Slide Sequence for PM 201 – The Technical Side of PM

Jeffrey Pinto, Ph.D.

Agenda of Topics

- Work Breakdown Structures (WBS)
- Network Diagramming
- Activity Duration Estimation
- Developing the Critical Path
- Crashing Projects
- Monitoring Project Performance

WBS

• Defined as: "A hierarchical decomposition of the work to be executed"

<u>STEPS</u>

- Define project objective
- Determine the work elements
 - Break project into manageable pieces
 - Work package is the lowest element

Organization

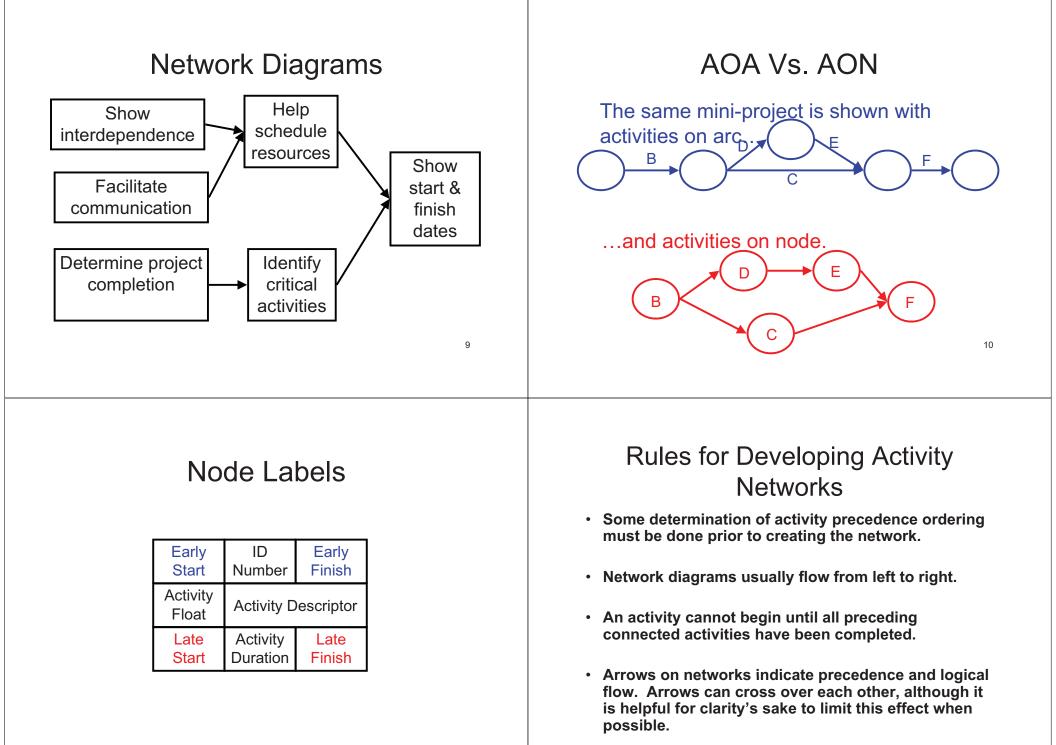
- Levels of WBS
 - Project
 - Deliverable
 - Sub-deliverable
 - Work Package

1

Work Packages

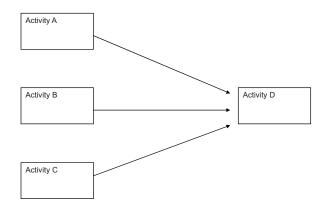
- · Clearly defined ownership
- Clearly defined start and end dates that are representative of physical accomplishments
- Results that can be compared with expectations
- A specific budget in terms of dollars, hours to completion, or other measurable units

WBS sample

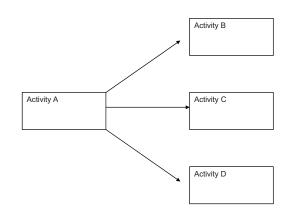

- 1. Wedding project
 - 1.1 Decide on date
 - 1.2 Marriage license
 - 1.3 Bridal arrangements
 - 1.3.1 Select attendants
 - 1.3.2 Order dresses
 - 1.3.3 Fit dresses
 - 1.4 Ceremony
 - 1.4.1 Rent church
 - 1.4.2 Florist
 - 1.4.3 Create/print programs
 - 1.4.4 Hire photographer
 - 1.4.5 Wedding ceremony

