. Zero 
     // time delays can be confusing 
     // and sometimes cause problems. 
`define OP_BITS 4 // Number of bits in each operand 
 
// TOP MODULE 
module BLT( 
  clk, 
  reset, 
  x, 
  y); 
 
// INPUTS 
input     clk;   // Clock 
input     reset;   // Reset input 
input [`OP_BITS-1:0] x;    // Signal Input 
 
// OUTPUTS 
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output [2*`OP_BITS-1:0]y;  // Signal Output 
 
// INOUTS 
 
// SIGNAL DECLARATIONS 
wire     clk; 
wire     reset; 
wire     y; 
wire [`OP_BITS-1:0]  w0; 
reg  [2*`OP_BITS-1:0] w1; 
 
// PARAMETERS 
 
// ASSIGN STATEMENTS 
assign #`DEL w0 = x + w1; 
assign #`DEL y = w0 + w1; 
 
// MAIN CODE 
 
// Look at the rising edge of the clock 
// and the rising edge of reset 
always @(posedge reset or posedge clk) begin 
 if (reset) 
  w1 <= 0; 
 else 
  w1 <= w0; 
end 
endmodule // BLT 
 
The code above is for illustration only and is not guaranteed to produce a useful device. It is 
defined with a “DEFINE” block so that bit width and salient time delays can be changed in one 
location and used throughout the code. The “module” declaration assigns a name to this block 
and lists the signal names connected as inputs and outputs. The “INPUTS” section defines which 
signals are inputs and the number of bits width for multi-bit signals. The “OUTPUTS” section 
defines which signals are outputs and the number of bits width for multi-bit signals. No 
“INOUT” or bi-directional signal are used or listed.  
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The “SIGNAL DECLARATIONS” section lists the signal properties of each signal name with 
the “wire” declaration implying no memory associated with a signal name and the “reg” 
declaration implying that a signal is held remembered between defining events to change that 
signal. 
 
No “PARAMETERS” are assigned or used. The list of “ASSIGN STATEMENTS” define the 
algebraic relationship between signals that are derived from other signals and allows the 
attachment of a delay to represent the propagation delay of the associated computation. 
 
The “MAIN CODE” section defines the operational activities of the module and particularly the 
assignment of values to the memory associated with the register as the variable “w1” represents. 
 
Each section follows the syntax of the Verilog language definition using the “;” character to 
denote the end of a line and the “end” statement to delineate the termination of a concurrent 
block of code. The “module” and “endmodule” keywords are used to inform the compiler as to 
the location of the beginning and end of the definition of this functional block. 
 
Just as with the Verilog example, VHDL has its own syntactical requirements to produce a 
correct result. Both are supported by design entry tools that perform a check of the syntax with 
some indication of where errors may be found in the code. Simulators are available that allow 
checking of the code for correct function and possible errors that can only be detected by 
operating the system. 
 

28.0 Bilinear Transform Integrator MCU Programs – 
Producing a program for MCU implementation is much like the Verilog or VHDL code. The 
high-level programming language “C” appears much like Verilog and is compiled in a similar 
syntax checking and simulation environment to support program development.  
 
For those applications that require higher speeds, it may be required to write programs directly in 
the “assembly language” of the MCU chosen. The tools that support “C” language development 
produce assembly language as an intermediate level, but it is not often optimized to produce the 
highest performance. In some cases, particular modules alone may be written in assembly 
language and invoked from the “C” program to get good speed and good programmer 
productivity too. 
 
One advantage of writing programs in a high-level language like “C” is that they can often be 
used on differing MCU units from the same manufacturer, or from different MCU manufacturers 
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and on different MCU architectures with little or no changes. Assembly language programming 
is far less “portable” between MCU devices. 
 

29.0 Digital Word Bit Width – 
Digital quantities are represented by some number of bits, each representing a twice the 
resolution in relation to an adjacent bit in the digital word. Initially, we are faced with deciding 
the level of resolution required or possibly whether the bit width offered by a particular 
implementation is sufficient. MCU units are available in 8-bit, 16-bit, and even 32-bit 
architectures. However, even an 8-bit MCU can be programmed to represent 32-bit quantities at 
the cost of slower speed of computation. 
 
A2D and D2A converters are available in a wider range of bit-widths and speeds and present 
more of an issue for choosing signal representation. 
 

 

  
Figure 29.0 – Quantizing Error Quantities 
 
We will continue with the assumption that we are dealing with Sinusoidal signals and define the 
signal above as a segment from that “Sinusoid.” 
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  FtVV pSine 2sin  [29.0] 

The power of the waveform is: 

  
2

2
p

Sine

V
VP   [29.1] 

We can write the error  as: 
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Using a “dummy variable”,we can integrate the square error over the time interval to find the 
mean-square error, or noise power associated with the error as: 
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The “Sinusoid” has a signal range of 2Vp and for an n-bit word, we know that there are 2n levels. 
It follows, then that: 
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Each of the 2n levels contributes equal average mean-square power, despite each being of 
different duration, so the average powers is: 
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We now can find the “Signal to Noise Ratio” (SNR) as: 
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 [29.6] 

 
It is common to express the power ratio in decibel (dB) units as follows: 
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 nSNR 02.676.1log10 10   [29.6] 

 
This important result shows a 6dB improvement for each added bit of width. For an 8-bit word 
width, the SNR is ~50dB, or less than 0.5% but only at the maximum signal. Likewise, a for a 
16-bit word width, the SNR is ~98dB, or about 0.001% but only at the maximum signal. 
 
The noise generated by the Quantization of a continuous magnitude signal into discrete levels 
produces noise in the system that is different from any other noise sources in any remaining 
analog system components. Both the A2D and D2A produce these noise effects and should be 
analyzed for independent effects. 
 

30.0 Summary and Conclusions– 
30.1 - We have characterized an Analog Feedback Control System comprised of an original 
single (or dominant) pole model H(f), and added a representative Operational Amplifier 
Feedback Control Block with Pole-Zero (PZ) GPZ(f) compensation, showing the need from 
“Open Loop” stability arguments. We showed the “Closed Loop” response of the system in the 
frequency domain. 
 
30.2 - We showed the importance of setting a sampling rate at a high enough frequency to 
determine delay effects from the Zero-Order Hold (ZOH) nature of the sampling on the loop 
stability and also high enough to avoid Aliasing effects.  
 
30.3 – We introduced a generalized Block Diagram methodology for translating the Analog 
System behavior into a structured System Diagram with continuous-time integrators. We 
developed a discrete-time model of the Bilinear Transform integrator and substituted it for the 
continuous-time integrator, preserving the system stability of the Analog System. 
 
30.4 – We discussed issues for ASIC, FPGA, and MCU implementation alternatives, showing a 
high-level logic circuit schematic and a Verilog code example fro implementation of the Bilinear 
Transform integrator Block. We discussed the similarity of the Verilog model to MCU code 
written using the “C” language and the possibilities for assembly language programming of 
MCU units.  
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30.5 – We discussed the relationship between digital word bit-width and the noise associated 
with Quantization error of the discrete magnitude levels. 
 
In conclusion, we have covered the continuous-time to discrete-time issues, the continuous-
magnitude to discrete-magnitude issues, showed a methodology for conversion, and 
implementation of “Converting Feedback Systems from Analog to Digital Control.” 
 
 
 
 