WBS sample

- 1.5 Guests
 - 1.5.1 Develop guest list
 - 1.5.2 Order invitations
 - 1.5.3 Address and mail invitations
 - 1.5.4 Track RSVPs
- 1.6 Reception
 - 1.6.1 Reserve reception hall
 - 1.6.2 Food and beverage
 - 1.6.2.1 Choose caterer
 - » 1.6.2.2 Decide on menu
 - » 1.6.2.3 Make final order
 - 1.6.3 Hire band
 - 1.6.4 Decorate reception hall
 - 1.6.5 Wedding reception

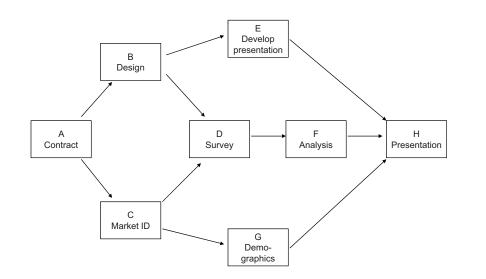

Developing Activity Networks

5



Rules for Networks, con'd: Important Terminology • Each activity should have a unique identifier Serial Relationships associated with it (number, letter, code, etc). Parallel Relationships Merge Activities Looping, or recycling through activities, is not permitted. Burst Activities • Although not required, it is common to start a project from a single beginning node. A single node point also is typically used as a project end indicator. 13 14 Activities Linked in Parallel **Activities Linked in Series** D F Final draft Edit paper C Η С в А Paper draft Finish ID Topic Research Paper draft Ε G Finish pres. Prep. pres. 15 16

Merge Activities



Information for Network Construction

<u>Activity</u>	Description	Predecessors
А	Contract signing	None
В	Questionnaire desig	jn A
С	Target Market ID	А
D	Survey Sample	B,C
E	Develop presentation	on B
F	Analyze results	D
G	Demographic analy	sis C
Н	Presentation to clier	nt E,F,G

Duration Estimation Methods

- Past experience
- Expert opinion
- Mathematical derivation Beta distribution
 - Most likely (m)
 - Most pessimistic (b)
 - Most optimistic (a)

Activity Duration = $TE = \frac{a+4m+b}{c}$

21

Example

Determine the expected duration of each activity.

Task	Predecessor	а	b	С
Ζ		7	8	15
Y	Z	13	16	19
Х	Z	14	18	22
W	Υ, Χ	12	14	16
V	W	1	4	13
Т	W	6	10	14
S	T, V	11	14	19

22

Solution

-				-	
Task	Predecessor	а	b	С	
Ζ		7	8	15	
Y	Z	13	16	19	
Х	Z	14	18	22	
W	Y, X	12	14	16	
V	W	1	4	13	
Т	W	6	10	14	
S	T, V	11	14	19	

Exp. Duration

9 16 18 14 5 10 14.33

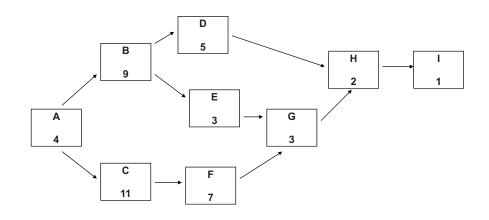
Constructing the Critical Path

- Forward pass an additive move through the network from start to finish
- Backward pass a subtractive move through the network from finish to start
- Critical path the *longest path* from end to end which determines the *shortest project length*

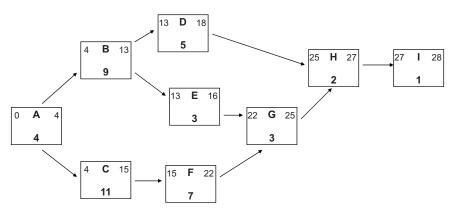
Rules for Forward/Backward Pass

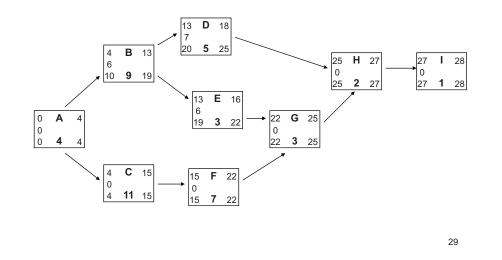
Forward Pass Rules (ES & EF)

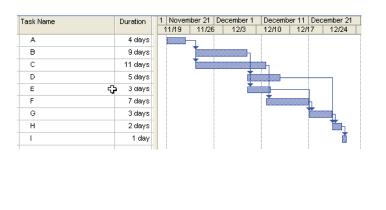
- ES + Duration = EF
- EF of predecessor = ES of successor
- Largest preceding EF at a merge point becomes EF for successor


Backward Pass Rules (LS & LF)

- LF Duration = LS
- LS of successor = LF of predecessor
- Smallest succeeding LS at a burst point becomes LF for predecessor
- 25


- Task Predecessor Time Α 4 ___ В 9 Α С А 11 D В 5 В 3 Ε С F 7 G E, F 3 Н D, G 2 Н 1
- 1. Sketch the network described in the table.
- 2. Determine the ES, LS, EF, LF, and slack of each activity


Solution: First, lay out the network


Next, add the Forward Pass

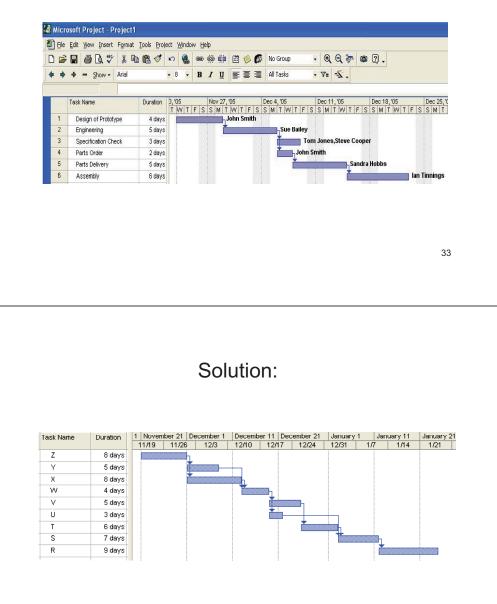
Solution Using MS Project

30

Reducing the Critical Path

- Eliminate tasks on the CP
- Convert serial paths to parallel when possible
- Overlap sequential tasks
- Shorten the duration on critical path tasks
- Shorten
 - early tasks
 - longest tasks
 - easiest tasks
 - tasks that cost the least to speed up

31


Gantt Charts

- ✓ Establish a time-phased network
- ✓ Can be used as a tracking tool

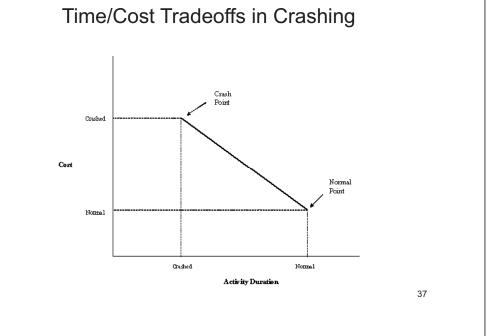
Benefits of Gantt charts

- **1. Easy** to create and comprehend
- 2. Identify the schedule **baseline** network
- 3. Allow for updating and control
- 4. Identify resource needs

Gantt Chart With Resources in MS Project

Example: Create a Gantt chart based on the activities listed in the table.

Task	Time	Pred	Task	Time	Pred
Ζ	8		U	3	W
Y	5	Z	Т	6	V
Х	8	Z	S	7	U,T
W	4	Y,X	R	9	S
V	5	W			


34

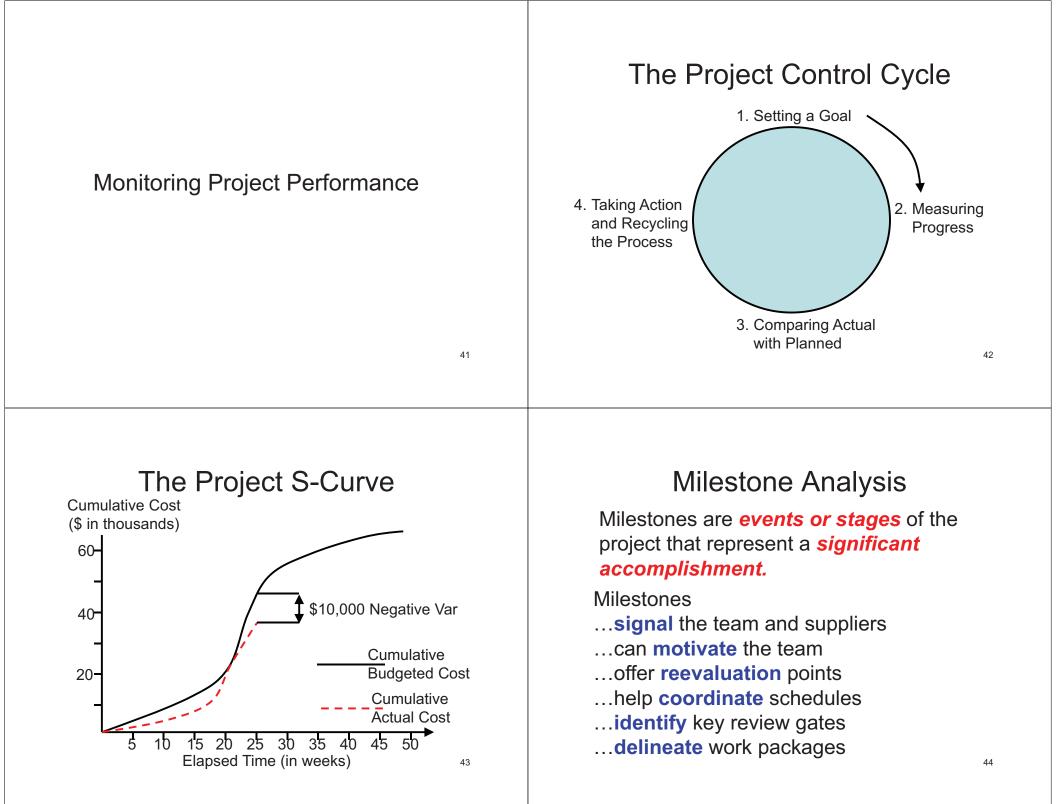
Crashing Projects

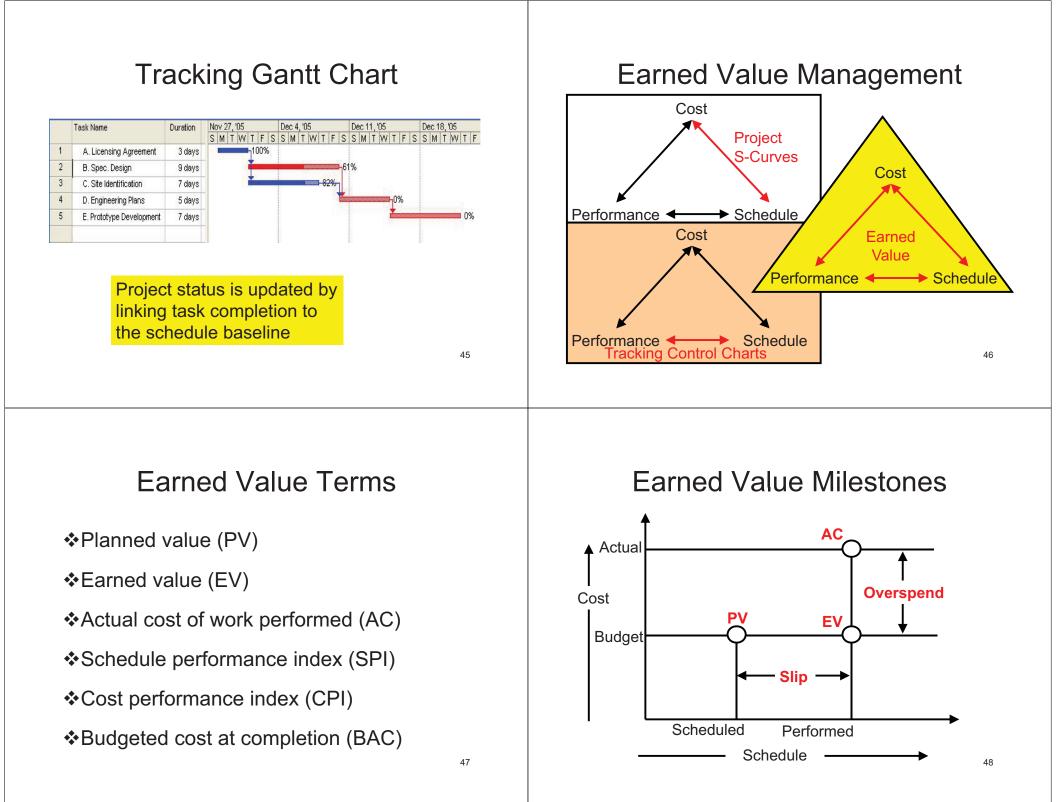
Accelerating a project by committing more resources than initially planned

Principal methods for crashing

- Improving existing resources' productivity
- Changing work methods
- Increasing the **quantity** of resources

Slope = <u>Crash cost – Normal cost</u> Normal time – Crash time


Suppose: Activity X takes 5 weeks at \$12,000. By spending \$32,000 We could save 2 weeks. What is the cost of crashing this activity?


Crash cost = $\frac{32,000 - 12,000}{5 - 3}$

= \$10,000 per week

Managerial Considerations

- Determine activity <u>costs</u>
- The <u>crash point</u> is the fully expedited activity
- Optimize time-cost tradeoffs
- Shorten activities on the critical path
- · Cease crashing when
 - the target completion time is reached
 - the crash cost exceeds the penalty cost

Steps in Earned Value Management

- 1. <u>Clearly define each activity</u> including its resource needs and budget
- 2. <u>Create usage schedules</u> for activities and resources
- 3. <u>Develop a time-phased budget</u> (PV)

Steps in Earned Value Management (con'd)

- <u>Total the actual costs</u> of doing each task (AC)
- 5. <u>Calculate</u> both the budget variance (CV) and schedule variance (SV)

Earned Value Example

Activity	Jan	Feb	Mar	Apr	Plan	%C	Value
Staffing	8	7			15	100	
Blueprint			4	6	10	80	
Prototype			2	8	10	60	
Design				3	3	33	
Mon Plan	8	7	6	17	38		
Cmltv	8	15	21	38			
Mon Act	8	11	8	13			
Cmltv Act	8	19	27	40			

Earned Value Example

					-		
Activity	Jan	Feb	Mar	Apr	Plan	%C	Value
Staffing	8	7			15		
Blueprint			4	6	10		
Prototype			2	8	10		
Design				3	3		
Mon Plan	8	7	6	17	38		
Cmltv	8	15	21	38			
Mon Act	8	11	8	13		\mathbf{N}	
Cmltv Act	8	19	27	40		\backslash	

50

Earne	е	Valı 8=80%						
Activity	Jan	Feb	Mar	Apr	Plan	%C	Value	
Staffing	8	7			15	100	15	
Blueprint			4	6	10	80	8	↓
Prototype			2	8	10	60	6	
Design				3	3	33	1	
Mon Plan	8	7	6	17	38			
Cmltv	8	15	21	38				-
Mon Act	8	11	8	13				
Cmltv Act	8	19	27	40				

53

Earne	ed V	′alu	e E	xa	mpl	e	Valı 8=80%	_
Activity	Jan	Feb	Mar	Apr	Plan	%C	Value	
Staffing	8	7			15	100	15	
Blueprint			4	6	10	80	8	
Prototype			2	8	10	60	6	
Design				3	3	33	1	
Mon Plan	8	7	6	17	38	Σ	30	
Cmltv	8	15	21	38			K	
Mon Act	8	11	8	13		\backslash	Far	ned Value
Cmltv Act	8	19	27	40		\backslash		15+8+6+1
Cumulative 40=8+11+8+13						nned \ 15+10+		55

Earned Value Example

Activity	Jan	Feb	Mar	Apr	Plan	%C	Value
Activity	Jan	гер	war	Арг	Plan	70C	value
Staffing	8	7			15	100	15
Blueprint			4	6	10	80	8
Prototype			2	8	10	60	6
Design				3	3	33	1
Mon Plan	8	7	6	17	38	Σ	30
Cmltv	8	15	21	38			×
Mon Act	8	11	8	13			Ear
Cmltv Act	8	19	27	40			30=

54

Earned Value Example

<u>Schedule Variances</u> Planned Value (PV) = 15+10+10+3 = 38 Earned Value (EV) = 15+8+6+1 = 30

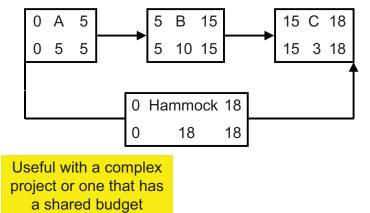
Schedule Performance Index = EV/PV = 30/38 = .79 Estimated Time to Completion = (1/.79)x4 = 5

Example (Con'd):

Cost Variances	
Actual Cost of Work Performed (AC) =	
8+11+8+13 = \$40,000	
Cost Performance Index = EV/AC =	
30/40 = .75	
Estimated Cost to Completion =	
(1/.75)x38 = \$50,700	

Completion Values in EVM

Accurate and up-to-date information is critical in the use of EVM
> 0/100 Rule
> 50/50 Rule
> Percentage Complete Rule


The Challenge

Successfully planning and controlling a project is one of the most critical skill sets a person can learn.

Doing it right requires an understanding of the principles, a commitment to applying them, and PRACTICE!!!

Hammock Activities

Used as summaries for subsets of activities

57